MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnawordi Structured version   Visualization version   GIF version

Theorem nnawordi 8483
Description: Adding to both sides of an inequality in ω. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 12-May-2012.)
Assertion
Ref Expression
nnawordi ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶)))

Proof of Theorem nnawordi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7315 . . . . . . 7 (𝑥 = ∅ → (𝐴 +o 𝑥) = (𝐴 +o ∅))
2 oveq2 7315 . . . . . . 7 (𝑥 = ∅ → (𝐵 +o 𝑥) = (𝐵 +o ∅))
31, 2sseq12d 3959 . . . . . 6 (𝑥 = ∅ → ((𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥) ↔ (𝐴 +o ∅) ⊆ (𝐵 +o ∅)))
43imbi2d 341 . . . . 5 (𝑥 = ∅ → ((𝐴𝐵 → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥)) ↔ (𝐴𝐵 → (𝐴 +o ∅) ⊆ (𝐵 +o ∅))))
54imbi2d 341 . . . 4 (𝑥 = ∅ → (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥))) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +o ∅) ⊆ (𝐵 +o ∅)))))
6 oveq2 7315 . . . . . . 7 (𝑥 = 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o 𝑦))
7 oveq2 7315 . . . . . . 7 (𝑥 = 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o 𝑦))
86, 7sseq12d 3959 . . . . . 6 (𝑥 = 𝑦 → ((𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥) ↔ (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦)))
98imbi2d 341 . . . . 5 (𝑥 = 𝑦 → ((𝐴𝐵 → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥)) ↔ (𝐴𝐵 → (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦))))
109imbi2d 341 . . . 4 (𝑥 = 𝑦 → (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥))) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦)))))
11 oveq2 7315 . . . . . . 7 (𝑥 = suc 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o suc 𝑦))
12 oveq2 7315 . . . . . . 7 (𝑥 = suc 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o suc 𝑦))
1311, 12sseq12d 3959 . . . . . 6 (𝑥 = suc 𝑦 → ((𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥) ↔ (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦)))
1413imbi2d 341 . . . . 5 (𝑥 = suc 𝑦 → ((𝐴𝐵 → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥)) ↔ (𝐴𝐵 → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦))))
1514imbi2d 341 . . . 4 (𝑥 = suc 𝑦 → (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥))) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦)))))
16 oveq2 7315 . . . . . . 7 (𝑥 = 𝐶 → (𝐴 +o 𝑥) = (𝐴 +o 𝐶))
17 oveq2 7315 . . . . . . 7 (𝑥 = 𝐶 → (𝐵 +o 𝑥) = (𝐵 +o 𝐶))
1816, 17sseq12d 3959 . . . . . 6 (𝑥 = 𝐶 → ((𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥) ↔ (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶)))
1918imbi2d 341 . . . . 5 (𝑥 = 𝐶 → ((𝐴𝐵 → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥)) ↔ (𝐴𝐵 → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶))))
2019imbi2d 341 . . . 4 (𝑥 = 𝐶 → (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥))) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶)))))
21 nnon 7750 . . . . 5 (𝐴 ∈ ω → 𝐴 ∈ On)
22 nnon 7750 . . . . 5 (𝐵 ∈ ω → 𝐵 ∈ On)
23 oa0 8377 . . . . . . . 8 (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴)
2423adantr 482 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o ∅) = 𝐴)
25 oa0 8377 . . . . . . . 8 (𝐵 ∈ On → (𝐵 +o ∅) = 𝐵)
2625adantl 483 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +o ∅) = 𝐵)
2724, 26sseq12d 3959 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o ∅) ⊆ (𝐵 +o ∅) ↔ 𝐴𝐵))
2827biimprd 248 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐴 +o ∅) ⊆ (𝐵 +o ∅)))
2921, 22, 28syl2an 597 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +o ∅) ⊆ (𝐵 +o ∅)))
30 nnacl 8473 . . . . . . . . . . . . . 14 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o 𝑦) ∈ ω)
3130ancoms 460 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (𝐴 +o 𝑦) ∈ ω)
3231adantrr 715 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴 +o 𝑦) ∈ ω)
33 nnon 7750 . . . . . . . . . . . 12 ((𝐴 +o 𝑦) ∈ ω → (𝐴 +o 𝑦) ∈ On)
34 eloni 6291 . . . . . . . . . . . 12 ((𝐴 +o 𝑦) ∈ On → Ord (𝐴 +o 𝑦))
3532, 33, 343syl 18 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → Ord (𝐴 +o 𝑦))
36 nnacl 8473 . . . . . . . . . . . . . 14 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +o 𝑦) ∈ ω)
3736ancoms 460 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 +o 𝑦) ∈ ω)
3837adantrl 714 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐵 +o 𝑦) ∈ ω)
39 nnon 7750 . . . . . . . . . . . 12 ((𝐵 +o 𝑦) ∈ ω → (𝐵 +o 𝑦) ∈ On)
40 eloni 6291 . . . . . . . . . . . 12 ((𝐵 +o 𝑦) ∈ On → Ord (𝐵 +o 𝑦))
4138, 39, 403syl 18 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → Ord (𝐵 +o 𝑦))
42 ordsucsssuc 7702 . . . . . . . . . . 11 ((Ord (𝐴 +o 𝑦) ∧ Ord (𝐵 +o 𝑦)) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) ↔ suc (𝐴 +o 𝑦) ⊆ suc (𝐵 +o 𝑦)))
4335, 41, 42syl2anc 585 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) ↔ suc (𝐴 +o 𝑦) ⊆ suc (𝐵 +o 𝑦)))
4443biimpa 478 . . . . . . . . 9 (((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦)) → suc (𝐴 +o 𝑦) ⊆ suc (𝐵 +o 𝑦))
45 nnasuc 8468 . . . . . . . . . . . . 13 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
4645ancoms 460 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
4746adantrr 715 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
48 nnasuc 8468 . . . . . . . . . . . . 13 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
4948ancoms 460 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
5049adantrl 714 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
5147, 50sseq12d 3959 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦) ↔ suc (𝐴 +o 𝑦) ⊆ suc (𝐵 +o 𝑦)))
5251adantr 482 . . . . . . . . 9 (((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦)) → ((𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦) ↔ suc (𝐴 +o 𝑦) ⊆ suc (𝐵 +o 𝑦)))
5344, 52mpbird 257 . . . . . . . 8 (((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ∧ (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦)) → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦))
5453ex 414 . . . . . . 7 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦)))
5554imim2d 57 . . . . . 6 ((𝑦 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐴𝐵 → (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦)) → (𝐴𝐵 → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦))))
5655ex 414 . . . . 5 (𝑦 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵 → (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦)) → (𝐴𝐵 → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦)))))
5756a2d 29 . . . 4 (𝑦 ∈ ω → (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦))) → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦)))))
585, 10, 15, 20, 29, 57finds 7777 . . 3 (𝐶 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶))))
5958com12 32 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶 ∈ ω → (𝐴𝐵 → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶))))
60593impia 1117 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1087   = wceq 1539  wcel 2104  wss 3892  c0 4262  Ord word 6280  Oncon0 6281  suc csuc 6283  (class class class)co 7307  ωcom 7744   +o coa 8325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-oadd 8332
This theorem is referenced by:  omopthlem2  8521
  Copyright terms: Public domain W3C validator