![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrmin1 | Structured version Visualization version GIF version |
Description: The minimum of two extended reals is less than or equal to one of them. (Contributed by NM, 7-Feb-2007.) |
Ref | Expression |
---|---|
xrmin1 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4536 | . . . 4 ⊢ (𝐴 ≤ 𝐵 → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) = 𝐴) | |
2 | 1 | adantl 480 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) = 𝐴) |
3 | xrleid 13165 | . . . 4 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴) | |
4 | 3 | ad2antrr 724 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐴) |
5 | 2, 4 | eqbrtrd 5171 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐴) |
6 | iffalse 4539 | . . . 4 ⊢ (¬ 𝐴 ≤ 𝐵 → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) = 𝐵) | |
7 | 6 | adantl 480 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 ≤ 𝐵) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) = 𝐵) |
8 | xrletri 13167 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) | |
9 | 8 | orcanai 1000 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 ≤ 𝐵) → 𝐵 ≤ 𝐴) |
10 | 7, 9 | eqbrtrd 5171 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 ≤ 𝐵) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐴) |
11 | 5, 10 | pm2.61dan 811 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ifcif 4530 class class class wbr 5149 ℝ*cxr 11279 ≤ cle 11281 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-pre-lttri 11214 ax-pre-lttrn 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 |
This theorem is referenced by: xrltmin 13196 xrlemin 13198 min1 13203 mnfnei 23169 stdbdxmet 24468 stdbdmopn 24471 metnrmlem1a 24818 dvferm1lem 25960 lhop1 25991 stoweid 45589 |
Copyright terms: Public domain | W3C validator |