MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bndrank Structured version   Visualization version   GIF version

Theorem bndrank 9831
Description: Any class whose elements have bounded rank is a set. Proposition 9.19 of [TakeutiZaring] p. 80. (Contributed by NM, 13-Oct-2003.)
Assertion
Ref Expression
bndrank (βˆƒπ‘₯ ∈ On βˆ€π‘¦ ∈ 𝐴 (rankβ€˜π‘¦) βŠ† π‘₯ β†’ 𝐴 ∈ V)
Distinct variable group:   π‘₯,𝑦,𝐴

Proof of Theorem bndrank
StepHypRef Expression
1 rankon 9785 . . . . . . . 8 (rankβ€˜π‘¦) ∈ On
21onordi 6465 . . . . . . 7 Ord (rankβ€˜π‘¦)
3 eloni 6364 . . . . . . 7 (π‘₯ ∈ On β†’ Ord π‘₯)
4 ordsucsssuc 7804 . . . . . . 7 ((Ord (rankβ€˜π‘¦) ∧ Ord π‘₯) β†’ ((rankβ€˜π‘¦) βŠ† π‘₯ ↔ suc (rankβ€˜π‘¦) βŠ† suc π‘₯))
52, 3, 4sylancr 586 . . . . . 6 (π‘₯ ∈ On β†’ ((rankβ€˜π‘¦) βŠ† π‘₯ ↔ suc (rankβ€˜π‘¦) βŠ† suc π‘₯))
61onsuci 7820 . . . . . . 7 suc (rankβ€˜π‘¦) ∈ On
7 onsuc 7792 . . . . . . 7 (π‘₯ ∈ On β†’ suc π‘₯ ∈ On)
8 r1ord3 9772 . . . . . . 7 ((suc (rankβ€˜π‘¦) ∈ On ∧ suc π‘₯ ∈ On) β†’ (suc (rankβ€˜π‘¦) βŠ† suc π‘₯ β†’ (𝑅1β€˜suc (rankβ€˜π‘¦)) βŠ† (𝑅1β€˜suc π‘₯)))
96, 7, 8sylancr 586 . . . . . 6 (π‘₯ ∈ On β†’ (suc (rankβ€˜π‘¦) βŠ† suc π‘₯ β†’ (𝑅1β€˜suc (rankβ€˜π‘¦)) βŠ† (𝑅1β€˜suc π‘₯)))
105, 9sylbid 239 . . . . 5 (π‘₯ ∈ On β†’ ((rankβ€˜π‘¦) βŠ† π‘₯ β†’ (𝑅1β€˜suc (rankβ€˜π‘¦)) βŠ† (𝑅1β€˜suc π‘₯)))
11 vex 3470 . . . . . 6 𝑦 ∈ V
1211rankid 9823 . . . . 5 𝑦 ∈ (𝑅1β€˜suc (rankβ€˜π‘¦))
13 ssel 3967 . . . . 5 ((𝑅1β€˜suc (rankβ€˜π‘¦)) βŠ† (𝑅1β€˜suc π‘₯) β†’ (𝑦 ∈ (𝑅1β€˜suc (rankβ€˜π‘¦)) β†’ 𝑦 ∈ (𝑅1β€˜suc π‘₯)))
1410, 12, 13syl6mpi 67 . . . 4 (π‘₯ ∈ On β†’ ((rankβ€˜π‘¦) βŠ† π‘₯ β†’ 𝑦 ∈ (𝑅1β€˜suc π‘₯)))
1514ralimdv 3161 . . 3 (π‘₯ ∈ On β†’ (βˆ€π‘¦ ∈ 𝐴 (rankβ€˜π‘¦) βŠ† π‘₯ β†’ βˆ€π‘¦ ∈ 𝐴 𝑦 ∈ (𝑅1β€˜suc π‘₯)))
16 dfss3 3962 . . . 4 (𝐴 βŠ† (𝑅1β€˜suc π‘₯) ↔ βˆ€π‘¦ ∈ 𝐴 𝑦 ∈ (𝑅1β€˜suc π‘₯))
17 fvex 6894 . . . . 5 (𝑅1β€˜suc π‘₯) ∈ V
1817ssex 5311 . . . 4 (𝐴 βŠ† (𝑅1β€˜suc π‘₯) β†’ 𝐴 ∈ V)
1916, 18sylbir 234 . . 3 (βˆ€π‘¦ ∈ 𝐴 𝑦 ∈ (𝑅1β€˜suc π‘₯) β†’ 𝐴 ∈ V)
2015, 19syl6 35 . 2 (π‘₯ ∈ On β†’ (βˆ€π‘¦ ∈ 𝐴 (rankβ€˜π‘¦) βŠ† π‘₯ β†’ 𝐴 ∈ V))
2120rexlimiv 3140 1 (βˆƒπ‘₯ ∈ On βˆ€π‘¦ ∈ 𝐴 (rankβ€˜π‘¦) βŠ† π‘₯ β†’ 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∈ wcel 2098  βˆ€wral 3053  βˆƒwrex 3062  Vcvv 3466   βŠ† wss 3940  Ord word 6353  Oncon0 6354  suc csuc 6356  β€˜cfv 6533  π‘…1cr1 9752  rankcrnk 9753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-reg 9582  ax-inf2 9631
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-om 7849  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-r1 9754  df-rank 9755
This theorem is referenced by:  unbndrank  9832  scottex  9875
  Copyright terms: Public domain W3C validator