MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjval Structured version   Visualization version   GIF version

Theorem pjval 21484
Description: Value of the projection map. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
pjfval2.o βŠ₯ = (ocvβ€˜π‘Š)
pjfval2.p 𝑃 = (proj1β€˜π‘Š)
pjfval2.k 𝐾 = (projβ€˜π‘Š)
Assertion
Ref Expression
pjval (𝑇 ∈ dom 𝐾 β†’ (πΎβ€˜π‘‡) = (𝑇𝑃( βŠ₯ β€˜π‘‡)))

Proof of Theorem pjval
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (π‘₯ = 𝑇 β†’ π‘₯ = 𝑇)
2 fveq2 6891 . . 3 (π‘₯ = 𝑇 β†’ ( βŠ₯ β€˜π‘₯) = ( βŠ₯ β€˜π‘‡))
31, 2oveq12d 7429 . 2 (π‘₯ = 𝑇 β†’ (π‘₯𝑃( βŠ₯ β€˜π‘₯)) = (𝑇𝑃( βŠ₯ β€˜π‘‡)))
4 pjfval2.o . . 3 βŠ₯ = (ocvβ€˜π‘Š)
5 pjfval2.p . . 3 𝑃 = (proj1β€˜π‘Š)
6 pjfval2.k . . 3 𝐾 = (projβ€˜π‘Š)
74, 5, 6pjfval2 21483 . 2 𝐾 = (π‘₯ ∈ dom 𝐾 ↦ (π‘₯𝑃( βŠ₯ β€˜π‘₯)))
8 ovex 7444 . 2 (𝑇𝑃( βŠ₯ β€˜π‘‡)) ∈ V
93, 7, 8fvmpt 6998 1 (𝑇 ∈ dom 𝐾 β†’ (πΎβ€˜π‘‡) = (𝑇𝑃( βŠ₯ β€˜π‘‡)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  dom cdm 5676  β€˜cfv 6543  (class class class)co 7411  proj1cpj1 19544  ocvcocv 21432  projcpj 21474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-map 8824  df-pj 21477
This theorem is referenced by:  pjf  21487  pjf2  21488  pjfo  21489
  Copyright terms: Public domain W3C validator