| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mnfltd | Structured version Visualization version GIF version | ||
| Description: Minus infinity is less than any (finite) real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| mnfltd.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| mnfltd | ⊢ (𝜑 → -∞ < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfltd.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | mnflt 13137 | . 2 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → -∞ < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5119 ℝcr 11126 -∞cmnf 11265 < clt 11267 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 |
| This theorem is referenced by: qbtwnxr 13214 xltnegi 13230 supxrre 13341 infxrre 13351 caucvgrlem 15687 tgioo 24733 reconnlem1 24764 reconnlem2 24765 ovoliunlem1 25453 ovoliun 25456 ioombl1lem2 25510 ismbf3d 25605 dvferm1lem 25938 dvferm2lem 25940 degltlem1 26027 ply1divex 26092 dvdsq1p 26118 logdmnrp 26600 atans2 26891 ply1degltel 33550 ply1degleel 33551 ply1degltlss 33552 ply1degltdimlem 33608 areacirclem5 37682 aks6d1c5lem3 42096 infleinflem2 45346 xrralrecnnge 45365 icoopn 45502 icomnfinre 45529 ressiocsup 45531 ressioosup 45532 preimaiocmnf 45537 limciccioolb 45598 limsupre 45618 limcresioolb 45620 limcleqr 45621 xlimmnfvlem1 45809 fourierdlem32 46116 fourierdlem46 46129 fourierdlem48 46131 fourierdlem49 46132 fourierdlem74 46157 fourierdlem88 46171 fourierdlem95 46178 fourierdlem103 46186 fourierdlem104 46187 fouriersw 46208 ioorrnopnxrlem 46283 hspdifhsp 46593 hspmbllem2 46604 pimgtmnf2 46691 smfsuplem1 46788 |
| Copyright terms: Public domain | W3C validator |