![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mnfltd | Structured version Visualization version GIF version |
Description: Minus infinity is less than any (finite) real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
mnfltd.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
mnfltd | ⊢ (𝜑 → -∞ < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfltd.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | mnflt 13162 | . 2 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → -∞ < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 class class class wbr 5147 ℝcr 11151 -∞cmnf 11290 < clt 11292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-xp 5694 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 |
This theorem is referenced by: qbtwnxr 13238 xltnegi 13254 supxrre 13365 infxrre 13374 caucvgrlem 15705 tgioo 24831 reconnlem1 24861 reconnlem2 24862 ovoliunlem1 25550 ovoliun 25553 ioombl1lem2 25607 ismbf3d 25702 dvferm1lem 26036 dvferm2lem 26038 degltlem1 26125 ply1divex 26190 dvdsq1p 26216 logdmnrp 26697 atans2 26988 ply1degltel 33594 ply1degleel 33595 ply1degltlss 33596 ply1degltdimlem 33649 areacirclem5 37698 aks6d1c5lem3 42118 infleinflem2 45320 xrralrecnnge 45339 icoopn 45477 icomnfinre 45504 ressiocsup 45506 ressioosup 45507 preimaiocmnf 45513 limciccioolb 45576 limsupre 45596 limcresioolb 45598 limcleqr 45599 xlimmnfvlem1 45787 fourierdlem32 46094 fourierdlem46 46107 fourierdlem48 46109 fourierdlem49 46110 fourierdlem74 46135 fourierdlem88 46149 fourierdlem95 46156 fourierdlem103 46164 fourierdlem104 46165 fouriersw 46186 ioorrnopnxrlem 46261 hspdifhsp 46571 hspmbllem2 46582 pimgtmnf2 46669 smfsuplem1 46766 |
Copyright terms: Public domain | W3C validator |