| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pjf | Structured version Visualization version GIF version | ||
| Description: A projection is a function on the base set. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| Ref | Expression |
|---|---|
| pjf.k | ⊢ 𝐾 = (proj‘𝑊) |
| pjf.v | ⊢ 𝑉 = (Base‘𝑊) |
| Ref | Expression |
|---|---|
| pjf | ⊢ (𝑇 ∈ dom 𝐾 → (𝐾‘𝑇):𝑉⟶𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjf.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | eqid 2731 | . . . 4 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 3 | eqid 2731 | . . . 4 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
| 4 | eqid 2731 | . . . 4 ⊢ (proj1‘𝑊) = (proj1‘𝑊) | |
| 5 | pjf.k | . . . 4 ⊢ 𝐾 = (proj‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | pjdm 21639 | . . 3 ⊢ (𝑇 ∈ dom 𝐾 ↔ (𝑇 ∈ (LSubSp‘𝑊) ∧ (𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇)):𝑉⟶𝑉)) |
| 7 | 6 | simprbi 496 | . 2 ⊢ (𝑇 ∈ dom 𝐾 → (𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇)):𝑉⟶𝑉) |
| 8 | 3, 4, 5 | pjval 21642 | . . 3 ⊢ (𝑇 ∈ dom 𝐾 → (𝐾‘𝑇) = (𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇))) |
| 9 | 8 | feq1d 6628 | . 2 ⊢ (𝑇 ∈ dom 𝐾 → ((𝐾‘𝑇):𝑉⟶𝑉 ↔ (𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇)):𝑉⟶𝑉)) |
| 10 | 7, 9 | mpbird 257 | 1 ⊢ (𝑇 ∈ dom 𝐾 → (𝐾‘𝑇):𝑉⟶𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 dom cdm 5611 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 proj1cpj1 19542 LSubSpclss 20859 ocvcocv 21592 projcpj 21632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-map 8747 df-pj 21635 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |