Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rankmapu | Structured version Visualization version GIF version |
Description: An upper bound on the rank of set exponentiation. (Contributed by Gérard Lang, 5-Aug-2018.) |
Ref | Expression |
---|---|
rankxpl.1 | ⊢ 𝐴 ∈ V |
rankxpl.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
rankmapu | ⊢ (rank‘(𝐴 ↑m 𝐵)) ⊆ suc suc suc (rank‘(𝐴 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapsspw 8559 | . . 3 ⊢ (𝐴 ↑m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) | |
2 | rankxpl.2 | . . . . . 6 ⊢ 𝐵 ∈ V | |
3 | rankxpl.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
4 | 2, 3 | xpex 7538 | . . . . 5 ⊢ (𝐵 × 𝐴) ∈ V |
5 | 4 | pwex 5273 | . . . 4 ⊢ 𝒫 (𝐵 × 𝐴) ∈ V |
6 | 5 | rankss 9465 | . . 3 ⊢ ((𝐴 ↑m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) → (rank‘(𝐴 ↑m 𝐵)) ⊆ (rank‘𝒫 (𝐵 × 𝐴))) |
7 | 1, 6 | ax-mp 5 | . 2 ⊢ (rank‘(𝐴 ↑m 𝐵)) ⊆ (rank‘𝒫 (𝐵 × 𝐴)) |
8 | 4 | rankpw 9459 | . . 3 ⊢ (rank‘𝒫 (𝐵 × 𝐴)) = suc (rank‘(𝐵 × 𝐴)) |
9 | 2, 3 | rankxpu 9492 | . . . . 5 ⊢ (rank‘(𝐵 × 𝐴)) ⊆ suc suc (rank‘(𝐵 ∪ 𝐴)) |
10 | uncom 4067 | . . . . . . . 8 ⊢ (𝐵 ∪ 𝐴) = (𝐴 ∪ 𝐵) | |
11 | 10 | fveq2i 6720 | . . . . . . 7 ⊢ (rank‘(𝐵 ∪ 𝐴)) = (rank‘(𝐴 ∪ 𝐵)) |
12 | suceq 6278 | . . . . . . 7 ⊢ ((rank‘(𝐵 ∪ 𝐴)) = (rank‘(𝐴 ∪ 𝐵)) → suc (rank‘(𝐵 ∪ 𝐴)) = suc (rank‘(𝐴 ∪ 𝐵))) | |
13 | 11, 12 | ax-mp 5 | . . . . . 6 ⊢ suc (rank‘(𝐵 ∪ 𝐴)) = suc (rank‘(𝐴 ∪ 𝐵)) |
14 | suceq 6278 | . . . . . 6 ⊢ (suc (rank‘(𝐵 ∪ 𝐴)) = suc (rank‘(𝐴 ∪ 𝐵)) → suc suc (rank‘(𝐵 ∪ 𝐴)) = suc suc (rank‘(𝐴 ∪ 𝐵))) | |
15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ suc suc (rank‘(𝐵 ∪ 𝐴)) = suc suc (rank‘(𝐴 ∪ 𝐵)) |
16 | 9, 15 | sseqtri 3937 | . . . 4 ⊢ (rank‘(𝐵 × 𝐴)) ⊆ suc suc (rank‘(𝐴 ∪ 𝐵)) |
17 | rankon 9411 | . . . . . 6 ⊢ (rank‘(𝐵 × 𝐴)) ∈ On | |
18 | 17 | onordi 6318 | . . . . 5 ⊢ Ord (rank‘(𝐵 × 𝐴)) |
19 | rankon 9411 | . . . . . . . 8 ⊢ (rank‘(𝐴 ∪ 𝐵)) ∈ On | |
20 | 19 | onsuci 7617 | . . . . . . 7 ⊢ suc (rank‘(𝐴 ∪ 𝐵)) ∈ On |
21 | 20 | onsuci 7617 | . . . . . 6 ⊢ suc suc (rank‘(𝐴 ∪ 𝐵)) ∈ On |
22 | 21 | onordi 6318 | . . . . 5 ⊢ Ord suc suc (rank‘(𝐴 ∪ 𝐵)) |
23 | ordsucsssuc 7602 | . . . . 5 ⊢ ((Ord (rank‘(𝐵 × 𝐴)) ∧ Ord suc suc (rank‘(𝐴 ∪ 𝐵))) → ((rank‘(𝐵 × 𝐴)) ⊆ suc suc (rank‘(𝐴 ∪ 𝐵)) ↔ suc (rank‘(𝐵 × 𝐴)) ⊆ suc suc suc (rank‘(𝐴 ∪ 𝐵)))) | |
24 | 18, 22, 23 | mp2an 692 | . . . 4 ⊢ ((rank‘(𝐵 × 𝐴)) ⊆ suc suc (rank‘(𝐴 ∪ 𝐵)) ↔ suc (rank‘(𝐵 × 𝐴)) ⊆ suc suc suc (rank‘(𝐴 ∪ 𝐵))) |
25 | 16, 24 | mpbi 233 | . . 3 ⊢ suc (rank‘(𝐵 × 𝐴)) ⊆ suc suc suc (rank‘(𝐴 ∪ 𝐵)) |
26 | 8, 25 | eqsstri 3935 | . 2 ⊢ (rank‘𝒫 (𝐵 × 𝐴)) ⊆ suc suc suc (rank‘(𝐴 ∪ 𝐵)) |
27 | 7, 26 | sstri 3910 | 1 ⊢ (rank‘(𝐴 ↑m 𝐵)) ⊆ suc suc suc (rank‘(𝐴 ∪ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1543 ∈ wcel 2110 Vcvv 3408 ∪ cun 3864 ⊆ wss 3866 𝒫 cpw 4513 × cxp 5549 Ord word 6212 suc csuc 6215 ‘cfv 6380 (class class class)co 7213 ↑m cmap 8508 rankcrnk 9379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-reg 9208 ax-inf2 9256 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-map 8510 df-pm 8511 df-r1 9380 df-rank 9381 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |