MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omsmo Structured version   Visualization version   GIF version

Theorem omsmo 8573
Description: A strictly monotonic ordinal function on the set of natural numbers is one-to-one. (Contributed by NM, 30-Nov-2003.) (Revised by David Abernethy, 1-Jan-2014.)
Assertion
Ref Expression
omsmo (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) → 𝐹:ω–1-1𝐴)
Distinct variable group:   𝑥,𝐹
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem omsmo
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 768 . 2 (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) → 𝐹:ω⟶𝐴)
2 omsmolem 8572 . . . . . . . . 9 (𝑧 ∈ ω → (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) → (𝑦𝑧 → (𝐹𝑦) ∈ (𝐹𝑧))))
32adantl 481 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) → (𝑦𝑧 → (𝐹𝑦) ∈ (𝐹𝑧))))
43imp 406 . . . . . . 7 (((𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ ((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥))) → (𝑦𝑧 → (𝐹𝑦) ∈ (𝐹𝑧)))
5 omsmolem 8572 . . . . . . . . 9 (𝑦 ∈ ω → (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) → (𝑧𝑦 → (𝐹𝑧) ∈ (𝐹𝑦))))
65adantr 480 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) → (𝑧𝑦 → (𝐹𝑧) ∈ (𝐹𝑦))))
76imp 406 . . . . . . 7 (((𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ ((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥))) → (𝑧𝑦 → (𝐹𝑧) ∈ (𝐹𝑦)))
84, 7orim12d 966 . . . . . 6 (((𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ ((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥))) → ((𝑦𝑧𝑧𝑦) → ((𝐹𝑦) ∈ (𝐹𝑧) ∨ (𝐹𝑧) ∈ (𝐹𝑦))))
98ancoms 458 . . . . 5 ((((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝑦𝑧𝑧𝑦) → ((𝐹𝑦) ∈ (𝐹𝑧) ∨ (𝐹𝑧) ∈ (𝐹𝑦))))
109con3d 152 . . . 4 ((((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (¬ ((𝐹𝑦) ∈ (𝐹𝑧) ∨ (𝐹𝑧) ∈ (𝐹𝑦)) → ¬ (𝑦𝑧𝑧𝑦)))
11 ffvelcdm 7014 . . . . . . . . . . 11 ((𝐹:ω⟶𝐴𝑦 ∈ ω) → (𝐹𝑦) ∈ 𝐴)
12 ssel 3923 . . . . . . . . . . 11 (𝐴 ⊆ On → ((𝐹𝑦) ∈ 𝐴 → (𝐹𝑦) ∈ On))
1311, 12syl5 34 . . . . . . . . . 10 (𝐴 ⊆ On → ((𝐹:ω⟶𝐴𝑦 ∈ ω) → (𝐹𝑦) ∈ On))
1413expdimp 452 . . . . . . . . 9 ((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) → (𝑦 ∈ ω → (𝐹𝑦) ∈ On))
15 eloni 6316 . . . . . . . . 9 ((𝐹𝑦) ∈ On → Ord (𝐹𝑦))
1614, 15syl6 35 . . . . . . . 8 ((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) → (𝑦 ∈ ω → Ord (𝐹𝑦)))
17 ffvelcdm 7014 . . . . . . . . . . 11 ((𝐹:ω⟶𝐴𝑧 ∈ ω) → (𝐹𝑧) ∈ 𝐴)
18 ssel 3923 . . . . . . . . . . 11 (𝐴 ⊆ On → ((𝐹𝑧) ∈ 𝐴 → (𝐹𝑧) ∈ On))
1917, 18syl5 34 . . . . . . . . . 10 (𝐴 ⊆ On → ((𝐹:ω⟶𝐴𝑧 ∈ ω) → (𝐹𝑧) ∈ On))
2019expdimp 452 . . . . . . . . 9 ((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) → (𝑧 ∈ ω → (𝐹𝑧) ∈ On))
21 eloni 6316 . . . . . . . . 9 ((𝐹𝑧) ∈ On → Ord (𝐹𝑧))
2220, 21syl6 35 . . . . . . . 8 ((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) → (𝑧 ∈ ω → Ord (𝐹𝑧)))
2316, 22anim12d 609 . . . . . . 7 ((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) → ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (Ord (𝐹𝑦) ∧ Ord (𝐹𝑧))))
2423imp 406 . . . . . 6 (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (Ord (𝐹𝑦) ∧ Ord (𝐹𝑧)))
25 ordtri3 6342 . . . . . 6 ((Ord (𝐹𝑦) ∧ Ord (𝐹𝑧)) → ((𝐹𝑦) = (𝐹𝑧) ↔ ¬ ((𝐹𝑦) ∈ (𝐹𝑧) ∨ (𝐹𝑧) ∈ (𝐹𝑦))))
2624, 25syl 17 . . . . 5 (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝐹𝑦) = (𝐹𝑧) ↔ ¬ ((𝐹𝑦) ∈ (𝐹𝑧) ∨ (𝐹𝑧) ∈ (𝐹𝑦))))
2726adantlr 715 . . . 4 ((((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝐹𝑦) = (𝐹𝑧) ↔ ¬ ((𝐹𝑦) ∈ (𝐹𝑧) ∨ (𝐹𝑧) ∈ (𝐹𝑦))))
28 nnord 7804 . . . . . 6 (𝑦 ∈ ω → Ord 𝑦)
29 nnord 7804 . . . . . 6 (𝑧 ∈ ω → Ord 𝑧)
30 ordtri3 6342 . . . . . 6 ((Ord 𝑦 ∧ Ord 𝑧) → (𝑦 = 𝑧 ↔ ¬ (𝑦𝑧𝑧𝑦)))
3128, 29, 30syl2an 596 . . . . 5 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 = 𝑧 ↔ ¬ (𝑦𝑧𝑧𝑦)))
3231adantl 481 . . . 4 ((((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝑦 = 𝑧 ↔ ¬ (𝑦𝑧𝑧𝑦)))
3310, 27, 323imtr4d 294 . . 3 ((((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
3433ralrimivva 3175 . 2 (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) → ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
35 dff13 7188 . 2 (𝐹:ω–1-1𝐴 ↔ (𝐹:ω⟶𝐴 ∧ ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)))
361, 34, 35sylanbrc 583 1 (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) → 𝐹:ω–1-1𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wral 3047  wss 3897  Ord word 6305  Oncon0 6306  suc csuc 6308  wf 6477  1-1wf1 6478  cfv 6481  ωcom 7796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fv 6489  df-om 7797
This theorem is referenced by:  unblem4  9179
  Copyright terms: Public domain W3C validator