| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pjf | Structured version Visualization version GIF version | ||
| Description: A projection is a function on the base set. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| Ref | Expression |
|---|---|
| pjf.k | ⊢ 𝐾 = (proj‘𝑊) |
| pjf.v | ⊢ 𝑉 = (Base‘𝑊) |
| Ref | Expression |
|---|---|
| pjf | ⊢ (𝑇 ∈ dom 𝐾 → (𝐾‘𝑇):𝑉⟶𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjf.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | eqid 2729 | . . . 4 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 3 | eqid 2729 | . . . 4 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
| 4 | eqid 2729 | . . . 4 ⊢ (proj1‘𝑊) = (proj1‘𝑊) | |
| 5 | pjf.k | . . . 4 ⊢ 𝐾 = (proj‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | pjdm 21592 | . . 3 ⊢ (𝑇 ∈ dom 𝐾 ↔ (𝑇 ∈ (LSubSp‘𝑊) ∧ (𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇)):𝑉⟶𝑉)) |
| 7 | 6 | simprbi 496 | . 2 ⊢ (𝑇 ∈ dom 𝐾 → (𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇)):𝑉⟶𝑉) |
| 8 | 3, 4, 5 | pjval 21595 | . . 3 ⊢ (𝑇 ∈ dom 𝐾 → (𝐾‘𝑇) = (𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇))) |
| 9 | 8 | feq1d 6652 | . 2 ⊢ (𝑇 ∈ dom 𝐾 → ((𝐾‘𝑇):𝑉⟶𝑉 ↔ (𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇)):𝑉⟶𝑉)) |
| 10 | 7, 9 | mpbird 257 | 1 ⊢ (𝑇 ∈ dom 𝐾 → (𝐾‘𝑇):𝑉⟶𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 dom cdm 5631 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 proj1cpj1 19541 LSubSpclss 20813 ocvcocv 21545 projcpj 21585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-map 8778 df-pj 21588 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |