| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mins1 | Structured version Visualization version GIF version | ||
| Description: The minimum of two surreals is less than or equal to the first. (Contributed by Scott Fenton, 14-Feb-2025.) |
| Ref | Expression |
|---|---|
| mins1 | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) ≤s 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 4506 | . . . 4 ⊢ (𝐴 ≤s 𝐵 → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) = 𝐴) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐴 ≤s 𝐵) → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) = 𝐴) |
| 3 | slerflex 27725 | . . . 4 ⊢ (𝐴 ∈ No → 𝐴 ≤s 𝐴) | |
| 4 | 3 | ad2antrr 726 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐴 ≤s 𝐵) → 𝐴 ≤s 𝐴) |
| 5 | 2, 4 | eqbrtrd 5141 | . 2 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐴 ≤s 𝐵) → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) ≤s 𝐴) |
| 6 | iffalse 4509 | . . . 4 ⊢ (¬ 𝐴 ≤s 𝐵 → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) = 𝐵) | |
| 7 | 6 | adantl 481 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ¬ 𝐴 ≤s 𝐵) → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) = 𝐵) |
| 8 | sletric 27726 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ∨ 𝐵 ≤s 𝐴)) | |
| 9 | 8 | orcanai 1004 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ¬ 𝐴 ≤s 𝐵) → 𝐵 ≤s 𝐴) |
| 10 | 7, 9 | eqbrtrd 5141 | . 2 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ¬ 𝐴 ≤s 𝐵) → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) ≤s 𝐴) |
| 11 | 5, 10 | pm2.61dan 812 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) ≤s 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ifcif 4500 class class class wbr 5119 No csur 27601 ≤s csle 27706 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-fv 6538 df-1o 8478 df-2o 8479 df-no 27604 df-slt 27605 df-sle 27707 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |