![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrsdsreval | Structured version Visualization version GIF version |
Description: The metric of the extended real number structure coincides with the real number metric on the reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
xrsds.d | ⊢ 𝐷 = (dist‘ℝ*𝑠) |
Ref | Expression |
---|---|
xrsdsreval | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 10422 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
2 | rexr 10422 | . . 3 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
3 | xrsds.d | . . . 4 ⊢ 𝐷 = (dist‘ℝ*𝑠) | |
4 | 3 | xrsdsval 20186 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴𝐷𝐵) = if(𝐴 ≤ 𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵))) |
5 | 1, 2, 4 | syl2an 589 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐷𝐵) = if(𝐴 ≤ 𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵))) |
6 | rexsub 12376 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 +𝑒 -𝑒𝐴) = (𝐵 − 𝐴)) | |
7 | 6 | ancoms 452 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 +𝑒 -𝑒𝐴) = (𝐵 − 𝐴)) |
8 | 7 | adantr 474 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 +𝑒 -𝑒𝐴) = (𝐵 − 𝐴)) |
9 | abssuble0 14475 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (abs‘(𝐴 − 𝐵)) = (𝐵 − 𝐴)) | |
10 | 9 | 3expa 1108 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (abs‘(𝐴 − 𝐵)) = (𝐵 − 𝐴)) |
11 | 8, 10 | eqtr4d 2817 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 +𝑒 -𝑒𝐴) = (abs‘(𝐴 − 𝐵))) |
12 | rexsub 12376 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 -𝑒𝐵) = (𝐴 − 𝐵)) | |
13 | 12 | adantr 474 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬ 𝐴 ≤ 𝐵) → (𝐴 +𝑒 -𝑒𝐵) = (𝐴 − 𝐵)) |
14 | letric 10476 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) | |
15 | 14 | orcanai 988 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬ 𝐴 ≤ 𝐵) → 𝐵 ≤ 𝐴) |
16 | abssubge0 14474 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ≤ 𝐴) → (abs‘(𝐴 − 𝐵)) = (𝐴 − 𝐵)) | |
17 | 16 | 3com12 1114 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) → (abs‘(𝐴 − 𝐵)) = (𝐴 − 𝐵)) |
18 | 17 | 3expa 1108 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ≤ 𝐴) → (abs‘(𝐴 − 𝐵)) = (𝐴 − 𝐵)) |
19 | 15, 18 | syldan 585 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬ 𝐴 ≤ 𝐵) → (abs‘(𝐴 − 𝐵)) = (𝐴 − 𝐵)) |
20 | 13, 19 | eqtr4d 2817 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬ 𝐴 ≤ 𝐵) → (𝐴 +𝑒 -𝑒𝐵) = (abs‘(𝐴 − 𝐵))) |
21 | 11, 20 | ifeqda 4342 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴 ≤ 𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) = (abs‘(𝐴 − 𝐵))) |
22 | 5, 21 | eqtrd 2814 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ifcif 4307 class class class wbr 4886 ‘cfv 6135 (class class class)co 6922 ℝcr 10271 ℝ*cxr 10410 ≤ cle 10412 − cmin 10606 -𝑒cxne 12254 +𝑒 cxad 12255 abscabs 14381 distcds 16347 ℝ*𝑠cxrs 16546 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-oadd 7847 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-sup 8636 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-7 11443 df-8 11444 df-9 11445 df-n0 11643 df-z 11729 df-dec 11846 df-uz 11993 df-rp 12138 df-xneg 12257 df-xadd 12258 df-fz 12644 df-seq 13120 df-exp 13179 df-cj 14246 df-re 14247 df-im 14248 df-sqrt 14382 df-abs 14383 df-struct 16257 df-ndx 16258 df-slot 16259 df-base 16261 df-plusg 16351 df-mulr 16352 df-tset 16357 df-ple 16358 df-ds 16360 df-xrs 16548 |
This theorem is referenced by: xrsdsreclb 20189 metrtri 22570 xrsxmet 23020 xrsdsre 23021 |
Copyright terms: Public domain | W3C validator |