MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjval Structured version   Visualization version   GIF version

Theorem pjval 21626
Description: Value of the projection map. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
pjfval2.o = (ocv‘𝑊)
pjfval2.p 𝑃 = (proj1𝑊)
pjfval2.k 𝐾 = (proj‘𝑊)
Assertion
Ref Expression
pjval (𝑇 ∈ dom 𝐾 → (𝐾𝑇) = (𝑇𝑃( 𝑇)))

Proof of Theorem pjval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑥 = 𝑇𝑥 = 𝑇)
2 fveq2 6861 . . 3 (𝑥 = 𝑇 → ( 𝑥) = ( 𝑇))
31, 2oveq12d 7408 . 2 (𝑥 = 𝑇 → (𝑥𝑃( 𝑥)) = (𝑇𝑃( 𝑇)))
4 pjfval2.o . . 3 = (ocv‘𝑊)
5 pjfval2.p . . 3 𝑃 = (proj1𝑊)
6 pjfval2.k . . 3 𝐾 = (proj‘𝑊)
74, 5, 6pjfval2 21625 . 2 𝐾 = (𝑥 ∈ dom 𝐾 ↦ (𝑥𝑃( 𝑥)))
8 ovex 7423 . 2 (𝑇𝑃( 𝑇)) ∈ V
93, 7, 8fvmpt 6971 1 (𝑇 ∈ dom 𝐾 → (𝐾𝑇) = (𝑇𝑃( 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  dom cdm 5641  cfv 6514  (class class class)co 7390  proj1cpj1 19572  ocvcocv 21576  projcpj 21616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-pj 21619
This theorem is referenced by:  pjf  21629  pjf2  21630  pjfo  21631
  Copyright terms: Public domain W3C validator