MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bndrank Structured version   Visualization version   GIF version

Theorem bndrank 9001
Description: Any class whose elements have bounded rank is a set. Proposition 9.19 of [TakeutiZaring] p. 80. (Contributed by NM, 13-Oct-2003.)
Assertion
Ref Expression
bndrank (∃𝑥 ∈ On ∀𝑦𝐴 (rank‘𝑦) ⊆ 𝑥𝐴 ∈ V)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem bndrank
StepHypRef Expression
1 rankon 8955 . . . . . . . 8 (rank‘𝑦) ∈ On
21onordi 6080 . . . . . . 7 Ord (rank‘𝑦)
3 eloni 5986 . . . . . . 7 (𝑥 ∈ On → Ord 𝑥)
4 ordsucsssuc 7301 . . . . . . 7 ((Ord (rank‘𝑦) ∧ Ord 𝑥) → ((rank‘𝑦) ⊆ 𝑥 ↔ suc (rank‘𝑦) ⊆ suc 𝑥))
52, 3, 4sylancr 581 . . . . . 6 (𝑥 ∈ On → ((rank‘𝑦) ⊆ 𝑥 ↔ suc (rank‘𝑦) ⊆ suc 𝑥))
61onsuci 7316 . . . . . . 7 suc (rank‘𝑦) ∈ On
7 suceloni 7291 . . . . . . 7 (𝑥 ∈ On → suc 𝑥 ∈ On)
8 r1ord3 8942 . . . . . . 7 ((suc (rank‘𝑦) ∈ On ∧ suc 𝑥 ∈ On) → (suc (rank‘𝑦) ⊆ suc 𝑥 → (𝑅1‘suc (rank‘𝑦)) ⊆ (𝑅1‘suc 𝑥)))
96, 7, 8sylancr 581 . . . . . 6 (𝑥 ∈ On → (suc (rank‘𝑦) ⊆ suc 𝑥 → (𝑅1‘suc (rank‘𝑦)) ⊆ (𝑅1‘suc 𝑥)))
105, 9sylbid 232 . . . . 5 (𝑥 ∈ On → ((rank‘𝑦) ⊆ 𝑥 → (𝑅1‘suc (rank‘𝑦)) ⊆ (𝑅1‘suc 𝑥)))
11 vex 3400 . . . . . 6 𝑦 ∈ V
1211rankid 8993 . . . . 5 𝑦 ∈ (𝑅1‘suc (rank‘𝑦))
13 ssel 3814 . . . . 5 ((𝑅1‘suc (rank‘𝑦)) ⊆ (𝑅1‘suc 𝑥) → (𝑦 ∈ (𝑅1‘suc (rank‘𝑦)) → 𝑦 ∈ (𝑅1‘suc 𝑥)))
1410, 12, 13syl6mpi 67 . . . 4 (𝑥 ∈ On → ((rank‘𝑦) ⊆ 𝑥𝑦 ∈ (𝑅1‘suc 𝑥)))
1514ralimdv 3144 . . 3 (𝑥 ∈ On → (∀𝑦𝐴 (rank‘𝑦) ⊆ 𝑥 → ∀𝑦𝐴 𝑦 ∈ (𝑅1‘suc 𝑥)))
16 dfss3 3809 . . . 4 (𝐴 ⊆ (𝑅1‘suc 𝑥) ↔ ∀𝑦𝐴 𝑦 ∈ (𝑅1‘suc 𝑥))
17 fvex 6459 . . . . 5 (𝑅1‘suc 𝑥) ∈ V
1817ssex 5039 . . . 4 (𝐴 ⊆ (𝑅1‘suc 𝑥) → 𝐴 ∈ V)
1916, 18sylbir 227 . . 3 (∀𝑦𝐴 𝑦 ∈ (𝑅1‘suc 𝑥) → 𝐴 ∈ V)
2015, 19syl6 35 . 2 (𝑥 ∈ On → (∀𝑦𝐴 (rank‘𝑦) ⊆ 𝑥𝐴 ∈ V))
2120rexlimiv 3208 1 (∃𝑥 ∈ On ∀𝑦𝐴 (rank‘𝑦) ⊆ 𝑥𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wcel 2106  wral 3089  wrex 3090  Vcvv 3397  wss 3791  Ord word 5975  Oncon0 5976  suc csuc 5978  cfv 6135  𝑅1cr1 8922  rankcrnk 8923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-reg 8786  ax-inf2 8835
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-om 7344  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-r1 8924  df-rank 8925
This theorem is referenced by:  unbndrank  9002  scottex  9045
  Copyright terms: Public domain W3C validator