MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrmin1 Structured version   Visualization version   GIF version

Theorem xrmin1 13103
Description: The minimum of two extended reals is less than or equal to one of them. (Contributed by NM, 7-Feb-2007.)
Assertion
Ref Expression
xrmin1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → if(𝐴𝐵, 𝐴, 𝐵) ≤ 𝐴)

Proof of Theorem xrmin1
StepHypRef Expression
1 iftrue 4497 . . . 4 (𝐴𝐵 → if(𝐴𝐵, 𝐴, 𝐵) = 𝐴)
21adantl 483 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴𝐵) → if(𝐴𝐵, 𝐴, 𝐵) = 𝐴)
3 xrleid 13077 . . . 4 (𝐴 ∈ ℝ*𝐴𝐴)
43ad2antrr 725 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴𝐵) → 𝐴𝐴)
52, 4eqbrtrd 5132 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴𝐵) → if(𝐴𝐵, 𝐴, 𝐵) ≤ 𝐴)
6 iffalse 4500 . . . 4 𝐴𝐵 → if(𝐴𝐵, 𝐴, 𝐵) = 𝐵)
76adantl 483 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → if(𝐴𝐵, 𝐴, 𝐵) = 𝐵)
8 xrletri 13079 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵𝐵𝐴))
98orcanai 1002 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → 𝐵𝐴)
107, 9eqbrtrd 5132 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐴𝐵) → if(𝐴𝐵, 𝐴, 𝐵) ≤ 𝐴)
115, 10pm2.61dan 812 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → if(𝐴𝐵, 𝐴, 𝐵) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wcel 2107  ifcif 4491   class class class wbr 5110  *cxr 11195  cle 11197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-pre-lttri 11132  ax-pre-lttrn 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-po 5550  df-so 5551  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202
This theorem is referenced by:  xrltmin  13108  xrlemin  13110  min1  13115  mnfnei  22588  stdbdxmet  23887  stdbdmopn  23890  metnrmlem1a  24237  dvferm1lem  25364  lhop1  25394  stoweid  44378
  Copyright terms: Public domain W3C validator