![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrsdsreval | Structured version Visualization version GIF version |
Description: The metric of the extended real number structure coincides with the real number metric on the reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
xrsds.d | β’ π· = (distββ*π ) |
Ref | Expression |
---|---|
xrsdsreval | β’ ((π΄ β β β§ π΅ β β) β (π΄π·π΅) = (absβ(π΄ β π΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 11264 | . . 3 β’ (π΄ β β β π΄ β β*) | |
2 | rexr 11264 | . . 3 β’ (π΅ β β β π΅ β β*) | |
3 | xrsds.d | . . . 4 β’ π· = (distββ*π ) | |
4 | 3 | xrsdsval 21189 | . . 3 β’ ((π΄ β β* β§ π΅ β β*) β (π΄π·π΅) = if(π΄ β€ π΅, (π΅ +π -ππ΄), (π΄ +π -ππ΅))) |
5 | 1, 2, 4 | syl2an 594 | . 2 β’ ((π΄ β β β§ π΅ β β) β (π΄π·π΅) = if(π΄ β€ π΅, (π΅ +π -ππ΄), (π΄ +π -ππ΅))) |
6 | rexsub 13216 | . . . . . 6 β’ ((π΅ β β β§ π΄ β β) β (π΅ +π -ππ΄) = (π΅ β π΄)) | |
7 | 6 | ancoms 457 | . . . . 5 β’ ((π΄ β β β§ π΅ β β) β (π΅ +π -ππ΄) = (π΅ β π΄)) |
8 | 7 | adantr 479 | . . . 4 β’ (((π΄ β β β§ π΅ β β) β§ π΄ β€ π΅) β (π΅ +π -ππ΄) = (π΅ β π΄)) |
9 | abssuble0 15279 | . . . . 5 β’ ((π΄ β β β§ π΅ β β β§ π΄ β€ π΅) β (absβ(π΄ β π΅)) = (π΅ β π΄)) | |
10 | 9 | 3expa 1116 | . . . 4 β’ (((π΄ β β β§ π΅ β β) β§ π΄ β€ π΅) β (absβ(π΄ β π΅)) = (π΅ β π΄)) |
11 | 8, 10 | eqtr4d 2773 | . . 3 β’ (((π΄ β β β§ π΅ β β) β§ π΄ β€ π΅) β (π΅ +π -ππ΄) = (absβ(π΄ β π΅))) |
12 | rexsub 13216 | . . . . 5 β’ ((π΄ β β β§ π΅ β β) β (π΄ +π -ππ΅) = (π΄ β π΅)) | |
13 | 12 | adantr 479 | . . . 4 β’ (((π΄ β β β§ π΅ β β) β§ Β¬ π΄ β€ π΅) β (π΄ +π -ππ΅) = (π΄ β π΅)) |
14 | letric 11318 | . . . . . 6 β’ ((π΄ β β β§ π΅ β β) β (π΄ β€ π΅ β¨ π΅ β€ π΄)) | |
15 | 14 | orcanai 999 | . . . . 5 β’ (((π΄ β β β§ π΅ β β) β§ Β¬ π΄ β€ π΅) β π΅ β€ π΄) |
16 | abssubge0 15278 | . . . . . . 7 β’ ((π΅ β β β§ π΄ β β β§ π΅ β€ π΄) β (absβ(π΄ β π΅)) = (π΄ β π΅)) | |
17 | 16 | 3com12 1121 | . . . . . 6 β’ ((π΄ β β β§ π΅ β β β§ π΅ β€ π΄) β (absβ(π΄ β π΅)) = (π΄ β π΅)) |
18 | 17 | 3expa 1116 | . . . . 5 β’ (((π΄ β β β§ π΅ β β) β§ π΅ β€ π΄) β (absβ(π΄ β π΅)) = (π΄ β π΅)) |
19 | 15, 18 | syldan 589 | . . . 4 β’ (((π΄ β β β§ π΅ β β) β§ Β¬ π΄ β€ π΅) β (absβ(π΄ β π΅)) = (π΄ β π΅)) |
20 | 13, 19 | eqtr4d 2773 | . . 3 β’ (((π΄ β β β§ π΅ β β) β§ Β¬ π΄ β€ π΅) β (π΄ +π -ππ΅) = (absβ(π΄ β π΅))) |
21 | 11, 20 | ifeqda 4563 | . 2 β’ ((π΄ β β β§ π΅ β β) β if(π΄ β€ π΅, (π΅ +π -ππ΄), (π΄ +π -ππ΅)) = (absβ(π΄ β π΅))) |
22 | 5, 21 | eqtrd 2770 | 1 β’ ((π΄ β β β§ π΅ β β) β (π΄π·π΅) = (absβ(π΄ β π΅))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 ifcif 4527 class class class wbr 5147 βcfv 6542 (class class class)co 7411 βcr 11111 β*cxr 11251 β€ cle 11253 β cmin 11448 -πcxne 13093 +π cxad 13094 abscabs 15185 distcds 17210 β*π cxrs 17450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-rp 12979 df-xneg 13096 df-xadd 13097 df-fz 13489 df-seq 13971 df-exp 14032 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-struct 17084 df-slot 17119 df-ndx 17131 df-base 17149 df-plusg 17214 df-mulr 17215 df-tset 17220 df-ple 17221 df-ds 17223 df-xrs 17452 |
This theorem is referenced by: xrsdsreclb 21192 metrtri 24083 xrsxmet 24545 xrsdsre 24546 |
Copyright terms: Public domain | W3C validator |