MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bndrank Structured version   Visualization version   GIF version

Theorem bndrank 9258
Description: Any class whose elements have bounded rank is a set. Proposition 9.19 of [TakeutiZaring] p. 80. (Contributed by NM, 13-Oct-2003.)
Assertion
Ref Expression
bndrank (∃𝑥 ∈ On ∀𝑦𝐴 (rank‘𝑦) ⊆ 𝑥𝐴 ∈ V)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem bndrank
StepHypRef Expression
1 rankon 9212 . . . . . . . 8 (rank‘𝑦) ∈ On
21onordi 6288 . . . . . . 7 Ord (rank‘𝑦)
3 eloni 6194 . . . . . . 7 (𝑥 ∈ On → Ord 𝑥)
4 ordsucsssuc 7527 . . . . . . 7 ((Ord (rank‘𝑦) ∧ Ord 𝑥) → ((rank‘𝑦) ⊆ 𝑥 ↔ suc (rank‘𝑦) ⊆ suc 𝑥))
52, 3, 4sylancr 587 . . . . . 6 (𝑥 ∈ On → ((rank‘𝑦) ⊆ 𝑥 ↔ suc (rank‘𝑦) ⊆ suc 𝑥))
61onsuci 7542 . . . . . . 7 suc (rank‘𝑦) ∈ On
7 suceloni 7517 . . . . . . 7 (𝑥 ∈ On → suc 𝑥 ∈ On)
8 r1ord3 9199 . . . . . . 7 ((suc (rank‘𝑦) ∈ On ∧ suc 𝑥 ∈ On) → (suc (rank‘𝑦) ⊆ suc 𝑥 → (𝑅1‘suc (rank‘𝑦)) ⊆ (𝑅1‘suc 𝑥)))
96, 7, 8sylancr 587 . . . . . 6 (𝑥 ∈ On → (suc (rank‘𝑦) ⊆ suc 𝑥 → (𝑅1‘suc (rank‘𝑦)) ⊆ (𝑅1‘suc 𝑥)))
105, 9sylbid 241 . . . . 5 (𝑥 ∈ On → ((rank‘𝑦) ⊆ 𝑥 → (𝑅1‘suc (rank‘𝑦)) ⊆ (𝑅1‘suc 𝑥)))
11 vex 3495 . . . . . 6 𝑦 ∈ V
1211rankid 9250 . . . . 5 𝑦 ∈ (𝑅1‘suc (rank‘𝑦))
13 ssel 3958 . . . . 5 ((𝑅1‘suc (rank‘𝑦)) ⊆ (𝑅1‘suc 𝑥) → (𝑦 ∈ (𝑅1‘suc (rank‘𝑦)) → 𝑦 ∈ (𝑅1‘suc 𝑥)))
1410, 12, 13syl6mpi 67 . . . 4 (𝑥 ∈ On → ((rank‘𝑦) ⊆ 𝑥𝑦 ∈ (𝑅1‘suc 𝑥)))
1514ralimdv 3175 . . 3 (𝑥 ∈ On → (∀𝑦𝐴 (rank‘𝑦) ⊆ 𝑥 → ∀𝑦𝐴 𝑦 ∈ (𝑅1‘suc 𝑥)))
16 dfss3 3953 . . . 4 (𝐴 ⊆ (𝑅1‘suc 𝑥) ↔ ∀𝑦𝐴 𝑦 ∈ (𝑅1‘suc 𝑥))
17 fvex 6676 . . . . 5 (𝑅1‘suc 𝑥) ∈ V
1817ssex 5216 . . . 4 (𝐴 ⊆ (𝑅1‘suc 𝑥) → 𝐴 ∈ V)
1916, 18sylbir 236 . . 3 (∀𝑦𝐴 𝑦 ∈ (𝑅1‘suc 𝑥) → 𝐴 ∈ V)
2015, 19syl6 35 . 2 (𝑥 ∈ On → (∀𝑦𝐴 (rank‘𝑦) ⊆ 𝑥𝐴 ∈ V))
2120rexlimiv 3277 1 (∃𝑥 ∈ On ∀𝑦𝐴 (rank‘𝑦) ⊆ 𝑥𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wcel 2105  wral 3135  wrex 3136  Vcvv 3492  wss 3933  Ord word 6183  Oncon0 6184  suc csuc 6186  cfv 6348  𝑅1cr1 9179  rankcrnk 9180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-reg 9044  ax-inf2 9092
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-r1 9181  df-rank 9182
This theorem is referenced by:  unbndrank  9259  scottex  9302
  Copyright terms: Public domain W3C validator