![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mnfltd | Structured version Visualization version GIF version |
Description: Minus infinity is less than any (finite) real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
mnfltd.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
mnfltd | ⊢ (𝜑 → -∞ < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfltd.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | mnflt 13186 | . 2 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → -∞ < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5166 ℝcr 11183 -∞cmnf 11322 < clt 11324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 |
This theorem is referenced by: qbtwnxr 13262 xltnegi 13278 supxrre 13389 infxrre 13398 caucvgrlem 15721 tgioo 24837 reconnlem1 24867 reconnlem2 24868 ovoliunlem1 25556 ovoliun 25559 ioombl1lem2 25613 ismbf3d 25708 dvferm1lem 26042 dvferm2lem 26044 degltlem1 26131 ply1divex 26196 dvdsq1p 26222 logdmnrp 26701 atans2 26992 ply1degltel 33580 ply1degleel 33581 ply1degltlss 33582 ply1degltdimlem 33635 areacirclem5 37672 aks6d1c5lem3 42094 infleinflem2 45286 xrralrecnnge 45305 icoopn 45443 icomnfinre 45470 ressiocsup 45472 ressioosup 45473 preimaiocmnf 45479 limciccioolb 45542 limsupre 45562 limcresioolb 45564 limcleqr 45565 xlimmnfvlem1 45753 fourierdlem32 46060 fourierdlem46 46073 fourierdlem48 46075 fourierdlem49 46076 fourierdlem74 46101 fourierdlem88 46115 fourierdlem95 46122 fourierdlem103 46130 fourierdlem104 46131 fouriersw 46152 ioorrnopnxrlem 46227 hspdifhsp 46537 hspmbllem2 46548 pimgtmnf2 46635 smfsuplem1 46732 |
Copyright terms: Public domain | W3C validator |