| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bndrank | Structured version Visualization version GIF version | ||
| Description: Any class whose elements have bounded rank is a set. Proposition 9.19 of [TakeutiZaring] p. 80. (Contributed by NM, 13-Oct-2003.) |
| Ref | Expression |
|---|---|
| bndrank | ⊢ (∃𝑥 ∈ On ∀𝑦 ∈ 𝐴 (rank‘𝑦) ⊆ 𝑥 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankon 9724 | . . . . . . . 8 ⊢ (rank‘𝑦) ∈ On | |
| 2 | 1 | onordi 6433 | . . . . . . 7 ⊢ Ord (rank‘𝑦) |
| 3 | eloni 6330 | . . . . . . 7 ⊢ (𝑥 ∈ On → Ord 𝑥) | |
| 4 | ordsucsssuc 7778 | . . . . . . 7 ⊢ ((Ord (rank‘𝑦) ∧ Ord 𝑥) → ((rank‘𝑦) ⊆ 𝑥 ↔ suc (rank‘𝑦) ⊆ suc 𝑥)) | |
| 5 | 2, 3, 4 | sylancr 587 | . . . . . 6 ⊢ (𝑥 ∈ On → ((rank‘𝑦) ⊆ 𝑥 ↔ suc (rank‘𝑦) ⊆ suc 𝑥)) |
| 6 | 1 | onsuci 7794 | . . . . . . 7 ⊢ suc (rank‘𝑦) ∈ On |
| 7 | onsuc 7767 | . . . . . . 7 ⊢ (𝑥 ∈ On → suc 𝑥 ∈ On) | |
| 8 | r1ord3 9711 | . . . . . . 7 ⊢ ((suc (rank‘𝑦) ∈ On ∧ suc 𝑥 ∈ On) → (suc (rank‘𝑦) ⊆ suc 𝑥 → (𝑅1‘suc (rank‘𝑦)) ⊆ (𝑅1‘suc 𝑥))) | |
| 9 | 6, 7, 8 | sylancr 587 | . . . . . 6 ⊢ (𝑥 ∈ On → (suc (rank‘𝑦) ⊆ suc 𝑥 → (𝑅1‘suc (rank‘𝑦)) ⊆ (𝑅1‘suc 𝑥))) |
| 10 | 5, 9 | sylbid 240 | . . . . 5 ⊢ (𝑥 ∈ On → ((rank‘𝑦) ⊆ 𝑥 → (𝑅1‘suc (rank‘𝑦)) ⊆ (𝑅1‘suc 𝑥))) |
| 11 | vex 3448 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 12 | 11 | rankid 9762 | . . . . 5 ⊢ 𝑦 ∈ (𝑅1‘suc (rank‘𝑦)) |
| 13 | ssel 3937 | . . . . 5 ⊢ ((𝑅1‘suc (rank‘𝑦)) ⊆ (𝑅1‘suc 𝑥) → (𝑦 ∈ (𝑅1‘suc (rank‘𝑦)) → 𝑦 ∈ (𝑅1‘suc 𝑥))) | |
| 14 | 10, 12, 13 | syl6mpi 67 | . . . 4 ⊢ (𝑥 ∈ On → ((rank‘𝑦) ⊆ 𝑥 → 𝑦 ∈ (𝑅1‘suc 𝑥))) |
| 15 | 14 | ralimdv 3147 | . . 3 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝐴 (rank‘𝑦) ⊆ 𝑥 → ∀𝑦 ∈ 𝐴 𝑦 ∈ (𝑅1‘suc 𝑥))) |
| 16 | dfss3 3932 | . . . 4 ⊢ (𝐴 ⊆ (𝑅1‘suc 𝑥) ↔ ∀𝑦 ∈ 𝐴 𝑦 ∈ (𝑅1‘suc 𝑥)) | |
| 17 | fvex 6853 | . . . . 5 ⊢ (𝑅1‘suc 𝑥) ∈ V | |
| 18 | 17 | ssex 5271 | . . . 4 ⊢ (𝐴 ⊆ (𝑅1‘suc 𝑥) → 𝐴 ∈ V) |
| 19 | 16, 18 | sylbir 235 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 𝑦 ∈ (𝑅1‘suc 𝑥) → 𝐴 ∈ V) |
| 20 | 15, 19 | syl6 35 | . 2 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝐴 (rank‘𝑦) ⊆ 𝑥 → 𝐴 ∈ V)) |
| 21 | 20 | rexlimiv 3127 | 1 ⊢ (∃𝑥 ∈ On ∀𝑦 ∈ 𝐴 (rank‘𝑦) ⊆ 𝑥 → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 Vcvv 3444 ⊆ wss 3911 Ord word 6319 Oncon0 6320 suc csuc 6322 ‘cfv 6499 𝑅1cr1 9691 rankcrnk 9692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-reg 9521 ax-inf2 9570 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-r1 9693 df-rank 9694 |
| This theorem is referenced by: unbndrank 9771 scottex 9814 onvf1odlem4 35086 |
| Copyright terms: Public domain | W3C validator |