MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankmapu Structured version   Visualization version   GIF version

Theorem rankmapu 9771
Description: An upper bound on the rank of set exponentiation. (Contributed by Gérard Lang, 5-Aug-2018.)
Hypotheses
Ref Expression
rankxpl.1 𝐴 ∈ V
rankxpl.2 𝐵 ∈ V
Assertion
Ref Expression
rankmapu (rank‘(𝐴m 𝐵)) ⊆ suc suc suc (rank‘(𝐴𝐵))

Proof of Theorem rankmapu
StepHypRef Expression
1 mapsspw 8802 . . 3 (𝐴m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)
2 rankxpl.2 . . . . . 6 𝐵 ∈ V
3 rankxpl.1 . . . . . 6 𝐴 ∈ V
42, 3xpex 7686 . . . . 5 (𝐵 × 𝐴) ∈ V
54pwex 5316 . . . 4 𝒫 (𝐵 × 𝐴) ∈ V
65rankss 9742 . . 3 ((𝐴m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) → (rank‘(𝐴m 𝐵)) ⊆ (rank‘𝒫 (𝐵 × 𝐴)))
71, 6ax-mp 5 . 2 (rank‘(𝐴m 𝐵)) ⊆ (rank‘𝒫 (𝐵 × 𝐴))
84rankpw 9736 . . 3 (rank‘𝒫 (𝐵 × 𝐴)) = suc (rank‘(𝐵 × 𝐴))
92, 3rankxpu 9769 . . . . 5 (rank‘(𝐵 × 𝐴)) ⊆ suc suc (rank‘(𝐵𝐴))
10 uncom 4105 . . . . . . . 8 (𝐵𝐴) = (𝐴𝐵)
1110fveq2i 6825 . . . . . . 7 (rank‘(𝐵𝐴)) = (rank‘(𝐴𝐵))
12 suceq 6374 . . . . . . 7 ((rank‘(𝐵𝐴)) = (rank‘(𝐴𝐵)) → suc (rank‘(𝐵𝐴)) = suc (rank‘(𝐴𝐵)))
1311, 12ax-mp 5 . . . . . 6 suc (rank‘(𝐵𝐴)) = suc (rank‘(𝐴𝐵))
14 suceq 6374 . . . . . 6 (suc (rank‘(𝐵𝐴)) = suc (rank‘(𝐴𝐵)) → suc suc (rank‘(𝐵𝐴)) = suc suc (rank‘(𝐴𝐵)))
1513, 14ax-mp 5 . . . . 5 suc suc (rank‘(𝐵𝐴)) = suc suc (rank‘(𝐴𝐵))
169, 15sseqtri 3978 . . . 4 (rank‘(𝐵 × 𝐴)) ⊆ suc suc (rank‘(𝐴𝐵))
17 rankon 9688 . . . . . 6 (rank‘(𝐵 × 𝐴)) ∈ On
1817onordi 6419 . . . . 5 Ord (rank‘(𝐵 × 𝐴))
19 rankon 9688 . . . . . . . 8 (rank‘(𝐴𝐵)) ∈ On
2019onsuci 7769 . . . . . . 7 suc (rank‘(𝐴𝐵)) ∈ On
2120onsuci 7769 . . . . . 6 suc suc (rank‘(𝐴𝐵)) ∈ On
2221onordi 6419 . . . . 5 Ord suc suc (rank‘(𝐴𝐵))
23 ordsucsssuc 7753 . . . . 5 ((Ord (rank‘(𝐵 × 𝐴)) ∧ Ord suc suc (rank‘(𝐴𝐵))) → ((rank‘(𝐵 × 𝐴)) ⊆ suc suc (rank‘(𝐴𝐵)) ↔ suc (rank‘(𝐵 × 𝐴)) ⊆ suc suc suc (rank‘(𝐴𝐵))))
2418, 22, 23mp2an 692 . . . 4 ((rank‘(𝐵 × 𝐴)) ⊆ suc suc (rank‘(𝐴𝐵)) ↔ suc (rank‘(𝐵 × 𝐴)) ⊆ suc suc suc (rank‘(𝐴𝐵)))
2516, 24mpbi 230 . . 3 suc (rank‘(𝐵 × 𝐴)) ⊆ suc suc suc (rank‘(𝐴𝐵))
268, 25eqsstri 3976 . 2 (rank‘𝒫 (𝐵 × 𝐴)) ⊆ suc suc suc (rank‘(𝐴𝐵))
277, 26sstri 3939 1 (rank‘(𝐴m 𝐵)) ⊆ suc suc suc (rank‘(𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2111  Vcvv 3436  cun 3895  wss 3897  𝒫 cpw 4547   × cxp 5612  Ord word 6305  suc csuc 6308  cfv 6481  (class class class)co 7346  m cmap 8750  rankcrnk 9656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-reg 9478  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-map 8752  df-pm 8753  df-r1 9657  df-rank 9658
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator