| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mnfltd | Structured version Visualization version GIF version | ||
| Description: Minus infinity is less than any (finite) real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| mnfltd.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| mnfltd | ⊢ (𝜑 → -∞ < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfltd.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | mnflt 13090 | . 2 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → -∞ < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5110 ℝcr 11074 -∞cmnf 11213 < clt 11215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 |
| This theorem is referenced by: qbtwnxr 13167 xltnegi 13183 supxrre 13294 infxrre 13304 caucvgrlem 15646 tgioo 24691 reconnlem1 24722 reconnlem2 24723 ovoliunlem1 25410 ovoliun 25413 ioombl1lem2 25467 ismbf3d 25562 dvferm1lem 25895 dvferm2lem 25897 degltlem1 25984 ply1divex 26049 dvdsq1p 26075 logdmnrp 26557 atans2 26848 ply1degltel 33567 ply1degleel 33568 ply1degltlss 33569 ply1degltdimlem 33625 areacirclem5 37713 aks6d1c5lem3 42132 infleinflem2 45374 xrralrecnnge 45393 icoopn 45530 icomnfinre 45557 ressiocsup 45559 ressioosup 45560 preimaiocmnf 45565 limciccioolb 45626 limsupre 45646 limcresioolb 45648 limcleqr 45649 xlimmnfvlem1 45837 fourierdlem32 46144 fourierdlem46 46157 fourierdlem48 46159 fourierdlem49 46160 fourierdlem74 46185 fourierdlem88 46199 fourierdlem95 46206 fourierdlem103 46214 fourierdlem104 46215 fouriersw 46236 ioorrnopnxrlem 46311 hspdifhsp 46621 hspmbllem2 46632 pimgtmnf2 46719 smfsuplem1 46816 |
| Copyright terms: Public domain | W3C validator |