Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mnfltd | Structured version Visualization version GIF version |
Description: Minus infinity is less than any (finite) real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
mnfltd.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
mnfltd | ⊢ (𝜑 → -∞ < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfltd.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | mnflt 12859 | . 2 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → -∞ < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 class class class wbr 5074 ℝcr 10870 -∞cmnf 11007 < clt 11009 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 |
This theorem is referenced by: qbtwnxr 12934 xltnegi 12950 supxrre 13061 infxrre 13070 caucvgrlem 15384 tgioo 23959 reconnlem1 23989 reconnlem2 23990 ovoliunlem1 24666 ovoliun 24669 ioombl1lem2 24723 ismbf3d 24818 dvferm1lem 25148 dvferm2lem 25150 degltlem1 25237 ply1divex 25301 dvdsq1p 25325 logdmnrp 25796 atans2 26081 areacirclem5 35869 infleinflem2 42910 xrralrecnnge 42930 icoopn 43063 icomnfinre 43090 ressiocsup 43092 ressioosup 43093 preimaiocmnf 43099 limciccioolb 43162 limsupre 43182 limcresioolb 43184 limcleqr 43185 xlimmnfvlem1 43373 fourierdlem32 43680 fourierdlem46 43693 fourierdlem48 43695 fourierdlem49 43696 fourierdlem74 43721 fourierdlem88 43735 fourierdlem95 43742 fourierdlem103 43750 fourierdlem104 43751 fouriersw 43772 ioorrnopnxrlem 43847 hspdifhsp 44154 hspmbllem2 44165 pimgtmnf2 44251 smfsuplem1 44344 |
Copyright terms: Public domain | W3C validator |