Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pjf | Structured version Visualization version GIF version |
Description: A projection is a function on the base set. (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
pjf.k | ⊢ 𝐾 = (proj‘𝑊) |
pjf.v | ⊢ 𝑉 = (Base‘𝑊) |
Ref | Expression |
---|---|
pjf | ⊢ (𝑇 ∈ dom 𝐾 → (𝐾‘𝑇):𝑉⟶𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjf.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | eqid 2740 | . . . 4 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
3 | eqid 2740 | . . . 4 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
4 | eqid 2740 | . . . 4 ⊢ (proj1‘𝑊) = (proj1‘𝑊) | |
5 | pjf.k | . . . 4 ⊢ 𝐾 = (proj‘𝑊) | |
6 | 1, 2, 3, 4, 5 | pjdm 20925 | . . 3 ⊢ (𝑇 ∈ dom 𝐾 ↔ (𝑇 ∈ (LSubSp‘𝑊) ∧ (𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇)):𝑉⟶𝑉)) |
7 | 6 | simprbi 497 | . 2 ⊢ (𝑇 ∈ dom 𝐾 → (𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇)):𝑉⟶𝑉) |
8 | 3, 4, 5 | pjval 20928 | . . 3 ⊢ (𝑇 ∈ dom 𝐾 → (𝐾‘𝑇) = (𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇))) |
9 | 8 | feq1d 6583 | . 2 ⊢ (𝑇 ∈ dom 𝐾 → ((𝐾‘𝑇):𝑉⟶𝑉 ↔ (𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇)):𝑉⟶𝑉)) |
10 | 7, 9 | mpbird 256 | 1 ⊢ (𝑇 ∈ dom 𝐾 → (𝐾‘𝑇):𝑉⟶𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 dom cdm 5590 ⟶wf 6428 ‘cfv 6432 (class class class)co 7272 Basecbs 16923 proj1cpj1 19251 LSubSpclss 20204 ocvcocv 20876 projcpj 20918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-fv 6440 df-ov 7275 df-oprab 7276 df-mpo 7277 df-map 8609 df-pj 20921 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |