MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankmapu Structured version   Visualization version   GIF version

Theorem rankmapu 9890
Description: An upper bound on the rank of set exponentiation. (Contributed by Gérard Lang, 5-Aug-2018.)
Hypotheses
Ref Expression
rankxpl.1 𝐴 ∈ V
rankxpl.2 𝐵 ∈ V
Assertion
Ref Expression
rankmapu (rank‘(𝐴m 𝐵)) ⊆ suc suc suc (rank‘(𝐴𝐵))

Proof of Theorem rankmapu
StepHypRef Expression
1 mapsspw 8890 . . 3 (𝐴m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)
2 rankxpl.2 . . . . . 6 𝐵 ∈ V
3 rankxpl.1 . . . . . 6 𝐴 ∈ V
42, 3xpex 7745 . . . . 5 (𝐵 × 𝐴) ∈ V
54pwex 5350 . . . 4 𝒫 (𝐵 × 𝐴) ∈ V
65rankss 9861 . . 3 ((𝐴m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) → (rank‘(𝐴m 𝐵)) ⊆ (rank‘𝒫 (𝐵 × 𝐴)))
71, 6ax-mp 5 . 2 (rank‘(𝐴m 𝐵)) ⊆ (rank‘𝒫 (𝐵 × 𝐴))
84rankpw 9855 . . 3 (rank‘𝒫 (𝐵 × 𝐴)) = suc (rank‘(𝐵 × 𝐴))
92, 3rankxpu 9888 . . . . 5 (rank‘(𝐵 × 𝐴)) ⊆ suc suc (rank‘(𝐵𝐴))
10 uncom 4133 . . . . . . . 8 (𝐵𝐴) = (𝐴𝐵)
1110fveq2i 6878 . . . . . . 7 (rank‘(𝐵𝐴)) = (rank‘(𝐴𝐵))
12 suceq 6419 . . . . . . 7 ((rank‘(𝐵𝐴)) = (rank‘(𝐴𝐵)) → suc (rank‘(𝐵𝐴)) = suc (rank‘(𝐴𝐵)))
1311, 12ax-mp 5 . . . . . 6 suc (rank‘(𝐵𝐴)) = suc (rank‘(𝐴𝐵))
14 suceq 6419 . . . . . 6 (suc (rank‘(𝐵𝐴)) = suc (rank‘(𝐴𝐵)) → suc suc (rank‘(𝐵𝐴)) = suc suc (rank‘(𝐴𝐵)))
1513, 14ax-mp 5 . . . . 5 suc suc (rank‘(𝐵𝐴)) = suc suc (rank‘(𝐴𝐵))
169, 15sseqtri 4007 . . . 4 (rank‘(𝐵 × 𝐴)) ⊆ suc suc (rank‘(𝐴𝐵))
17 rankon 9807 . . . . . 6 (rank‘(𝐵 × 𝐴)) ∈ On
1817onordi 6464 . . . . 5 Ord (rank‘(𝐵 × 𝐴))
19 rankon 9807 . . . . . . . 8 (rank‘(𝐴𝐵)) ∈ On
2019onsuci 7831 . . . . . . 7 suc (rank‘(𝐴𝐵)) ∈ On
2120onsuci 7831 . . . . . 6 suc suc (rank‘(𝐴𝐵)) ∈ On
2221onordi 6464 . . . . 5 Ord suc suc (rank‘(𝐴𝐵))
23 ordsucsssuc 7815 . . . . 5 ((Ord (rank‘(𝐵 × 𝐴)) ∧ Ord suc suc (rank‘(𝐴𝐵))) → ((rank‘(𝐵 × 𝐴)) ⊆ suc suc (rank‘(𝐴𝐵)) ↔ suc (rank‘(𝐵 × 𝐴)) ⊆ suc suc suc (rank‘(𝐴𝐵))))
2418, 22, 23mp2an 692 . . . 4 ((rank‘(𝐵 × 𝐴)) ⊆ suc suc (rank‘(𝐴𝐵)) ↔ suc (rank‘(𝐵 × 𝐴)) ⊆ suc suc suc (rank‘(𝐴𝐵)))
2516, 24mpbi 230 . . 3 suc (rank‘(𝐵 × 𝐴)) ⊆ suc suc suc (rank‘(𝐴𝐵))
268, 25eqsstri 4005 . 2 (rank‘𝒫 (𝐵 × 𝐴)) ⊆ suc suc suc (rank‘(𝐴𝐵))
277, 26sstri 3968 1 (rank‘(𝐴m 𝐵)) ⊆ suc suc suc (rank‘(𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2108  Vcvv 3459  cun 3924  wss 3926  𝒫 cpw 4575   × cxp 5652  Ord word 6351  suc csuc 6354  cfv 6530  (class class class)co 7403  m cmap 8838  rankcrnk 9775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-reg 9604  ax-inf2 9653
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-map 8840  df-pm 8841  df-r1 9776  df-rank 9777
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator