MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankmapu Structured version   Visualization version   GIF version

Theorem rankmapu 9947
Description: An upper bound on the rank of set exponentiation. (Contributed by Gérard Lang, 5-Aug-2018.)
Hypotheses
Ref Expression
rankxpl.1 𝐴 ∈ V
rankxpl.2 𝐵 ∈ V
Assertion
Ref Expression
rankmapu (rank‘(𝐴m 𝐵)) ⊆ suc suc suc (rank‘(𝐴𝐵))

Proof of Theorem rankmapu
StepHypRef Expression
1 mapsspw 8936 . . 3 (𝐴m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)
2 rankxpl.2 . . . . . 6 𝐵 ∈ V
3 rankxpl.1 . . . . . 6 𝐴 ∈ V
42, 3xpex 7788 . . . . 5 (𝐵 × 𝐴) ∈ V
54pwex 5398 . . . 4 𝒫 (𝐵 × 𝐴) ∈ V
65rankss 9918 . . 3 ((𝐴m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) → (rank‘(𝐴m 𝐵)) ⊆ (rank‘𝒫 (𝐵 × 𝐴)))
71, 6ax-mp 5 . 2 (rank‘(𝐴m 𝐵)) ⊆ (rank‘𝒫 (𝐵 × 𝐴))
84rankpw 9912 . . 3 (rank‘𝒫 (𝐵 × 𝐴)) = suc (rank‘(𝐵 × 𝐴))
92, 3rankxpu 9945 . . . . 5 (rank‘(𝐵 × 𝐴)) ⊆ suc suc (rank‘(𝐵𝐴))
10 uncom 4181 . . . . . . . 8 (𝐵𝐴) = (𝐴𝐵)
1110fveq2i 6923 . . . . . . 7 (rank‘(𝐵𝐴)) = (rank‘(𝐴𝐵))
12 suceq 6461 . . . . . . 7 ((rank‘(𝐵𝐴)) = (rank‘(𝐴𝐵)) → suc (rank‘(𝐵𝐴)) = suc (rank‘(𝐴𝐵)))
1311, 12ax-mp 5 . . . . . 6 suc (rank‘(𝐵𝐴)) = suc (rank‘(𝐴𝐵))
14 suceq 6461 . . . . . 6 (suc (rank‘(𝐵𝐴)) = suc (rank‘(𝐴𝐵)) → suc suc (rank‘(𝐵𝐴)) = suc suc (rank‘(𝐴𝐵)))
1513, 14ax-mp 5 . . . . 5 suc suc (rank‘(𝐵𝐴)) = suc suc (rank‘(𝐴𝐵))
169, 15sseqtri 4045 . . . 4 (rank‘(𝐵 × 𝐴)) ⊆ suc suc (rank‘(𝐴𝐵))
17 rankon 9864 . . . . . 6 (rank‘(𝐵 × 𝐴)) ∈ On
1817onordi 6506 . . . . 5 Ord (rank‘(𝐵 × 𝐴))
19 rankon 9864 . . . . . . . 8 (rank‘(𝐴𝐵)) ∈ On
2019onsuci 7875 . . . . . . 7 suc (rank‘(𝐴𝐵)) ∈ On
2120onsuci 7875 . . . . . 6 suc suc (rank‘(𝐴𝐵)) ∈ On
2221onordi 6506 . . . . 5 Ord suc suc (rank‘(𝐴𝐵))
23 ordsucsssuc 7859 . . . . 5 ((Ord (rank‘(𝐵 × 𝐴)) ∧ Ord suc suc (rank‘(𝐴𝐵))) → ((rank‘(𝐵 × 𝐴)) ⊆ suc suc (rank‘(𝐴𝐵)) ↔ suc (rank‘(𝐵 × 𝐴)) ⊆ suc suc suc (rank‘(𝐴𝐵))))
2418, 22, 23mp2an 691 . . . 4 ((rank‘(𝐵 × 𝐴)) ⊆ suc suc (rank‘(𝐴𝐵)) ↔ suc (rank‘(𝐵 × 𝐴)) ⊆ suc suc suc (rank‘(𝐴𝐵)))
2516, 24mpbi 230 . . 3 suc (rank‘(𝐵 × 𝐴)) ⊆ suc suc suc (rank‘(𝐴𝐵))
268, 25eqsstri 4043 . 2 (rank‘𝒫 (𝐵 × 𝐴)) ⊆ suc suc suc (rank‘(𝐴𝐵))
277, 26sstri 4018 1 (rank‘(𝐴m 𝐵)) ⊆ suc suc suc (rank‘(𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wcel 2108  Vcvv 3488  cun 3974  wss 3976  𝒫 cpw 4622   × cxp 5698  Ord word 6394  suc csuc 6397  cfv 6573  (class class class)co 7448  m cmap 8884  rankcrnk 9832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-reg 9661  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-map 8886  df-pm 8887  df-r1 9833  df-rank 9834
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator