Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rankmapu | Structured version Visualization version GIF version |
Description: An upper bound on the rank of set exponentiation. (Contributed by Gérard Lang, 5-Aug-2018.) |
Ref | Expression |
---|---|
rankxpl.1 | ⊢ 𝐴 ∈ V |
rankxpl.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
rankmapu | ⊢ (rank‘(𝐴 ↑m 𝐵)) ⊆ suc suc suc (rank‘(𝐴 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapsspw 8714 | . . 3 ⊢ (𝐴 ↑m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) | |
2 | rankxpl.2 | . . . . . 6 ⊢ 𝐵 ∈ V | |
3 | rankxpl.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
4 | 2, 3 | xpex 7643 | . . . . 5 ⊢ (𝐵 × 𝐴) ∈ V |
5 | 4 | pwex 5318 | . . . 4 ⊢ 𝒫 (𝐵 × 𝐴) ∈ V |
6 | 5 | rankss 9678 | . . 3 ⊢ ((𝐴 ↑m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) → (rank‘(𝐴 ↑m 𝐵)) ⊆ (rank‘𝒫 (𝐵 × 𝐴))) |
7 | 1, 6 | ax-mp 5 | . 2 ⊢ (rank‘(𝐴 ↑m 𝐵)) ⊆ (rank‘𝒫 (𝐵 × 𝐴)) |
8 | 4 | rankpw 9672 | . . 3 ⊢ (rank‘𝒫 (𝐵 × 𝐴)) = suc (rank‘(𝐵 × 𝐴)) |
9 | 2, 3 | rankxpu 9705 | . . . . 5 ⊢ (rank‘(𝐵 × 𝐴)) ⊆ suc suc (rank‘(𝐵 ∪ 𝐴)) |
10 | uncom 4098 | . . . . . . . 8 ⊢ (𝐵 ∪ 𝐴) = (𝐴 ∪ 𝐵) | |
11 | 10 | fveq2i 6814 | . . . . . . 7 ⊢ (rank‘(𝐵 ∪ 𝐴)) = (rank‘(𝐴 ∪ 𝐵)) |
12 | suceq 6353 | . . . . . . 7 ⊢ ((rank‘(𝐵 ∪ 𝐴)) = (rank‘(𝐴 ∪ 𝐵)) → suc (rank‘(𝐵 ∪ 𝐴)) = suc (rank‘(𝐴 ∪ 𝐵))) | |
13 | 11, 12 | ax-mp 5 | . . . . . 6 ⊢ suc (rank‘(𝐵 ∪ 𝐴)) = suc (rank‘(𝐴 ∪ 𝐵)) |
14 | suceq 6353 | . . . . . 6 ⊢ (suc (rank‘(𝐵 ∪ 𝐴)) = suc (rank‘(𝐴 ∪ 𝐵)) → suc suc (rank‘(𝐵 ∪ 𝐴)) = suc suc (rank‘(𝐴 ∪ 𝐵))) | |
15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ suc suc (rank‘(𝐵 ∪ 𝐴)) = suc suc (rank‘(𝐴 ∪ 𝐵)) |
16 | 9, 15 | sseqtri 3967 | . . . 4 ⊢ (rank‘(𝐵 × 𝐴)) ⊆ suc suc (rank‘(𝐴 ∪ 𝐵)) |
17 | rankon 9624 | . . . . . 6 ⊢ (rank‘(𝐵 × 𝐴)) ∈ On | |
18 | 17 | onordi 6397 | . . . . 5 ⊢ Ord (rank‘(𝐵 × 𝐴)) |
19 | rankon 9624 | . . . . . . . 8 ⊢ (rank‘(𝐴 ∪ 𝐵)) ∈ On | |
20 | 19 | onsuci 7729 | . . . . . . 7 ⊢ suc (rank‘(𝐴 ∪ 𝐵)) ∈ On |
21 | 20 | onsuci 7729 | . . . . . 6 ⊢ suc suc (rank‘(𝐴 ∪ 𝐵)) ∈ On |
22 | 21 | onordi 6397 | . . . . 5 ⊢ Ord suc suc (rank‘(𝐴 ∪ 𝐵)) |
23 | ordsucsssuc 7713 | . . . . 5 ⊢ ((Ord (rank‘(𝐵 × 𝐴)) ∧ Ord suc suc (rank‘(𝐴 ∪ 𝐵))) → ((rank‘(𝐵 × 𝐴)) ⊆ suc suc (rank‘(𝐴 ∪ 𝐵)) ↔ suc (rank‘(𝐵 × 𝐴)) ⊆ suc suc suc (rank‘(𝐴 ∪ 𝐵)))) | |
24 | 18, 22, 23 | mp2an 689 | . . . 4 ⊢ ((rank‘(𝐵 × 𝐴)) ⊆ suc suc (rank‘(𝐴 ∪ 𝐵)) ↔ suc (rank‘(𝐵 × 𝐴)) ⊆ suc suc suc (rank‘(𝐴 ∪ 𝐵))) |
25 | 16, 24 | mpbi 229 | . . 3 ⊢ suc (rank‘(𝐵 × 𝐴)) ⊆ suc suc suc (rank‘(𝐴 ∪ 𝐵)) |
26 | 8, 25 | eqsstri 3965 | . 2 ⊢ (rank‘𝒫 (𝐵 × 𝐴)) ⊆ suc suc suc (rank‘(𝐴 ∪ 𝐵)) |
27 | 7, 26 | sstri 3940 | 1 ⊢ (rank‘(𝐴 ↑m 𝐵)) ⊆ suc suc suc (rank‘(𝐴 ∪ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∪ cun 3895 ⊆ wss 3897 𝒫 cpw 4545 × cxp 5605 Ord word 6287 suc csuc 6290 ‘cfv 6465 (class class class)co 7315 ↑m cmap 8663 rankcrnk 9592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-reg 9421 ax-inf2 9470 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-ov 7318 df-oprab 7319 df-mpo 7320 df-om 7758 df-1st 7876 df-2nd 7877 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-map 8665 df-pm 8666 df-r1 9593 df-rank 9594 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |