| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | oveq2 7440 | . . . . . . 7
⊢ (𝑥 = ∅ → (𝐴 +o 𝑥) = (𝐴 +o ∅)) | 
| 2 |  | oveq2 7440 | . . . . . . 7
⊢ (𝑥 = ∅ → (𝐵 +o 𝑥) = (𝐵 +o ∅)) | 
| 3 | 1, 2 | sseq12d 4016 | . . . . . 6
⊢ (𝑥 = ∅ → ((𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥) ↔ (𝐴 +o ∅) ⊆ (𝐵 +o
∅))) | 
| 4 | 3 | imbi2d 340 | . . . . 5
⊢ (𝑥 = ∅ → ((𝐴 ⊆ 𝐵 → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥)) ↔ (𝐴 ⊆ 𝐵 → (𝐴 +o ∅) ⊆ (𝐵 +o
∅)))) | 
| 5 | 4 | imbi2d 340 | . . . 4
⊢ (𝑥 = ∅ → (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥))) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 → (𝐴 +o ∅) ⊆ (𝐵 +o
∅))))) | 
| 6 |  | oveq2 7440 | . . . . . . 7
⊢ (𝑥 = 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o 𝑦)) | 
| 7 |  | oveq2 7440 | . . . . . . 7
⊢ (𝑥 = 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o 𝑦)) | 
| 8 | 6, 7 | sseq12d 4016 | . . . . . 6
⊢ (𝑥 = 𝑦 → ((𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥) ↔ (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦))) | 
| 9 | 8 | imbi2d 340 | . . . . 5
⊢ (𝑥 = 𝑦 → ((𝐴 ⊆ 𝐵 → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥)) ↔ (𝐴 ⊆ 𝐵 → (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦)))) | 
| 10 | 9 | imbi2d 340 | . . . 4
⊢ (𝑥 = 𝑦 → (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥))) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 → (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦))))) | 
| 11 |  | oveq2 7440 | . . . . . . 7
⊢ (𝑥 = suc 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o suc 𝑦)) | 
| 12 |  | oveq2 7440 | . . . . . . 7
⊢ (𝑥 = suc 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o suc 𝑦)) | 
| 13 | 11, 12 | sseq12d 4016 | . . . . . 6
⊢ (𝑥 = suc 𝑦 → ((𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥) ↔ (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦))) | 
| 14 | 13 | imbi2d 340 | . . . . 5
⊢ (𝑥 = suc 𝑦 → ((𝐴 ⊆ 𝐵 → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥)) ↔ (𝐴 ⊆ 𝐵 → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦)))) | 
| 15 | 14 | imbi2d 340 | . . . 4
⊢ (𝑥 = suc 𝑦 → (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥))) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦))))) | 
| 16 |  | oveq2 7440 | . . . . . . 7
⊢ (𝑥 = 𝐶 → (𝐴 +o 𝑥) = (𝐴 +o 𝐶)) | 
| 17 |  | oveq2 7440 | . . . . . . 7
⊢ (𝑥 = 𝐶 → (𝐵 +o 𝑥) = (𝐵 +o 𝐶)) | 
| 18 | 16, 17 | sseq12d 4016 | . . . . . 6
⊢ (𝑥 = 𝐶 → ((𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥) ↔ (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶))) | 
| 19 | 18 | imbi2d 340 | . . . . 5
⊢ (𝑥 = 𝐶 → ((𝐴 ⊆ 𝐵 → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥)) ↔ (𝐴 ⊆ 𝐵 → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶)))) | 
| 20 | 19 | imbi2d 340 | . . . 4
⊢ (𝑥 = 𝐶 → (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥))) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶))))) | 
| 21 |  | nnon 7894 | . . . . 5
⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | 
| 22 |  | nnon 7894 | . . . . 5
⊢ (𝐵 ∈ ω → 𝐵 ∈ On) | 
| 23 |  | oa0 8555 | . . . . . . . 8
⊢ (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴) | 
| 24 | 23 | adantr 480 | . . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o ∅) = 𝐴) | 
| 25 |  | oa0 8555 | . . . . . . . 8
⊢ (𝐵 ∈ On → (𝐵 +o ∅) = 𝐵) | 
| 26 | 25 | adantl 481 | . . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +o ∅) = 𝐵) | 
| 27 | 24, 26 | sseq12d 4016 | . . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o ∅) ⊆
(𝐵 +o ∅)
↔ 𝐴 ⊆ 𝐵)) | 
| 28 | 27 | biimprd 248 | . . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → (𝐴 +o ∅) ⊆ (𝐵 +o
∅))) | 
| 29 | 21, 22, 28 | syl2an 596 | . . . 4
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 → (𝐴 +o ∅) ⊆ (𝐵 +o
∅))) | 
| 30 |  | nnacl 8650 | . . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o 𝑦) ∈
ω) | 
| 31 | 30 | ancoms 458 | . . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (𝐴 +o 𝑦) ∈
