Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rankmapu | Structured version Visualization version GIF version |
Description: An upper bound on the rank of set exponentiation. (Contributed by Gérard Lang, 5-Aug-2018.) |
Ref | Expression |
---|---|
rankxpl.1 | ⊢ 𝐴 ∈ V |
rankxpl.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
rankmapu | ⊢ (rank‘(𝐴 ↑m 𝐵)) ⊆ suc suc suc (rank‘(𝐴 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapsspw 8624 | . . 3 ⊢ (𝐴 ↑m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) | |
2 | rankxpl.2 | . . . . . 6 ⊢ 𝐵 ∈ V | |
3 | rankxpl.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
4 | 2, 3 | xpex 7581 | . . . . 5 ⊢ (𝐵 × 𝐴) ∈ V |
5 | 4 | pwex 5298 | . . . 4 ⊢ 𝒫 (𝐵 × 𝐴) ∈ V |
6 | 5 | rankss 9538 | . . 3 ⊢ ((𝐴 ↑m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) → (rank‘(𝐴 ↑m 𝐵)) ⊆ (rank‘𝒫 (𝐵 × 𝐴))) |
7 | 1, 6 | ax-mp 5 | . 2 ⊢ (rank‘(𝐴 ↑m 𝐵)) ⊆ (rank‘𝒫 (𝐵 × 𝐴)) |
8 | 4 | rankpw 9532 | . . 3 ⊢ (rank‘𝒫 (𝐵 × 𝐴)) = suc (rank‘(𝐵 × 𝐴)) |
9 | 2, 3 | rankxpu 9565 | . . . . 5 ⊢ (rank‘(𝐵 × 𝐴)) ⊆ suc suc (rank‘(𝐵 ∪ 𝐴)) |
10 | uncom 4083 | . . . . . . . 8 ⊢ (𝐵 ∪ 𝐴) = (𝐴 ∪ 𝐵) | |
11 | 10 | fveq2i 6759 | . . . . . . 7 ⊢ (rank‘(𝐵 ∪ 𝐴)) = (rank‘(𝐴 ∪ 𝐵)) |
12 | suceq 6316 | . . . . . . 7 ⊢ ((rank‘(𝐵 ∪ 𝐴)) = (rank‘(𝐴 ∪ 𝐵)) → suc (rank‘(𝐵 ∪ 𝐴)) = suc (rank‘(𝐴 ∪ 𝐵))) | |
13 | 11, 12 | ax-mp 5 | . . . . . 6 ⊢ suc (rank‘(𝐵 ∪ 𝐴)) = suc (rank‘(𝐴 ∪ 𝐵)) |
14 | suceq 6316 | . . . . . 6 ⊢ (suc (rank‘(𝐵 ∪ 𝐴)) = suc (rank‘(𝐴 ∪ 𝐵)) → suc suc (rank‘(𝐵 ∪ 𝐴)) = suc suc (rank‘(𝐴 ∪ 𝐵))) | |
15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ suc suc (rank‘(𝐵 ∪ 𝐴)) = suc suc (rank‘(𝐴 ∪ 𝐵)) |
16 | 9, 15 | sseqtri 3953 | . . . 4 ⊢ (rank‘(𝐵 × 𝐴)) ⊆ suc suc (rank‘(𝐴 ∪ 𝐵)) |
17 | rankon 9484 | . . . . . 6 ⊢ (rank‘(𝐵 × 𝐴)) ∈ On | |
18 | 17 | onordi 6356 | . . . . 5 ⊢ Ord (rank‘(𝐵 × 𝐴)) |
19 | rankon 9484 | . . . . . . . 8 ⊢ (rank‘(𝐴 ∪ 𝐵)) ∈ On | |
20 | 19 | onsuci 7660 | . . . . . . 7 ⊢ suc (rank‘(𝐴 ∪ 𝐵)) ∈ On |
21 | 20 | onsuci 7660 | . . . . . 6 ⊢ suc suc (rank‘(𝐴 ∪ 𝐵)) ∈ On |
22 | 21 | onordi 6356 | . . . . 5 ⊢ Ord suc suc (rank‘(𝐴 ∪ 𝐵)) |
23 | ordsucsssuc 7645 | . . . . 5 ⊢ ((Ord (rank‘(𝐵 × 𝐴)) ∧ Ord suc suc (rank‘(𝐴 ∪ 𝐵))) → ((rank‘(𝐵 × 𝐴)) ⊆ suc suc (rank‘(𝐴 ∪ 𝐵)) ↔ suc (rank‘(𝐵 × 𝐴)) ⊆ suc suc suc (rank‘(𝐴 ∪ 𝐵)))) | |
24 | 18, 22, 23 | mp2an 688 | . . . 4 ⊢ ((rank‘(𝐵 × 𝐴)) ⊆ suc suc (rank‘(𝐴 ∪ 𝐵)) ↔ suc (rank‘(𝐵 × 𝐴)) ⊆ suc suc suc (rank‘(𝐴 ∪ 𝐵))) |
25 | 16, 24 | mpbi 229 | . . 3 ⊢ suc (rank‘(𝐵 × 𝐴)) ⊆ suc suc suc (rank‘(𝐴 ∪ 𝐵)) |
26 | 8, 25 | eqsstri 3951 | . 2 ⊢ (rank‘𝒫 (𝐵 × 𝐴)) ⊆ suc suc suc (rank‘(𝐴 ∪ 𝐵)) |
27 | 7, 26 | sstri 3926 | 1 ⊢ (rank‘(𝐴 ↑m 𝐵)) ⊆ suc suc suc (rank‘(𝐴 ∪ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∪ cun 3881 ⊆ wss 3883 𝒫 cpw 4530 × cxp 5578 Ord word 6250 suc csuc 6253 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 rankcrnk 9452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-reg 9281 ax-inf2 9329 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-map 8575 df-pm 8576 df-r1 9453 df-rank 9454 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |