MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjval Structured version   Visualization version   GIF version

Theorem pjval 20988
Description: Value of the projection map. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
pjfval2.o = (ocv‘𝑊)
pjfval2.p 𝑃 = (proj1𝑊)
pjfval2.k 𝐾 = (proj‘𝑊)
Assertion
Ref Expression
pjval (𝑇 ∈ dom 𝐾 → (𝐾𝑇) = (𝑇𝑃( 𝑇)))

Proof of Theorem pjval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑥 = 𝑇𝑥 = 𝑇)
2 fveq2 6809 . . 3 (𝑥 = 𝑇 → ( 𝑥) = ( 𝑇))
31, 2oveq12d 7331 . 2 (𝑥 = 𝑇 → (𝑥𝑃( 𝑥)) = (𝑇𝑃( 𝑇)))
4 pjfval2.o . . 3 = (ocv‘𝑊)
5 pjfval2.p . . 3 𝑃 = (proj1𝑊)
6 pjfval2.k . . 3 𝐾 = (proj‘𝑊)
74, 5, 6pjfval2 20987 . 2 𝐾 = (𝑥 ∈ dom 𝐾 ↦ (𝑥𝑃( 𝑥)))
8 ovex 7346 . 2 (𝑇𝑃( 𝑇)) ∈ V
93, 7, 8fvmpt 6912 1 (𝑇 ∈ dom 𝐾 → (𝐾𝑇) = (𝑇𝑃( 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  dom cdm 5605  cfv 6463  (class class class)co 7313  proj1cpj1 19307  ocvcocv 20936  projcpj 20978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-sbc 3726  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-br 5086  df-opab 5148  df-mpt 5169  df-id 5505  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-fv 6471  df-ov 7316  df-oprab 7317  df-mpo 7318  df-map 8663  df-pj 20981
This theorem is referenced by:  pjf  20991  pjf2  20992  pjfo  20993
  Copyright terms: Public domain W3C validator