| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rankmapu | Structured version Visualization version GIF version | ||
| Description: An upper bound on the rank of set exponentiation. (Contributed by Gérard Lang, 5-Aug-2018.) |
| Ref | Expression |
|---|---|
| rankxpl.1 | ⊢ 𝐴 ∈ V |
| rankxpl.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| rankmapu | ⊢ (rank‘(𝐴 ↑m 𝐵)) ⊆ suc suc suc (rank‘(𝐴 ∪ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapsspw 8805 | . . 3 ⊢ (𝐴 ↑m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) | |
| 2 | rankxpl.2 | . . . . . 6 ⊢ 𝐵 ∈ V | |
| 3 | rankxpl.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
| 4 | 2, 3 | xpex 7689 | . . . . 5 ⊢ (𝐵 × 𝐴) ∈ V |
| 5 | 4 | pwex 5319 | . . . 4 ⊢ 𝒫 (𝐵 × 𝐴) ∈ V |
| 6 | 5 | rankss 9745 | . . 3 ⊢ ((𝐴 ↑m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) → (rank‘(𝐴 ↑m 𝐵)) ⊆ (rank‘𝒫 (𝐵 × 𝐴))) |
| 7 | 1, 6 | ax-mp 5 | . 2 ⊢ (rank‘(𝐴 ↑m 𝐵)) ⊆ (rank‘𝒫 (𝐵 × 𝐴)) |
| 8 | 4 | rankpw 9739 | . . 3 ⊢ (rank‘𝒫 (𝐵 × 𝐴)) = suc (rank‘(𝐵 × 𝐴)) |
| 9 | 2, 3 | rankxpu 9772 | . . . . 5 ⊢ (rank‘(𝐵 × 𝐴)) ⊆ suc suc (rank‘(𝐵 ∪ 𝐴)) |
| 10 | uncom 4109 | . . . . . . . 8 ⊢ (𝐵 ∪ 𝐴) = (𝐴 ∪ 𝐵) | |
| 11 | 10 | fveq2i 6825 | . . . . . . 7 ⊢ (rank‘(𝐵 ∪ 𝐴)) = (rank‘(𝐴 ∪ 𝐵)) |
| 12 | suceq 6375 | . . . . . . 7 ⊢ ((rank‘(𝐵 ∪ 𝐴)) = (rank‘(𝐴 ∪ 𝐵)) → suc (rank‘(𝐵 ∪ 𝐴)) = suc (rank‘(𝐴 ∪ 𝐵))) | |
| 13 | 11, 12 | ax-mp 5 | . . . . . 6 ⊢ suc (rank‘(𝐵 ∪ 𝐴)) = suc (rank‘(𝐴 ∪ 𝐵)) |
| 14 | suceq 6375 | . . . . . 6 ⊢ (suc (rank‘(𝐵 ∪ 𝐴)) = suc (rank‘(𝐴 ∪ 𝐵)) → suc suc (rank‘(𝐵 ∪ 𝐴)) = suc suc (rank‘(𝐴 ∪ 𝐵))) | |
| 15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ suc suc (rank‘(𝐵 ∪ 𝐴)) = suc suc (rank‘(𝐴 ∪ 𝐵)) |
| 16 | 9, 15 | sseqtri 3984 | . . . 4 ⊢ (rank‘(𝐵 × 𝐴)) ⊆ suc suc (rank‘(𝐴 ∪ 𝐵)) |
| 17 | rankon 9691 | . . . . . 6 ⊢ (rank‘(𝐵 × 𝐴)) ∈ On | |
| 18 | 17 | onordi 6420 | . . . . 5 ⊢ Ord (rank‘(𝐵 × 𝐴)) |
| 19 | rankon 9691 | . . . . . . . 8 ⊢ (rank‘(𝐴 ∪ 𝐵)) ∈ On | |
| 20 | 19 | onsuci 7772 | . . . . . . 7 ⊢ suc (rank‘(𝐴 ∪ 𝐵)) ∈ On |
| 21 | 20 | onsuci 7772 | . . . . . 6 ⊢ suc suc (rank‘(𝐴 ∪ 𝐵)) ∈ On |
| 22 | 21 | onordi 6420 | . . . . 5 ⊢ Ord suc suc (rank‘(𝐴 ∪ 𝐵)) |
| 23 | ordsucsssuc 7756 | . . . . 5 ⊢ ((Ord (rank‘(𝐵 × 𝐴)) ∧ Ord suc suc (rank‘(𝐴 ∪ 𝐵))) → ((rank‘(𝐵 × 𝐴)) ⊆ suc suc (rank‘(𝐴 ∪ 𝐵)) ↔ suc (rank‘(𝐵 × 𝐴)) ⊆ suc suc suc (rank‘(𝐴 ∪ 𝐵)))) | |
| 24 | 18, 22, 23 | mp2an 692 | . . . 4 ⊢ ((rank‘(𝐵 × 𝐴)) ⊆ suc suc (rank‘(𝐴 ∪ 𝐵)) ↔ suc (rank‘(𝐵 × 𝐴)) ⊆ suc suc suc (rank‘(𝐴 ∪ 𝐵))) |
| 25 | 16, 24 | mpbi 230 | . . 3 ⊢ suc (rank‘(𝐵 × 𝐴)) ⊆ suc suc suc (rank‘(𝐴 ∪ 𝐵)) |
| 26 | 8, 25 | eqsstri 3982 | . 2 ⊢ (rank‘𝒫 (𝐵 × 𝐴)) ⊆ suc suc suc (rank‘(𝐴 ∪ 𝐵)) |
| 27 | 7, 26 | sstri 3945 | 1 ⊢ (rank‘(𝐴 ↑m 𝐵)) ⊆ suc suc suc (rank‘(𝐴 ∪ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∪ cun 3901 ⊆ wss 3903 𝒫 cpw 4551 × cxp 5617 Ord word 6306 suc csuc 6309 ‘cfv 6482 (class class class)co 7349 ↑m cmap 8753 rankcrnk 9659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-reg 9484 ax-inf2 9537 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-map 8755 df-pm 8756 df-r1 9660 df-rank 9661 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |