| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rankmapu | Structured version Visualization version GIF version | ||
| Description: An upper bound on the rank of set exponentiation. (Contributed by Gérard Lang, 5-Aug-2018.) |
| Ref | Expression |
|---|---|
| rankxpl.1 | ⊢ 𝐴 ∈ V |
| rankxpl.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| rankmapu | ⊢ (rank‘(𝐴 ↑m 𝐵)) ⊆ suc suc suc (rank‘(𝐴 ∪ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapsspw 8802 | . . 3 ⊢ (𝐴 ↑m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) | |
| 2 | rankxpl.2 | . . . . . 6 ⊢ 𝐵 ∈ V | |
| 3 | rankxpl.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
| 4 | 2, 3 | xpex 7686 | . . . . 5 ⊢ (𝐵 × 𝐴) ∈ V |
| 5 | 4 | pwex 5316 | . . . 4 ⊢ 𝒫 (𝐵 × 𝐴) ∈ V |
| 6 | 5 | rankss 9742 | . . 3 ⊢ ((𝐴 ↑m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) → (rank‘(𝐴 ↑m 𝐵)) ⊆ (rank‘𝒫 (𝐵 × 𝐴))) |
| 7 | 1, 6 | ax-mp 5 | . 2 ⊢ (rank‘(𝐴 ↑m 𝐵)) ⊆ (rank‘𝒫 (𝐵 × 𝐴)) |
| 8 | 4 | rankpw 9736 | . . 3 ⊢ (rank‘𝒫 (𝐵 × 𝐴)) = suc (rank‘(𝐵 × 𝐴)) |
| 9 | 2, 3 | rankxpu 9769 | . . . . 5 ⊢ (rank‘(𝐵 × 𝐴)) ⊆ suc suc (rank‘(𝐵 ∪ 𝐴)) |
| 10 | uncom 4105 | . . . . . . . 8 ⊢ (𝐵 ∪ 𝐴) = (𝐴 ∪ 𝐵) | |
| 11 | 10 | fveq2i 6825 | . . . . . . 7 ⊢ (rank‘(𝐵 ∪ 𝐴)) = (rank‘(𝐴 ∪ 𝐵)) |
| 12 | suceq 6374 | . . . . . . 7 ⊢ ((rank‘(𝐵 ∪ 𝐴)) = (rank‘(𝐴 ∪ 𝐵)) → suc (rank‘(𝐵 ∪ 𝐴)) = suc (rank‘(𝐴 ∪ 𝐵))) | |
| 13 | 11, 12 | ax-mp 5 | . . . . . 6 ⊢ suc (rank‘(𝐵 ∪ 𝐴)) = suc (rank‘(𝐴 ∪ 𝐵)) |
| 14 | suceq 6374 | . . . . . 6 ⊢ (suc (rank‘(𝐵 ∪ 𝐴)) = suc (rank‘(𝐴 ∪ 𝐵)) → suc suc (rank‘(𝐵 ∪ 𝐴)) = suc suc (rank‘(𝐴 ∪ 𝐵))) | |
| 15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ suc suc (rank‘(𝐵 ∪ 𝐴)) = suc suc (rank‘(𝐴 ∪ 𝐵)) |
| 16 | 9, 15 | sseqtri 3978 | . . . 4 ⊢ (rank‘(𝐵 × 𝐴)) ⊆ suc suc (rank‘(𝐴 ∪ 𝐵)) |
| 17 | rankon 9688 | . . . . . 6 ⊢ (rank‘(𝐵 × 𝐴)) ∈ On | |
| 18 | 17 | onordi 6419 | . . . . 5 ⊢ Ord (rank‘(𝐵 × 𝐴)) |
| 19 | rankon 9688 | . . . . . . . 8 ⊢ (rank‘(𝐴 ∪ 𝐵)) ∈ On | |
| 20 | 19 | onsuci 7769 | . . . . . . 7 ⊢ suc (rank‘(𝐴 ∪ 𝐵)) ∈ On |
| 21 | 20 | onsuci 7769 | . . . . . 6 ⊢ suc suc (rank‘(𝐴 ∪ 𝐵)) ∈ On |
| 22 | 21 | onordi 6419 | . . . . 5 ⊢ Ord suc suc (rank‘(𝐴 ∪ 𝐵)) |
| 23 | ordsucsssuc 7753 | . . . . 5 ⊢ ((Ord (rank‘(𝐵 × 𝐴)) ∧ Ord suc suc (rank‘(𝐴 ∪ 𝐵))) → ((rank‘(𝐵 × 𝐴)) ⊆ suc suc (rank‘(𝐴 ∪ 𝐵)) ↔ suc (rank‘(𝐵 × 𝐴)) ⊆ suc suc suc (rank‘(𝐴 ∪ 𝐵)))) | |
| 24 | 18, 22, 23 | mp2an 692 | . . . 4 ⊢ ((rank‘(𝐵 × 𝐴)) ⊆ suc suc (rank‘(𝐴 ∪ 𝐵)) ↔ suc (rank‘(𝐵 × 𝐴)) ⊆ suc suc suc (rank‘(𝐴 ∪ 𝐵))) |
| 25 | 16, 24 | mpbi 230 | . . 3 ⊢ suc (rank‘(𝐵 × 𝐴)) ⊆ suc suc suc (rank‘(𝐴 ∪ 𝐵)) |
| 26 | 8, 25 | eqsstri 3976 | . 2 ⊢ (rank‘𝒫 (𝐵 × 𝐴)) ⊆ suc suc suc (rank‘(𝐴 ∪ 𝐵)) |
| 27 | 7, 26 | sstri 3939 | 1 ⊢ (rank‘(𝐴 ↑m 𝐵)) ⊆ suc suc suc (rank‘(𝐴 ∪ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∪ cun 3895 ⊆ wss 3897 𝒫 cpw 4547 × cxp 5612 Ord word 6305 suc csuc 6308 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 rankcrnk 9656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-reg 9478 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-map 8752 df-pm 8753 df-r1 9657 df-rank 9658 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |