| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mnfltd | Structured version Visualization version GIF version | ||
| Description: Minus infinity is less than any (finite) real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| mnfltd.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| mnfltd | ⊢ (𝜑 → -∞ < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfltd.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | mnflt 13026 | . 2 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → -∞ < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 class class class wbr 5095 ℝcr 11014 -∞cmnf 11153 < clt 11155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-xp 5627 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 |
| This theorem is referenced by: qbtwnxr 13103 xltnegi 13119 supxrre 13230 infxrre 13240 caucvgrlem 15584 tgioo 24714 reconnlem1 24745 reconnlem2 24746 ovoliunlem1 25433 ovoliun 25436 ioombl1lem2 25490 ismbf3d 25585 dvferm1lem 25918 dvferm2lem 25920 degltlem1 26007 ply1divex 26072 dvdsq1p 26098 logdmnrp 26580 atans2 26871 ply1degltel 33564 ply1degleel 33565 ply1degltlss 33566 ply1degltdimlem 33658 areacirclem5 37775 aks6d1c5lem3 42253 infleinflem2 45496 xrralrecnnge 45515 icoopn 45652 icomnfinre 45679 ressiocsup 45681 ressioosup 45682 preimaiocmnf 45687 limciccioolb 45748 limsupre 45766 limcresioolb 45768 limcleqr 45769 xlimmnfvlem1 45957 fourierdlem32 46264 fourierdlem46 46277 fourierdlem48 46279 fourierdlem49 46280 fourierdlem74 46305 fourierdlem88 46319 fourierdlem95 46326 fourierdlem103 46334 fourierdlem104 46335 fouriersw 46356 ioorrnopnxrlem 46431 hspdifhsp 46741 hspmbllem2 46752 pimgtmnf2 46839 smfsuplem1 46936 |
| Copyright terms: Public domain | W3C validator |