![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bndrank | Structured version Visualization version GIF version |
Description: Any class whose elements have bounded rank is a set. Proposition 9.19 of [TakeutiZaring] p. 80. (Contributed by NM, 13-Oct-2003.) |
Ref | Expression |
---|---|
bndrank | ⊢ (∃𝑥 ∈ On ∀𝑦 ∈ 𝐴 (rank‘𝑦) ⊆ 𝑥 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankon 8955 | . . . . . . . 8 ⊢ (rank‘𝑦) ∈ On | |
2 | 1 | onordi 6080 | . . . . . . 7 ⊢ Ord (rank‘𝑦) |
3 | eloni 5986 | . . . . . . 7 ⊢ (𝑥 ∈ On → Ord 𝑥) | |
4 | ordsucsssuc 7301 | . . . . . . 7 ⊢ ((Ord (rank‘𝑦) ∧ Ord 𝑥) → ((rank‘𝑦) ⊆ 𝑥 ↔ suc (rank‘𝑦) ⊆ suc 𝑥)) | |
5 | 2, 3, 4 | sylancr 581 | . . . . . 6 ⊢ (𝑥 ∈ On → ((rank‘𝑦) ⊆ 𝑥 ↔ suc (rank‘𝑦) ⊆ suc 𝑥)) |
6 | 1 | onsuci 7316 | . . . . . . 7 ⊢ suc (rank‘𝑦) ∈ On |
7 | suceloni 7291 | . . . . . . 7 ⊢ (𝑥 ∈ On → suc 𝑥 ∈ On) | |
8 | r1ord3 8942 | . . . . . . 7 ⊢ ((suc (rank‘𝑦) ∈ On ∧ suc 𝑥 ∈ On) → (suc (rank‘𝑦) ⊆ suc 𝑥 → (𝑅1‘suc (rank‘𝑦)) ⊆ (𝑅1‘suc 𝑥))) | |
9 | 6, 7, 8 | sylancr 581 | . . . . . 6 ⊢ (𝑥 ∈ On → (suc (rank‘𝑦) ⊆ suc 𝑥 → (𝑅1‘suc (rank‘𝑦)) ⊆ (𝑅1‘suc 𝑥))) |
10 | 5, 9 | sylbid 232 | . . . . 5 ⊢ (𝑥 ∈ On → ((rank‘𝑦) ⊆ 𝑥 → (𝑅1‘suc (rank‘𝑦)) ⊆ (𝑅1‘suc 𝑥))) |
11 | vex 3400 | . . . . . 6 ⊢ 𝑦 ∈ V | |
12 | 11 | rankid 8993 | . . . . 5 ⊢ 𝑦 ∈ (𝑅1‘suc (rank‘𝑦)) |
13 | ssel 3814 | . . . . 5 ⊢ ((𝑅1‘suc (rank‘𝑦)) ⊆ (𝑅1‘suc 𝑥) → (𝑦 ∈ (𝑅1‘suc (rank‘𝑦)) → 𝑦 ∈ (𝑅1‘suc 𝑥))) | |
14 | 10, 12, 13 | syl6mpi 67 | . . . 4 ⊢ (𝑥 ∈ On → ((rank‘𝑦) ⊆ 𝑥 → 𝑦 ∈ (𝑅1‘suc 𝑥))) |
15 | 14 | ralimdv 3144 | . . 3 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝐴 (rank‘𝑦) ⊆ 𝑥 → ∀𝑦 ∈ 𝐴 𝑦 ∈ (𝑅1‘suc 𝑥))) |
16 | dfss3 3809 | . . . 4 ⊢ (𝐴 ⊆ (𝑅1‘suc 𝑥) ↔ ∀𝑦 ∈ 𝐴 𝑦 ∈ (𝑅1‘suc 𝑥)) | |
17 | fvex 6459 | . . . . 5 ⊢ (𝑅1‘suc 𝑥) ∈ V | |
18 | 17 | ssex 5039 | . . . 4 ⊢ (𝐴 ⊆ (𝑅1‘suc 𝑥) → 𝐴 ∈ V) |
19 | 16, 18 | sylbir 227 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 𝑦 ∈ (𝑅1‘suc 𝑥) → 𝐴 ∈ V) |
20 | 15, 19 | syl6 35 | . 2 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝐴 (rank‘𝑦) ⊆ 𝑥 → 𝐴 ∈ V)) |
21 | 20 | rexlimiv 3208 | 1 ⊢ (∃𝑥 ∈ On ∀𝑦 ∈ 𝐴 (rank‘𝑦) ⊆ 𝑥 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∈ wcel 2106 ∀wral 3089 ∃wrex 3090 Vcvv 3397 ⊆ wss 3791 Ord word 5975 Oncon0 5976 suc csuc 5978 ‘cfv 6135 𝑅1cr1 8922 rankcrnk 8923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-reg 8786 ax-inf2 8835 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-om 7344 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-r1 8924 df-rank 8925 |
This theorem is referenced by: unbndrank 9002 scottex 9045 |
Copyright terms: Public domain | W3C validator |