ω) | 
| 32 | 31 | adantrr 717 | . . . . . . . . . . . 12
⊢ ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴 +o 𝑦) ∈
ω) | 
| 33 |  | nnon 7894 | . . . . . . . . . . . 12
⊢ ((𝐴 +o 𝑦) ∈ ω → (𝐴 +o 𝑦) ∈ On) | 
| 34 |  | eloni 6393 | . . . . . . . . . . . 12
⊢ ((𝐴 +o 𝑦) ∈ On → Ord (𝐴 +o 𝑦)) | 
| 35 | 32, 33, 34 | 3syl 18 | . . . . . . . . . . 11
⊢ ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → Ord
(𝐴 +o 𝑦)) | 
| 36 |  | nnacl 8650 | . . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +o 𝑦) ∈
ω) | 
| 37 | 36 | ancoms 458 | . . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 +o 𝑦) ∈
ω) | 
| 38 | 37 | adantrl 716 | . . . . . . . . . . . 12
⊢ ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐵 +o 𝑦) ∈
ω) | 
| 39 |  | nnon 7894 | . . . . . . . . . . . 12
⊢ ((𝐵 +o 𝑦) ∈ ω → (𝐵 +o 𝑦) ∈ On) | 
| 40 |  | eloni 6393 | . . . . . . . . . . . 12
⊢ ((𝐵 +o 𝑦) ∈ On → Ord (𝐵 +o 𝑦)) | 
| 41 | 38, 39, 40 | 3syl 18 | . . . . . . . . . . 11
⊢ ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → Ord
(𝐵 +o 𝑦)) | 
| 42 |  | ordsucsssuc 7844 | . . . . . . . . . . 11
⊢ ((Ord
(𝐴 +o 𝑦) ∧ Ord (𝐵 +o 𝑦)) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) ↔ suc (𝐴 +o 𝑦) ⊆ suc (𝐵 +o 𝑦))) | 
| 43 | 35, 41, 42 | syl2anc 584 | . . . . . . . . . 10
⊢ ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) ↔ suc (𝐴 +o 𝑦) ⊆ suc (𝐵 +o 𝑦))) | 
| 44 | 43 | biimpa 476 | . . . . . . . . 9
⊢ (((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦)) → suc (𝐴 +o 𝑦) ⊆ suc (𝐵 +o 𝑦)) | 
| 45 |  | nnasuc 8645 | . . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦)) | 
| 46 | 45 | ancoms 458 | . . . . . . . . . . . 12
⊢ ((𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦)) | 
| 47 | 46 | adantrr 717 | . . . . . . . . . . 11
⊢ ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦)) | 
| 48 |  | nnasuc 8645 | . . . . . . . . . . . . 13
⊢ ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦)) | 
| 49 | 48 | ancoms 458 | . . . . . . . . . . . 12
⊢ ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦)) | 
| 50 | 49 | adantrl 716 | . . . . . . . . . . 11
⊢ ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦)) | 
| 51 | 47, 50 | sseq12d 4016 | . . . . . . . . . 10
⊢ ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦) ↔ suc (𝐴 +o 𝑦) ⊆ suc (𝐵 +o 𝑦))) | 
| 52 | 51 | adantr 480 | . . . . . . . . 9
⊢ (((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦)) → ((𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦) ↔ suc (𝐴 +o 𝑦) ⊆ suc (𝐵 +o 𝑦))) | 
| 53 | 44, 52 | mpbird 257 | . . . . . . . 8
⊢ (((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦)) → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦)) | 
| 54 | 53 | ex 412 | . . . . . . 7
⊢ ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦))) | 
| 55 | 54 | imim2d 57 | . . . . . 6
⊢ ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐴 ⊆ 𝐵 → (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦)) → (𝐴 ⊆ 𝐵 → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦)))) | 
| 56 | 55 | ex 412 | . . . . 5
⊢ (𝑦 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ⊆ 𝐵 → (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦)) → (𝐴 ⊆ 𝐵 → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦))))) | 
| 57 | 56 | a2d 29 | . . . 4
⊢ (𝑦 ∈ ω → (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 → (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦))) → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦))))) | 
| 58 | 5, 10, 15, 20, 29, 57 | finds 7919 | . . 3
⊢ (𝐶 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶)))) | 
| 59 | 58 | com12 32 | . 2
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶 ∈ ω → (𝐴 ⊆ 𝐵 → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶)))) | 
| 60 | 59 | 3impia 1117 | 1
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ⊆ 𝐵 → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶))) |