MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mins1 Structured version   Visualization version   GIF version

Theorem mins1 27729
Description: The minimum of two surreals is less than or equal to the first. (Contributed by Scott Fenton, 14-Feb-2025.)
Assertion
Ref Expression
mins1 ((𝐴 No 𝐵 No ) → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) ≤s 𝐴)

Proof of Theorem mins1
StepHypRef Expression
1 iftrue 4506 . . . 4 (𝐴 ≤s 𝐵 → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) = 𝐴)
21adantl 481 . . 3 (((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 𝐵) → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) = 𝐴)
3 slerflex 27725 . . . 4 (𝐴 No 𝐴 ≤s 𝐴)
43ad2antrr 726 . . 3 (((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 𝐵) → 𝐴 ≤s 𝐴)
52, 4eqbrtrd 5141 . 2 (((𝐴 No 𝐵 No ) ∧ 𝐴 ≤s 𝐵) → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) ≤s 𝐴)
6 iffalse 4509 . . . 4 𝐴 ≤s 𝐵 → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) = 𝐵)
76adantl 481 . . 3 (((𝐴 No 𝐵 No ) ∧ ¬ 𝐴 ≤s 𝐵) → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) = 𝐵)
8 sletric 27726 . . . 4 ((𝐴 No 𝐵 No ) → (𝐴 ≤s 𝐵𝐵 ≤s 𝐴))
98orcanai 1004 . . 3 (((𝐴 No 𝐵 No ) ∧ ¬ 𝐴 ≤s 𝐵) → 𝐵 ≤s 𝐴)
107, 9eqbrtrd 5141 . 2 (((𝐴 No 𝐵 No ) ∧ ¬ 𝐴 ≤s 𝐵) → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) ≤s 𝐴)
115, 10pm2.61dan 812 1 ((𝐴 No 𝐵 No ) → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) ≤s 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  ifcif 4500   class class class wbr 5119   No csur 27601   ≤s csle 27706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-fv 6538  df-1o 8478  df-2o 8479  df-no 27604  df-slt 27605  df-sle 27707
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator