Step | Hyp | Ref
| Expression |
1 | | rankon 9785 |
. . . . . . . 8
β’
(rankβπ¦)
β On |
2 | 1 | onordi 6465 |
. . . . . . 7
β’ Ord
(rankβπ¦) |
3 | | eloni 6364 |
. . . . . . 7
β’ (π₯ β On β Ord π₯) |
4 | | ordsucsssuc 7804 |
. . . . . . 7
β’ ((Ord
(rankβπ¦) β§ Ord
π₯) β
((rankβπ¦) β
π₯ β suc
(rankβπ¦) β suc
π₯)) |
5 | 2, 3, 4 | sylancr 586 |
. . . . . 6
β’ (π₯ β On β
((rankβπ¦) β
π₯ β suc
(rankβπ¦) β suc
π₯)) |
6 | 1 | onsuci 7820 |
. . . . . . 7
β’ suc
(rankβπ¦) β
On |
7 | | onsuc 7792 |
. . . . . . 7
β’ (π₯ β On β suc π₯ β On) |
8 | | r1ord3 9772 |
. . . . . . 7
β’ ((suc
(rankβπ¦) β On
β§ suc π₯ β On)
β (suc (rankβπ¦)
β suc π₯ β
(π
1βsuc (rankβπ¦)) β (π
1βsuc
π₯))) |
9 | 6, 7, 8 | sylancr 586 |
. . . . . 6
β’ (π₯ β On β (suc
(rankβπ¦) β suc
π₯ β
(π
1βsuc (rankβπ¦)) β (π
1βsuc
π₯))) |
10 | 5, 9 | sylbid 239 |
. . . . 5
β’ (π₯ β On β
((rankβπ¦) β
π₯ β
(π
1βsuc (rankβπ¦)) β (π
1βsuc
π₯))) |
11 | | vex 3470 |
. . . . . 6
β’ π¦ β V |
12 | 11 | rankid 9823 |
. . . . 5
β’ π¦ β
(π
1βsuc (rankβπ¦)) |
13 | | ssel 3967 |
. . . . 5
β’
((π
1βsuc (rankβπ¦)) β (π
1βsuc
π₯) β (π¦ β
(π
1βsuc (rankβπ¦)) β π¦ β (π
1βsuc
π₯))) |
14 | 10, 12, 13 | syl6mpi 67 |
. . . 4
β’ (π₯ β On β
((rankβπ¦) β
π₯ β π¦ β (π
1βsuc
π₯))) |
15 | 14 | ralimdv 3161 |
. . 3
β’ (π₯ β On β (βπ¦ β π΄ (rankβπ¦) β π₯ β βπ¦ β π΄ π¦ β (π
1βsuc
π₯))) |
16 | | dfss3 3962 |
. . . 4
β’ (π΄ β
(π
1βsuc π₯) β βπ¦ β π΄ π¦ β (π
1βsuc
π₯)) |
17 | | fvex 6894 |
. . . . 5
β’
(π
1βsuc π₯) β V |
18 | 17 | ssex 5311 |
. . . 4
β’ (π΄ β
(π
1βsuc π₯) β π΄ β V) |
19 | 16, 18 | sylbir 234 |
. . 3
β’
(βπ¦ β
π΄ π¦ β (π
1βsuc
π₯) β π΄ β V) |
20 | 15, 19 | syl6 35 |
. 2
β’ (π₯ β On β (βπ¦ β π΄ (rankβπ¦) β π₯ β π΄ β V)) |
21 | 20 | rexlimiv 3140 |
1
β’
(βπ₯ β On
βπ¦ β π΄ (rankβπ¦) β π₯ β π΄ β V) |