Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrmin1 | Structured version Visualization version GIF version |
Description: The minimum of two extended reals is less than or equal to one of them. (Contributed by NM, 7-Feb-2007.) |
Ref | Expression |
---|---|
xrmin1 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4479 | . . . 4 ⊢ (𝐴 ≤ 𝐵 → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) = 𝐴) | |
2 | 1 | adantl 482 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) = 𝐴) |
3 | xrleid 12986 | . . . 4 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴) | |
4 | 3 | ad2antrr 723 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐴) |
5 | 2, 4 | eqbrtrd 5114 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐴) |
6 | iffalse 4482 | . . . 4 ⊢ (¬ 𝐴 ≤ 𝐵 → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) = 𝐵) | |
7 | 6 | adantl 482 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 ≤ 𝐵) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) = 𝐵) |
8 | xrletri 12988 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) | |
9 | 8 | orcanai 1000 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 ≤ 𝐵) → 𝐵 ≤ 𝐴) |
10 | 7, 9 | eqbrtrd 5114 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 ≤ 𝐵) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐴) |
11 | 5, 10 | pm2.61dan 810 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ifcif 4473 class class class wbr 5092 ℝ*cxr 11109 ≤ cle 11111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-pre-lttri 11046 ax-pre-lttrn 11047 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-po 5532 df-so 5533 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 |
This theorem is referenced by: xrltmin 13017 xrlemin 13019 min1 13024 mnfnei 22478 stdbdxmet 23777 stdbdmopn 23780 metnrmlem1a 24127 dvferm1lem 25254 lhop1 25284 stoweid 43949 |
Copyright terms: Public domain | W3C validator |