Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pjval | Structured version Visualization version GIF version |
Description: Value of the projection map. (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
pjfval2.o | ⊢ ⊥ = (ocv‘𝑊) |
pjfval2.p | ⊢ 𝑃 = (proj1‘𝑊) |
pjfval2.k | ⊢ 𝐾 = (proj‘𝑊) |
Ref | Expression |
---|---|
pjval | ⊢ (𝑇 ∈ dom 𝐾 → (𝐾‘𝑇) = (𝑇𝑃( ⊥ ‘𝑇))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝑥 = 𝑇 → 𝑥 = 𝑇) | |
2 | fveq2 6809 | . . 3 ⊢ (𝑥 = 𝑇 → ( ⊥ ‘𝑥) = ( ⊥ ‘𝑇)) | |
3 | 1, 2 | oveq12d 7331 | . 2 ⊢ (𝑥 = 𝑇 → (𝑥𝑃( ⊥ ‘𝑥)) = (𝑇𝑃( ⊥ ‘𝑇))) |
4 | pjfval2.o | . . 3 ⊢ ⊥ = (ocv‘𝑊) | |
5 | pjfval2.p | . . 3 ⊢ 𝑃 = (proj1‘𝑊) | |
6 | pjfval2.k | . . 3 ⊢ 𝐾 = (proj‘𝑊) | |
7 | 4, 5, 6 | pjfval2 20987 | . 2 ⊢ 𝐾 = (𝑥 ∈ dom 𝐾 ↦ (𝑥𝑃( ⊥ ‘𝑥))) |
8 | ovex 7346 | . 2 ⊢ (𝑇𝑃( ⊥ ‘𝑇)) ∈ V | |
9 | 3, 7, 8 | fvmpt 6912 | 1 ⊢ (𝑇 ∈ dom 𝐾 → (𝐾‘𝑇) = (𝑇𝑃( ⊥ ‘𝑇))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 dom cdm 5605 ‘cfv 6463 (class class class)co 7313 proj1cpj1 19307 ocvcocv 20936 projcpj 20978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-sbc 3726 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-br 5086 df-opab 5148 df-mpt 5169 df-id 5505 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-fv 6471 df-ov 7316 df-oprab 7317 df-mpo 7318 df-map 8663 df-pj 20981 |
This theorem is referenced by: pjf 20991 pjf2 20992 pjfo 20993 |
Copyright terms: Public domain | W3C validator |