| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mnfltd | Structured version Visualization version GIF version | ||
| Description: Minus infinity is less than any (finite) real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| mnfltd.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| mnfltd | ⊢ (𝜑 → -∞ < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfltd.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | mnflt 13022 | . 2 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → -∞ < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 class class class wbr 5091 ℝcr 11005 -∞cmnf 11144 < clt 11146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-xp 5622 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 |
| This theorem is referenced by: qbtwnxr 13099 xltnegi 13115 supxrre 13226 infxrre 13236 caucvgrlem 15580 tgioo 24712 reconnlem1 24743 reconnlem2 24744 ovoliunlem1 25431 ovoliun 25434 ioombl1lem2 25488 ismbf3d 25583 dvferm1lem 25916 dvferm2lem 25918 degltlem1 26005 ply1divex 26070 dvdsq1p 26096 logdmnrp 26578 atans2 26869 ply1degltel 33553 ply1degleel 33554 ply1degltlss 33555 ply1degltdimlem 33633 areacirclem5 37758 aks6d1c5lem3 42176 infleinflem2 45415 xrralrecnnge 45434 icoopn 45571 icomnfinre 45598 ressiocsup 45600 ressioosup 45601 preimaiocmnf 45606 limciccioolb 45667 limsupre 45685 limcresioolb 45687 limcleqr 45688 xlimmnfvlem1 45876 fourierdlem32 46183 fourierdlem46 46196 fourierdlem48 46198 fourierdlem49 46199 fourierdlem74 46224 fourierdlem88 46238 fourierdlem95 46245 fourierdlem103 46253 fourierdlem104 46254 fouriersw 46275 ioorrnopnxrlem 46350 hspdifhsp 46660 hspmbllem2 46671 pimgtmnf2 46758 smfsuplem1 46855 |
| Copyright terms: Public domain | W3C validator |