Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pjf | Structured version Visualization version GIF version |
Description: A projection is a function on the base set. (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
pjf.k | ⊢ 𝐾 = (proj‘𝑊) |
pjf.v | ⊢ 𝑉 = (Base‘𝑊) |
Ref | Expression |
---|---|
pjf | ⊢ (𝑇 ∈ dom 𝐾 → (𝐾‘𝑇):𝑉⟶𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjf.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | eqid 2738 | . . . 4 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
3 | eqid 2738 | . . . 4 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
4 | eqid 2738 | . . . 4 ⊢ (proj1‘𝑊) = (proj1‘𝑊) | |
5 | pjf.k | . . . 4 ⊢ 𝐾 = (proj‘𝑊) | |
6 | 1, 2, 3, 4, 5 | pjdm 20914 | . . 3 ⊢ (𝑇 ∈ dom 𝐾 ↔ (𝑇 ∈ (LSubSp‘𝑊) ∧ (𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇)):𝑉⟶𝑉)) |
7 | 6 | simprbi 497 | . 2 ⊢ (𝑇 ∈ dom 𝐾 → (𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇)):𝑉⟶𝑉) |
8 | 3, 4, 5 | pjval 20917 | . . 3 ⊢ (𝑇 ∈ dom 𝐾 → (𝐾‘𝑇) = (𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇))) |
9 | 8 | feq1d 6585 | . 2 ⊢ (𝑇 ∈ dom 𝐾 → ((𝐾‘𝑇):𝑉⟶𝑉 ↔ (𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇)):𝑉⟶𝑉)) |
10 | 7, 9 | mpbird 256 | 1 ⊢ (𝑇 ∈ dom 𝐾 → (𝐾‘𝑇):𝑉⟶𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 dom cdm 5589 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 proj1cpj1 19240 LSubSpclss 20193 ocvcocv 20865 projcpj 20907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-pj 20910 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |