MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrmin1 Structured version   Visualization version   GIF version

Theorem xrmin1 13012
Description: The minimum of two extended reals is less than or equal to one of them. (Contributed by NM, 7-Feb-2007.)
Assertion
Ref Expression
xrmin1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → if(𝐴𝐵, 𝐴, 𝐵) ≤ 𝐴)

Proof of Theorem xrmin1
StepHypRef Expression
1 iftrue 4479 . . . 4 (𝐴𝐵 → if(𝐴𝐵, 𝐴, 𝐵) = 𝐴)
21adantl 482 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴𝐵) → if(𝐴𝐵, 𝐴, 𝐵) = 𝐴)
3 xrleid 12986 . . . 4 (𝐴 ∈ ℝ*𝐴𝐴)
43ad2antrr 723 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐴𝐴)
52, 4eqbrtrd 5114 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴𝐵) → if(𝐴𝐵, 𝐴, 𝐵) ≤ 𝐴)
6 iffalse 4482 . . . 4 𝐴𝐵 → if(𝐴𝐵, 𝐴, 𝐵) = 𝐵)
76adantl 482 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → if(𝐴𝐵, 𝐴, 𝐵) = 𝐵)
8 xrletri 12988 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵𝐵𝐴))
98orcanai 1000 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → 𝐵𝐴)
107, 9eqbrtrd 5114 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → if(𝐴𝐵, 𝐴, 𝐵) ≤ 𝐴)
115, 10pm2.61dan 810 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → if(𝐴𝐵, 𝐴, 𝐵) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1540  wcel 2105  ifcif 4473   class class class wbr 5092  *cxr 11109  cle 11111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-pre-lttri 11046  ax-pre-lttrn 11047
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-po 5532  df-so 5533  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-er 8569  df-en 8805  df-dom 8806  df-sdom 8807  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116
This theorem is referenced by:  xrltmin  13017  xrlemin  13019  min1  13024  mnfnei  22478  stdbdxmet  23777  stdbdmopn  23780  metnrmlem1a  24127  dvferm1lem  25254  lhop1  25284  stoweid  43949
  Copyright terms: Public domain W3C validator