MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bndrank Structured version   Visualization version   GIF version

Theorem bndrank 9254
Description: Any class whose elements have bounded rank is a set. Proposition 9.19 of [TakeutiZaring] p. 80. (Contributed by NM, 13-Oct-2003.)
Assertion
Ref Expression
bndrank (∃𝑥 ∈ On ∀𝑦𝐴 (rank‘𝑦) ⊆ 𝑥𝐴 ∈ V)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem bndrank
StepHypRef Expression
1 rankon 9208 . . . . . . . 8 (rank‘𝑦) ∈ On
21onordi 6263 . . . . . . 7 Ord (rank‘𝑦)
3 eloni 6169 . . . . . . 7 (𝑥 ∈ On → Ord 𝑥)
4 ordsucsssuc 7518 . . . . . . 7 ((Ord (rank‘𝑦) ∧ Ord 𝑥) → ((rank‘𝑦) ⊆ 𝑥 ↔ suc (rank‘𝑦) ⊆ suc 𝑥))
52, 3, 4sylancr 590 . . . . . 6 (𝑥 ∈ On → ((rank‘𝑦) ⊆ 𝑥 ↔ suc (rank‘𝑦) ⊆ suc 𝑥))
61onsuci 7533 . . . . . . 7 suc (rank‘𝑦) ∈ On
7 suceloni 7508 . . . . . . 7 (𝑥 ∈ On → suc 𝑥 ∈ On)
8 r1ord3 9195 . . . . . . 7 ((suc (rank‘𝑦) ∈ On ∧ suc 𝑥 ∈ On) → (suc (rank‘𝑦) ⊆ suc 𝑥 → (𝑅1‘suc (rank‘𝑦)) ⊆ (𝑅1‘suc 𝑥)))
96, 7, 8sylancr 590 . . . . . 6 (𝑥 ∈ On → (suc (rank‘𝑦) ⊆ suc 𝑥 → (𝑅1‘suc (rank‘𝑦)) ⊆ (𝑅1‘suc 𝑥)))
105, 9sylbid 243 . . . . 5 (𝑥 ∈ On → ((rank‘𝑦) ⊆ 𝑥 → (𝑅1‘suc (rank‘𝑦)) ⊆ (𝑅1‘suc 𝑥)))
11 vex 3444 . . . . . 6 𝑦 ∈ V
1211rankid 9246 . . . . 5 𝑦 ∈ (𝑅1‘suc (rank‘𝑦))
13 ssel 3908 . . . . 5 ((𝑅1‘suc (rank‘𝑦)) ⊆ (𝑅1‘suc 𝑥) → (𝑦 ∈ (𝑅1‘suc (rank‘𝑦)) → 𝑦 ∈ (𝑅1‘suc 𝑥)))
1410, 12, 13syl6mpi 67 . . . 4 (𝑥 ∈ On → ((rank‘𝑦) ⊆ 𝑥𝑦 ∈ (𝑅1‘suc 𝑥)))
1514ralimdv 3145 . . 3 (𝑥 ∈ On → (∀𝑦𝐴 (rank‘𝑦) ⊆ 𝑥 → ∀𝑦𝐴 𝑦 ∈ (𝑅1‘suc 𝑥)))
16 dfss3 3903 . . . 4 (𝐴 ⊆ (𝑅1‘suc 𝑥) ↔ ∀𝑦𝐴 𝑦 ∈ (𝑅1‘suc 𝑥))
17 fvex 6658 . . . . 5 (𝑅1‘suc 𝑥) ∈ V
1817ssex 5189 . . . 4 (𝐴 ⊆ (𝑅1‘suc 𝑥) → 𝐴 ∈ V)
1916, 18sylbir 238 . . 3 (∀𝑦𝐴 𝑦 ∈ (𝑅1‘suc 𝑥) → 𝐴 ∈ V)
2015, 19syl6 35 . 2 (𝑥 ∈ On → (∀𝑦𝐴 (rank‘𝑦) ⊆ 𝑥𝐴 ∈ V))
2120rexlimiv 3239 1 (∃𝑥 ∈ On ∀𝑦𝐴 (rank‘𝑦) ⊆ 𝑥𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wcel 2111  wral 3106  wrex 3107  Vcvv 3441  wss 3881  Ord word 6158  Oncon0 6159  suc csuc 6161  cfv 6324  𝑅1cr1 9175  rankcrnk 9176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-reg 9040  ax-inf2 9088
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-r1 9177  df-rank 9178
This theorem is referenced by:  unbndrank  9255  scottex  9298
  Copyright terms: Public domain W3C validator