![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pjf | Structured version Visualization version GIF version |
Description: A projection is a function on the base set. (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
pjf.k | ⊢ 𝐾 = (proj‘𝑊) |
pjf.v | ⊢ 𝑉 = (Base‘𝑊) |
Ref | Expression |
---|---|
pjf | ⊢ (𝑇 ∈ dom 𝐾 → (𝐾‘𝑇):𝑉⟶𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjf.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | eqid 2740 | . . . 4 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
3 | eqid 2740 | . . . 4 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
4 | eqid 2740 | . . . 4 ⊢ (proj1‘𝑊) = (proj1‘𝑊) | |
5 | pjf.k | . . . 4 ⊢ 𝐾 = (proj‘𝑊) | |
6 | 1, 2, 3, 4, 5 | pjdm 21750 | . . 3 ⊢ (𝑇 ∈ dom 𝐾 ↔ (𝑇 ∈ (LSubSp‘𝑊) ∧ (𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇)):𝑉⟶𝑉)) |
7 | 6 | simprbi 496 | . 2 ⊢ (𝑇 ∈ dom 𝐾 → (𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇)):𝑉⟶𝑉) |
8 | 3, 4, 5 | pjval 21753 | . . 3 ⊢ (𝑇 ∈ dom 𝐾 → (𝐾‘𝑇) = (𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇))) |
9 | 8 | feq1d 6732 | . 2 ⊢ (𝑇 ∈ dom 𝐾 → ((𝐾‘𝑇):𝑉⟶𝑉 ↔ (𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇)):𝑉⟶𝑉)) |
10 | 7, 9 | mpbird 257 | 1 ⊢ (𝑇 ∈ dom 𝐾 → (𝐾‘𝑇):𝑉⟶𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 dom cdm 5700 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 proj1cpj1 19677 LSubSpclss 20952 ocvcocv 21701 projcpj 21743 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-pj 21746 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |