![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pjval | Structured version Visualization version GIF version |
Description: Value of the projection map. (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
pjfval2.o | ⊢ ⊥ = (ocv‘𝑊) |
pjfval2.p | ⊢ 𝑃 = (proj1‘𝑊) |
pjfval2.k | ⊢ 𝐾 = (proj‘𝑊) |
Ref | Expression |
---|---|
pjval | ⊢ (𝑇 ∈ dom 𝐾 → (𝐾‘𝑇) = (𝑇𝑃( ⊥ ‘𝑇))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝑥 = 𝑇 → 𝑥 = 𝑇) | |
2 | fveq2 6907 | . . 3 ⊢ (𝑥 = 𝑇 → ( ⊥ ‘𝑥) = ( ⊥ ‘𝑇)) | |
3 | 1, 2 | oveq12d 7449 | . 2 ⊢ (𝑥 = 𝑇 → (𝑥𝑃( ⊥ ‘𝑥)) = (𝑇𝑃( ⊥ ‘𝑇))) |
4 | pjfval2.o | . . 3 ⊢ ⊥ = (ocv‘𝑊) | |
5 | pjfval2.p | . . 3 ⊢ 𝑃 = (proj1‘𝑊) | |
6 | pjfval2.k | . . 3 ⊢ 𝐾 = (proj‘𝑊) | |
7 | 4, 5, 6 | pjfval2 21747 | . 2 ⊢ 𝐾 = (𝑥 ∈ dom 𝐾 ↦ (𝑥𝑃( ⊥ ‘𝑥))) |
8 | ovex 7464 | . 2 ⊢ (𝑇𝑃( ⊥ ‘𝑇)) ∈ V | |
9 | 3, 7, 8 | fvmpt 7016 | 1 ⊢ (𝑇 ∈ dom 𝐾 → (𝐾‘𝑇) = (𝑇𝑃( ⊥ ‘𝑇))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 dom cdm 5689 ‘cfv 6563 (class class class)co 7431 proj1cpj1 19668 ocvcocv 21696 projcpj 21738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8867 df-pj 21741 |
This theorem is referenced by: pjf 21751 pjf2 21752 pjfo 21753 |
Copyright terms: Public domain | W3C validator |