| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bndrank | Structured version Visualization version GIF version | ||
| Description: Any class whose elements have bounded rank is a set. Proposition 9.19 of [TakeutiZaring] p. 80. (Contributed by NM, 13-Oct-2003.) |
| Ref | Expression |
|---|---|
| bndrank | ⊢ (∃𝑥 ∈ On ∀𝑦 ∈ 𝐴 (rank‘𝑦) ⊆ 𝑥 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankon 9835 | . . . . . . . 8 ⊢ (rank‘𝑦) ∈ On | |
| 2 | 1 | onordi 6495 | . . . . . . 7 ⊢ Ord (rank‘𝑦) |
| 3 | eloni 6394 | . . . . . . 7 ⊢ (𝑥 ∈ On → Ord 𝑥) | |
| 4 | ordsucsssuc 7843 | . . . . . . 7 ⊢ ((Ord (rank‘𝑦) ∧ Ord 𝑥) → ((rank‘𝑦) ⊆ 𝑥 ↔ suc (rank‘𝑦) ⊆ suc 𝑥)) | |
| 5 | 2, 3, 4 | sylancr 587 | . . . . . 6 ⊢ (𝑥 ∈ On → ((rank‘𝑦) ⊆ 𝑥 ↔ suc (rank‘𝑦) ⊆ suc 𝑥)) |
| 6 | 1 | onsuci 7859 | . . . . . . 7 ⊢ suc (rank‘𝑦) ∈ On |
| 7 | onsuc 7831 | . . . . . . 7 ⊢ (𝑥 ∈ On → suc 𝑥 ∈ On) | |
| 8 | r1ord3 9822 | . . . . . . 7 ⊢ ((suc (rank‘𝑦) ∈ On ∧ suc 𝑥 ∈ On) → (suc (rank‘𝑦) ⊆ suc 𝑥 → (𝑅1‘suc (rank‘𝑦)) ⊆ (𝑅1‘suc 𝑥))) | |
| 9 | 6, 7, 8 | sylancr 587 | . . . . . 6 ⊢ (𝑥 ∈ On → (suc (rank‘𝑦) ⊆ suc 𝑥 → (𝑅1‘suc (rank‘𝑦)) ⊆ (𝑅1‘suc 𝑥))) |
| 10 | 5, 9 | sylbid 240 | . . . . 5 ⊢ (𝑥 ∈ On → ((rank‘𝑦) ⊆ 𝑥 → (𝑅1‘suc (rank‘𝑦)) ⊆ (𝑅1‘suc 𝑥))) |
| 11 | vex 3484 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 12 | 11 | rankid 9873 | . . . . 5 ⊢ 𝑦 ∈ (𝑅1‘suc (rank‘𝑦)) |
| 13 | ssel 3977 | . . . . 5 ⊢ ((𝑅1‘suc (rank‘𝑦)) ⊆ (𝑅1‘suc 𝑥) → (𝑦 ∈ (𝑅1‘suc (rank‘𝑦)) → 𝑦 ∈ (𝑅1‘suc 𝑥))) | |
| 14 | 10, 12, 13 | syl6mpi 67 | . . . 4 ⊢ (𝑥 ∈ On → ((rank‘𝑦) ⊆ 𝑥 → 𝑦 ∈ (𝑅1‘suc 𝑥))) |
| 15 | 14 | ralimdv 3169 | . . 3 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝐴 (rank‘𝑦) ⊆ 𝑥 → ∀𝑦 ∈ 𝐴 𝑦 ∈ (𝑅1‘suc 𝑥))) |
| 16 | dfss3 3972 | . . . 4 ⊢ (𝐴 ⊆ (𝑅1‘suc 𝑥) ↔ ∀𝑦 ∈ 𝐴 𝑦 ∈ (𝑅1‘suc 𝑥)) | |
| 17 | fvex 6919 | . . . . 5 ⊢ (𝑅1‘suc 𝑥) ∈ V | |
| 18 | 17 | ssex 5321 | . . . 4 ⊢ (𝐴 ⊆ (𝑅1‘suc 𝑥) → 𝐴 ∈ V) |
| 19 | 16, 18 | sylbir 235 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 𝑦 ∈ (𝑅1‘suc 𝑥) → 𝐴 ∈ V) |
| 20 | 15, 19 | syl6 35 | . 2 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝐴 (rank‘𝑦) ⊆ 𝑥 → 𝐴 ∈ V)) |
| 21 | 20 | rexlimiv 3148 | 1 ⊢ (∃𝑥 ∈ On ∀𝑦 ∈ 𝐴 (rank‘𝑦) ⊆ 𝑥 → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 Vcvv 3480 ⊆ wss 3951 Ord word 6383 Oncon0 6384 suc csuc 6386 ‘cfv 6561 𝑅1cr1 9802 rankcrnk 9803 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-reg 9632 ax-inf2 9681 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-r1 9804 df-rank 9805 |
| This theorem is referenced by: unbndrank 9882 scottex 9925 |
| Copyright terms: Public domain | W3C validator |