| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mnfltd | Structured version Visualization version GIF version | ||
| Description: Minus infinity is less than any (finite) real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| mnfltd.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| mnfltd | ⊢ (𝜑 → -∞ < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfltd.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | mnflt 13083 | . 2 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → -∞ < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5107 ℝcr 11067 -∞cmnf 11206 < clt 11208 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 |
| This theorem is referenced by: qbtwnxr 13160 xltnegi 13176 supxrre 13287 infxrre 13297 caucvgrlem 15639 tgioo 24684 reconnlem1 24715 reconnlem2 24716 ovoliunlem1 25403 ovoliun 25406 ioombl1lem2 25460 ismbf3d 25555 dvferm1lem 25888 dvferm2lem 25890 degltlem1 25977 ply1divex 26042 dvdsq1p 26068 logdmnrp 26550 atans2 26841 ply1degltel 33560 ply1degleel 33561 ply1degltlss 33562 ply1degltdimlem 33618 areacirclem5 37706 aks6d1c5lem3 42125 infleinflem2 45367 xrralrecnnge 45386 icoopn 45523 icomnfinre 45550 ressiocsup 45552 ressioosup 45553 preimaiocmnf 45558 limciccioolb 45619 limsupre 45639 limcresioolb 45641 limcleqr 45642 xlimmnfvlem1 45830 fourierdlem32 46137 fourierdlem46 46150 fourierdlem48 46152 fourierdlem49 46153 fourierdlem74 46178 fourierdlem88 46192 fourierdlem95 46199 fourierdlem103 46207 fourierdlem104 46208 fouriersw 46229 ioorrnopnxrlem 46304 hspdifhsp 46614 hspmbllem2 46625 pimgtmnf2 46712 smfsuplem1 46809 |
| Copyright terms: Public domain | W3C validator |