| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mins1 | Structured version Visualization version GIF version | ||
| Description: The minimum of two surreals is less than or equal to the first. (Contributed by Scott Fenton, 14-Feb-2025.) |
| Ref | Expression |
|---|---|
| mins1 | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) ≤s 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 4478 | . . . 4 ⊢ (𝐴 ≤s 𝐵 → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) = 𝐴) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐴 ≤s 𝐵) → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) = 𝐴) |
| 3 | slerflex 27702 | . . . 4 ⊢ (𝐴 ∈ No → 𝐴 ≤s 𝐴) | |
| 4 | 3 | ad2antrr 726 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐴 ≤s 𝐵) → 𝐴 ≤s 𝐴) |
| 5 | 2, 4 | eqbrtrd 5111 | . 2 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐴 ≤s 𝐵) → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) ≤s 𝐴) |
| 6 | iffalse 4481 | . . . 4 ⊢ (¬ 𝐴 ≤s 𝐵 → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) = 𝐵) | |
| 7 | 6 | adantl 481 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ¬ 𝐴 ≤s 𝐵) → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) = 𝐵) |
| 8 | sletric 27703 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ∨ 𝐵 ≤s 𝐴)) | |
| 9 | 8 | orcanai 1004 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ¬ 𝐴 ≤s 𝐵) → 𝐵 ≤s 𝐴) |
| 10 | 7, 9 | eqbrtrd 5111 | . 2 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ¬ 𝐴 ≤s 𝐵) → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) ≤s 𝐴) |
| 11 | 5, 10 | pm2.61dan 812 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) ≤s 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ifcif 4472 class class class wbr 5089 No csur 27578 ≤s csle 27683 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-1o 8385 df-2o 8386 df-no 27581 df-slt 27582 df-sle 27684 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |