MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oecan Structured version   Visualization version   GIF version

Theorem oecan 8553
Description: Left cancellation law for ordinal exponentiation. (Contributed by NM, 6-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.)
Assertion
Ref Expression
oecan ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴o 𝐵) = (𝐴o 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem oecan
StepHypRef Expression
1 oeordi 8551 . . . . . . 7 ((𝐶 ∈ On ∧ 𝐴 ∈ (On ∖ 2o)) → (𝐵𝐶 → (𝐴o 𝐵) ∈ (𝐴o 𝐶)))
21ancoms 458 . . . . . 6 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐶 ∈ On) → (𝐵𝐶 → (𝐴o 𝐵) ∈ (𝐴o 𝐶)))
323adant2 1131 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐶 → (𝐴o 𝐵) ∈ (𝐴o 𝐶)))
4 oeordi 8551 . . . . . . 7 ((𝐵 ∈ On ∧ 𝐴 ∈ (On ∖ 2o)) → (𝐶𝐵 → (𝐴o 𝐶) ∈ (𝐴o 𝐵)))
54ancoms 458 . . . . . 6 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → (𝐶𝐵 → (𝐴o 𝐶) ∈ (𝐴o 𝐵)))
653adant3 1132 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐶𝐵 → (𝐴o 𝐶) ∈ (𝐴o 𝐵)))
73, 6orim12d 966 . . . 4 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵𝐶𝐶𝐵) → ((𝐴o 𝐵) ∈ (𝐴o 𝐶) ∨ (𝐴o 𝐶) ∈ (𝐴o 𝐵))))
87con3d 152 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (¬ ((𝐴o 𝐵) ∈ (𝐴o 𝐶) ∨ (𝐴o 𝐶) ∈ (𝐴o 𝐵)) → ¬ (𝐵𝐶𝐶𝐵)))
9 eldifi 4094 . . . . . 6 (𝐴 ∈ (On ∖ 2o) → 𝐴 ∈ On)
1093ad2ant1 1133 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐴 ∈ On)
11 simp2 1137 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐵 ∈ On)
12 oecl 8501 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)
1310, 11, 12syl2anc 584 . . . 4 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴o 𝐵) ∈ On)
14 simp3 1138 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → 𝐶 ∈ On)
15 oecl 8501 . . . . 5 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴o 𝐶) ∈ On)
1610, 14, 15syl2anc 584 . . . 4 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴o 𝐶) ∈ On)
17 eloni 6342 . . . . 5 ((𝐴o 𝐵) ∈ On → Ord (𝐴o 𝐵))
18 eloni 6342 . . . . 5 ((𝐴o 𝐶) ∈ On → Ord (𝐴o 𝐶))
19 ordtri3 6368 . . . . 5 ((Ord (𝐴o 𝐵) ∧ Ord (𝐴o 𝐶)) → ((𝐴o 𝐵) = (𝐴o 𝐶) ↔ ¬ ((𝐴o 𝐵) ∈ (𝐴o 𝐶) ∨ (𝐴o 𝐶) ∈ (𝐴o 𝐵))))
2017, 18, 19syl2an 596 . . . 4 (((𝐴o 𝐵) ∈ On ∧ (𝐴o 𝐶) ∈ On) → ((𝐴o 𝐵) = (𝐴o 𝐶) ↔ ¬ ((𝐴o 𝐵) ∈ (𝐴o 𝐶) ∨ (𝐴o 𝐶) ∈ (𝐴o 𝐵))))
2113, 16, 20syl2anc 584 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴o 𝐵) = (𝐴o 𝐶) ↔ ¬ ((𝐴o 𝐵) ∈ (𝐴o 𝐶) ∨ (𝐴o 𝐶) ∈ (𝐴o 𝐵))))
22 eloni 6342 . . . . 5 (𝐵 ∈ On → Ord 𝐵)
23 eloni 6342 . . . . 5 (𝐶 ∈ On → Ord 𝐶)
24 ordtri3 6368 . . . . 5 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝐶𝐶𝐵)))
2522, 23, 24syl2an 596 . . . 4 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝐶𝐶𝐵)))
26253adant1 1130 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝐶𝐶𝐵)))
278, 21, 263imtr4d 294 . 2 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴o 𝐵) = (𝐴o 𝐶) → 𝐵 = 𝐶))
28 oveq2 7395 . 2 (𝐵 = 𝐶 → (𝐴o 𝐵) = (𝐴o 𝐶))
2927, 28impbid1 225 1 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴o 𝐵) = (𝐴o 𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 847  w3a 1086   = wceq 1540  wcel 2109  cdif 3911  Ord word 6331  Oncon0 6332  (class class class)co 7387  2oc2o 8428  o coe 8433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-oexp 8440
This theorem is referenced by:  oeword  8554  infxpenc2lem1  9972
  Copyright terms: Public domain W3C validator