| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mnfltd | Structured version Visualization version GIF version | ||
| Description: Minus infinity is less than any (finite) real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| mnfltd.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| mnfltd | ⊢ (𝜑 → -∞ < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfltd.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | mnflt 13043 | . 2 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → -∞ < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5095 ℝcr 11027 -∞cmnf 11166 < clt 11168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-xp 5629 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 |
| This theorem is referenced by: qbtwnxr 13120 xltnegi 13136 supxrre 13247 infxrre 13257 caucvgrlem 15598 tgioo 24700 reconnlem1 24731 reconnlem2 24732 ovoliunlem1 25419 ovoliun 25422 ioombl1lem2 25476 ismbf3d 25571 dvferm1lem 25904 dvferm2lem 25906 degltlem1 25993 ply1divex 26058 dvdsq1p 26084 logdmnrp 26566 atans2 26857 ply1degltel 33539 ply1degleel 33540 ply1degltlss 33541 ply1degltdimlem 33597 areacirclem5 37694 aks6d1c5lem3 42113 infleinflem2 45354 xrralrecnnge 45373 icoopn 45510 icomnfinre 45537 ressiocsup 45539 ressioosup 45540 preimaiocmnf 45545 limciccioolb 45606 limsupre 45626 limcresioolb 45628 limcleqr 45629 xlimmnfvlem1 45817 fourierdlem32 46124 fourierdlem46 46137 fourierdlem48 46139 fourierdlem49 46140 fourierdlem74 46165 fourierdlem88 46179 fourierdlem95 46186 fourierdlem103 46194 fourierdlem104 46195 fouriersw 46216 ioorrnopnxrlem 46291 hspdifhsp 46601 hspmbllem2 46612 pimgtmnf2 46699 smfsuplem1 46796 |
| Copyright terms: Public domain | W3C validator |