Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pjval | Structured version Visualization version GIF version |
Description: Value of the projection map. (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
pjfval2.o | ⊢ ⊥ = (ocv‘𝑊) |
pjfval2.p | ⊢ 𝑃 = (proj1‘𝑊) |
pjfval2.k | ⊢ 𝐾 = (proj‘𝑊) |
Ref | Expression |
---|---|
pjval | ⊢ (𝑇 ∈ dom 𝐾 → (𝐾‘𝑇) = (𝑇𝑃( ⊥ ‘𝑇))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝑥 = 𝑇 → 𝑥 = 𝑇) | |
2 | fveq2 6756 | . . 3 ⊢ (𝑥 = 𝑇 → ( ⊥ ‘𝑥) = ( ⊥ ‘𝑇)) | |
3 | 1, 2 | oveq12d 7273 | . 2 ⊢ (𝑥 = 𝑇 → (𝑥𝑃( ⊥ ‘𝑥)) = (𝑇𝑃( ⊥ ‘𝑇))) |
4 | pjfval2.o | . . 3 ⊢ ⊥ = (ocv‘𝑊) | |
5 | pjfval2.p | . . 3 ⊢ 𝑃 = (proj1‘𝑊) | |
6 | pjfval2.k | . . 3 ⊢ 𝐾 = (proj‘𝑊) | |
7 | 4, 5, 6 | pjfval2 20826 | . 2 ⊢ 𝐾 = (𝑥 ∈ dom 𝐾 ↦ (𝑥𝑃( ⊥ ‘𝑥))) |
8 | ovex 7288 | . 2 ⊢ (𝑇𝑃( ⊥ ‘𝑇)) ∈ V | |
9 | 3, 7, 8 | fvmpt 6857 | 1 ⊢ (𝑇 ∈ dom 𝐾 → (𝐾‘𝑇) = (𝑇𝑃( ⊥ ‘𝑇))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 dom cdm 5580 ‘cfv 6418 (class class class)co 7255 proj1cpj1 19155 ocvcocv 20777 projcpj 20817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-pj 20820 |
This theorem is referenced by: pjf 20830 pjf2 20831 pjfo 20832 |
Copyright terms: Public domain | W3C validator |