MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnawordi Structured version   Visualization version   GIF version

Theorem nnawordi 8539
Description: Adding to both sides of an inequality in ω. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 12-May-2012.)
Assertion
Ref Expression
nnawordi ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶)))

Proof of Theorem nnawordi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7357 . . . . . . 7 (𝑥 = ∅ → (𝐴 +o 𝑥) = (𝐴 +o ∅))
2 oveq2 7357 . . . . . . 7 (𝑥 = ∅ → (𝐵 +o 𝑥) = (𝐵 +o ∅))
31, 2sseq12d 3969 . . . . . 6 (𝑥 = ∅ → ((𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥) ↔ (𝐴 +o ∅) ⊆ (𝐵 +o ∅)))
43imbi2d 340 . . . . 5 (𝑥 = ∅ → ((𝐴𝐵 → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥)) ↔ (𝐴𝐵 → (𝐴 +o ∅) ⊆ (𝐵 +o ∅))))
54imbi2d 340 . . . 4 (𝑥 = ∅ → (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥))) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +o ∅) ⊆ (𝐵 +o ∅)))))
6 oveq2 7357 . . . . . . 7 (𝑥 = 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o 𝑦))
7 oveq2 7357 . . . . . . 7 (𝑥 = 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o 𝑦))
86, 7sseq12d 3969 . . . . . 6 (𝑥 = 𝑦 → ((𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥) ↔ (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦)))
98imbi2d 340 . . . . 5 (𝑥 = 𝑦 → ((𝐴𝐵 → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥)) ↔ (𝐴𝐵 → (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦))))
109imbi2d 340 . . . 4 (𝑥 = 𝑦 → (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥))) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦)))))
11 oveq2 7357 . . . . . . 7 (𝑥 = suc 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o suc 𝑦))
12 oveq2 7357 . . . . . . 7 (𝑥 = suc 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o suc 𝑦))
1311, 12sseq12d 3969 . . . . . 6 (𝑥 = suc 𝑦 → ((𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥) ↔ (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦)))
1413imbi2d 340 . . . . 5 (𝑥 = suc 𝑦 → ((𝐴𝐵 → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥)) ↔ (𝐴𝐵 → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦))))
1514imbi2d 340 . . . 4 (𝑥 = suc 𝑦 → (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥))) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦)))))
16 oveq2 7357 . . . . . . 7 (𝑥 = 𝐶 → (𝐴 +o 𝑥) = (𝐴 +o 𝐶))
17 oveq2 7357 . . . . . . 7 (𝑥 = 𝐶 → (𝐵 +o 𝑥) = (𝐵 +o 𝐶))
1816, 17sseq12d 3969 . . . . . 6 (𝑥 = 𝐶 → ((𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥) ↔ (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶)))
1918imbi2d 340 . . . . 5 (𝑥 = 𝐶 → ((𝐴𝐵 → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥)) ↔ (𝐴𝐵 → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶))))
2019imbi2d 340 . . . 4 (𝑥 = 𝐶 → (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥))) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶)))))
21 nnon 7805 . . . . 5 (𝐴 ∈ ω → 𝐴 ∈ On)
22 nnon 7805 . . . . 5 (𝐵 ∈ ω → 𝐵 ∈ On)
23 oa0 8434 . . . . . . . 8 (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴)
2423adantr 480 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o ∅) = 𝐴)
25 oa0 8434 . . . . . . . 8 (𝐵 ∈ On → (𝐵 +o ∅) = 𝐵)
2625adantl 481 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +o ∅) = 𝐵)
2724, 26sseq12d 3969 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o ∅) ⊆ (𝐵 +o ∅) ↔ 𝐴𝐵))
2827biimprd 248 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐴 +o ∅) ⊆ (𝐵 +o ∅)))
2921, 22, 28syl2an 596 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +o ∅) ⊆ (𝐵 +o ∅)))
30 nnacl 8529 . . . . . . . . . . . . . 14 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o 𝑦) ∈ ω)
3130ancoms 458 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (𝐴 +o 𝑦) ∈ ω)
3231adantrr 717 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴 +o 𝑦) ∈ ω)
33 nnon 7805 . . . . . . . . . . . 12 ((𝐴 +o 𝑦) ∈ ω → (𝐴 +o 𝑦) ∈ On)
34 eloni 6317 . . . . . . . . . . . 12 ((𝐴 +o 𝑦) ∈ On → Ord (𝐴 +o 𝑦))
3532, 33, 343syl 18 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → Ord (𝐴 +o 𝑦))
36 nnacl 8529 . . . . . . . . . . . . . 14 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +o 𝑦) ∈ ω)
3736ancoms 458 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 +o 𝑦) ∈ ω)
3837adantrl 716 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐵 +o 𝑦) ∈ ω)
39 nnon 7805 . . . . . . . . . . . 12 ((𝐵 +o 𝑦) ∈ ω → (𝐵 +o 𝑦) ∈ On)
40 eloni 6317 . . . . . . . . . . . 12 ((𝐵 +o 𝑦) ∈ On → Ord (𝐵 +o 𝑦))
4138, 39, 403syl 18 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → Ord (𝐵 +o 𝑦))
42 ordsucsssuc 7756 . . . . . . . . . . 11 ((Ord (𝐴 +o 𝑦) ∧ Ord (𝐵 +o 𝑦)) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) ↔ suc (𝐴 +o 𝑦) ⊆ suc (𝐵 +o 𝑦)))
4335, 41, 42syl2anc 584 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) ↔ suc (𝐴 +o 𝑦) ⊆ suc (𝐵 +o 𝑦)))
4443biimpa 476 . . . . . . . . 9 (((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦)) → suc (𝐴 +o 𝑦) ⊆ suc (𝐵 +o 𝑦))
45 nnasuc 8524 . . . . . . . . . . . . 13 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
4645ancoms 458 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
4746adantrr 717 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
48 nnasuc 8524 . . . . . . . . . . . . 13 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
4948ancoms 458 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
5049adantrl 716 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
5147, 50sseq12d 3969 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦) ↔ suc (𝐴 +o 𝑦) ⊆ suc (𝐵 +o 𝑦)))
5251adantr 480 . . . . . . . . 9 (((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦)) → ((𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦) ↔ suc (𝐴 +o 𝑦) ⊆ suc (𝐵 +o 𝑦)))
5344, 52mpbird 257 . . . . . . . 8 (((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦)) → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦))
5453ex 412 . . . . . . 7 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦)))
5554imim2d 57 . . . . . 6 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐴𝐵 → (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦)) → (𝐴𝐵 → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦))))
5655ex 412 . . . . 5 (𝑦 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵 → (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦)) → (𝐴𝐵 → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦)))))
5756a2d 29 . . . 4 (𝑦 ∈ ω → (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦))) → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦)))))
585, 10, 15, 20, 29, 57finds 7829 . . 3 (𝐶 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶))))
5958com12 32 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶 ∈ ω → (𝐴𝐵 → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶))))
60593impia 1117 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3903  c0 4284  Ord word 6306  Oncon0 6307  suc csuc 6309  (class class class)co 7349  ωcom 7799   +o coa 8385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-oadd 8392
This theorem is referenced by:  omopthlem2  8578
  Copyright terms: Public domain W3C validator