MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjval Structured version   Visualization version   GIF version

Theorem pjval 21753
Description: Value of the projection map. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
pjfval2.o = (ocv‘𝑊)
pjfval2.p 𝑃 = (proj1𝑊)
pjfval2.k 𝐾 = (proj‘𝑊)
Assertion
Ref Expression
pjval (𝑇 ∈ dom 𝐾 → (𝐾𝑇) = (𝑇𝑃( 𝑇)))

Proof of Theorem pjval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑥 = 𝑇𝑥 = 𝑇)
2 fveq2 6920 . . 3 (𝑥 = 𝑇 → ( 𝑥) = ( 𝑇))
31, 2oveq12d 7466 . 2 (𝑥 = 𝑇 → (𝑥𝑃( 𝑥)) = (𝑇𝑃( 𝑇)))
4 pjfval2.o . . 3 = (ocv‘𝑊)
5 pjfval2.p . . 3 𝑃 = (proj1𝑊)
6 pjfval2.k . . 3 𝐾 = (proj‘𝑊)
74, 5, 6pjfval2 21752 . 2 𝐾 = (𝑥 ∈ dom 𝐾 ↦ (𝑥𝑃( 𝑥)))
8 ovex 7481 . 2 (𝑇𝑃( 𝑇)) ∈ V
93, 7, 8fvmpt 7029 1 (𝑇 ∈ dom 𝐾 → (𝐾𝑇) = (𝑇𝑃( 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  dom cdm 5700  cfv 6573  (class class class)co 7448  proj1cpj1 19677  ocvcocv 21701  projcpj 21743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-pj 21746
This theorem is referenced by:  pjf  21756  pjf2  21757  pjfo  21758
  Copyright terms: Public domain W3C validator