MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omsmo Structured version   Visualization version   GIF version

Theorem omsmo 8661
Description: A strictly monotonic ordinal function on the set of natural numbers is one-to-one. (Contributed by NM, 30-Nov-2003.) (Revised by David Abernethy, 1-Jan-2014.)
Assertion
Ref Expression
omsmo (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) → 𝐹:ω–1-1𝐴)
Distinct variable group:   𝑥,𝐹
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem omsmo
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 765 . 2 (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) → 𝐹:ω⟶𝐴)
2 omsmolem 8660 . . . . . . . . 9 (𝑧 ∈ ω → (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) → (𝑦𝑧 → (𝐹𝑦) ∈ (𝐹𝑧))))
32adantl 480 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) → (𝑦𝑧 → (𝐹𝑦) ∈ (𝐹𝑧))))
43imp 405 . . . . . . 7 (((𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ ((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥))) → (𝑦𝑧 → (𝐹𝑦) ∈ (𝐹𝑧)))
5 omsmolem 8660 . . . . . . . . 9 (𝑦 ∈ ω → (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) → (𝑧𝑦 → (𝐹𝑧) ∈ (𝐹𝑦))))
65adantr 479 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) → (𝑧𝑦 → (𝐹𝑧) ∈ (𝐹𝑦))))
76imp 405 . . . . . . 7 (((𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ ((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥))) → (𝑧𝑦 → (𝐹𝑧) ∈ (𝐹𝑦)))
84, 7orim12d 961 . . . . . 6 (((𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ ((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥))) → ((𝑦𝑧𝑧𝑦) → ((𝐹𝑦) ∈ (𝐹𝑧) ∨ (𝐹𝑧) ∈ (𝐹𝑦))))
98ancoms 457 . . . . 5 ((((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝑦𝑧𝑧𝑦) → ((𝐹𝑦) ∈ (𝐹𝑧) ∨ (𝐹𝑧) ∈ (𝐹𝑦))))
109con3d 152 . . . 4 ((((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (¬ ((𝐹𝑦) ∈ (𝐹𝑧) ∨ (𝐹𝑧) ∈ (𝐹𝑦)) → ¬ (𝑦𝑧𝑧𝑦)))
11 ffvelcdm 7084 . . . . . . . . . . 11 ((𝐹:ω⟶𝐴𝑦 ∈ ω) → (𝐹𝑦) ∈ 𝐴)
12 ssel 3976 . . . . . . . . . . 11 (𝐴 ⊆ On → ((𝐹𝑦) ∈ 𝐴 → (𝐹𝑦) ∈ On))
1311, 12syl5 34 . . . . . . . . . 10 (𝐴 ⊆ On → ((𝐹:ω⟶𝐴𝑦 ∈ ω) → (𝐹𝑦) ∈ On))
1413expdimp 451 . . . . . . . . 9 ((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) → (𝑦 ∈ ω → (𝐹𝑦) ∈ On))
15 eloni 6375 . . . . . . . . 9 ((𝐹𝑦) ∈ On → Ord (𝐹𝑦))
1614, 15syl6 35 . . . . . . . 8 ((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) → (𝑦 ∈ ω → Ord (𝐹𝑦)))
17 ffvelcdm 7084 . . . . . . . . . . 11 ((𝐹:ω⟶𝐴𝑧 ∈ ω) → (𝐹𝑧) ∈ 𝐴)
18 ssel 3976 . . . . . . . . . . 11 (𝐴 ⊆ On → ((𝐹𝑧) ∈ 𝐴 → (𝐹𝑧) ∈ On))
1917, 18syl5 34 . . . . . . . . . 10 (𝐴 ⊆ On → ((𝐹:ω⟶𝐴𝑧 ∈ ω) → (𝐹𝑧) ∈ On))
2019expdimp 451 . . . . . . . . 9 ((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) → (𝑧 ∈ ω → (𝐹𝑧) ∈ On))
21 eloni 6375 . . . . . . . . 9 ((𝐹𝑧) ∈ On → Ord (𝐹𝑧))
2220, 21syl6 35 . . . . . . . 8 ((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) → (𝑧 ∈ ω → Ord (𝐹𝑧)))
2316, 22anim12d 607 . . . . . . 7 ((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) → ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (Ord (𝐹𝑦) ∧ Ord (𝐹𝑧))))
2423imp 405 . . . . . 6 (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (Ord (𝐹𝑦) ∧ Ord (𝐹𝑧)))
25 ordtri3 6401 . . . . . 6 ((Ord (𝐹𝑦) ∧ Ord (𝐹𝑧)) → ((𝐹𝑦) = (𝐹𝑧) ↔ ¬ ((𝐹𝑦) ∈ (𝐹𝑧) ∨ (𝐹𝑧) ∈ (𝐹𝑦))))
2624, 25syl 17 . . . . 5 (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝐹𝑦) = (𝐹𝑧) ↔ ¬ ((𝐹𝑦) ∈ (𝐹𝑧) ∨ (𝐹𝑧) ∈ (𝐹𝑦))))
2726adantlr 711 . . . 4 ((((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝐹𝑦) = (𝐹𝑧) ↔ ¬ ((𝐹𝑦) ∈ (𝐹𝑧) ∨ (𝐹𝑧) ∈ (𝐹𝑦))))
28 nnord 7867 . . . . . 6 (𝑦 ∈ ω → Ord 𝑦)
29 nnord 7867 . . . . . 6 (𝑧 ∈ ω → Ord 𝑧)
30 ordtri3 6401 . . . . . 6 ((Ord 𝑦 ∧ Ord 𝑧) → (𝑦 = 𝑧 ↔ ¬ (𝑦𝑧𝑧𝑦)))
3128, 29, 30syl2an 594 . . . . 5 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 = 𝑧 ↔ ¬ (𝑦𝑧𝑧𝑦)))
3231adantl 480 . . . 4 ((((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝑦 = 𝑧 ↔ ¬ (𝑦𝑧𝑧𝑦)))
3310, 27, 323imtr4d 293 . . 3 ((((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
3433ralrimivva 3198 . 2 (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) → ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
35 dff13 7258 . 2 (𝐹:ω–1-1𝐴 ↔ (𝐹:ω⟶𝐴 ∧ ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)))
361, 34, 35sylanbrc 581 1 (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) → 𝐹:ω–1-1𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 843   = wceq 1539  wcel 2104  wral 3059  wss 3949  Ord word 6364  Oncon0 6365  suc csuc 6367  wf 6540  1-1wf1 6541  cfv 6544  ωcom 7859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fv 6552  df-om 7860
This theorem is referenced by:  unblem4  9302
  Copyright terms: Public domain W3C validator