Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mnfltd | Structured version Visualization version GIF version |
Description: Minus infinity is less than any (finite) real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
mnfltd.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
mnfltd | ⊢ (𝜑 → -∞ < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfltd.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | mnflt 12788 | . 2 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → -∞ < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5070 ℝcr 10801 -∞cmnf 10938 < clt 10940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 |
This theorem is referenced by: qbtwnxr 12863 xltnegi 12879 supxrre 12990 infxrre 12999 caucvgrlem 15312 tgioo 23865 reconnlem1 23895 reconnlem2 23896 ovoliunlem1 24571 ovoliun 24574 ioombl1lem2 24628 ismbf3d 24723 dvferm1lem 25053 dvferm2lem 25055 degltlem1 25142 ply1divex 25206 dvdsq1p 25230 logdmnrp 25701 atans2 25986 areacirclem5 35796 infleinflem2 42800 xrralrecnnge 42820 icoopn 42953 icomnfinre 42980 ressiocsup 42982 ressioosup 42983 preimaiocmnf 42989 limciccioolb 43052 limsupre 43072 limcresioolb 43074 limcleqr 43075 xlimmnfvlem1 43263 fourierdlem32 43570 fourierdlem46 43583 fourierdlem48 43585 fourierdlem49 43586 fourierdlem74 43611 fourierdlem88 43625 fourierdlem95 43632 fourierdlem103 43640 fourierdlem104 43641 fouriersw 43662 ioorrnopnxrlem 43737 hspdifhsp 44044 hspmbllem2 44055 pimltmnf2 44125 pimgtmnf2 44138 smfsuplem1 44231 |
Copyright terms: Public domain | W3C validator |