| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pjff | Structured version Visualization version GIF version | ||
| Description: A projection is a linear operator. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| Ref | Expression |
|---|---|
| pjf.k | ⊢ 𝐾 = (proj‘𝑊) |
| Ref | Expression |
|---|---|
| pjff | ⊢ (𝑊 ∈ PreHil → 𝐾:dom 𝐾⟶(𝑊 LMHom 𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 2 | eqid 2729 | . . . 4 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
| 3 | eqid 2729 | . . . 4 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 4 | eqid 2729 | . . . 4 ⊢ (proj1‘𝑊) = (proj1‘𝑊) | |
| 5 | phllmod 21555 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → 𝑊 ∈ LMod) |
| 7 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 8 | eqid 2729 | . . . . . 6 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
| 9 | pjf.k | . . . . . 6 ⊢ 𝐾 = (proj‘𝑊) | |
| 10 | 7, 1, 8, 2, 9 | pjdm2 21636 | . . . . 5 ⊢ (𝑊 ∈ PreHil → (𝑥 ∈ dom 𝐾 ↔ (𝑥 ∈ (LSubSp‘𝑊) ∧ (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥)) = (Base‘𝑊)))) |
| 11 | 10 | simprbda 498 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → 𝑥 ∈ (LSubSp‘𝑊)) |
| 12 | 7, 1 | lssss 20857 | . . . . . 6 ⊢ (𝑥 ∈ (LSubSp‘𝑊) → 𝑥 ⊆ (Base‘𝑊)) |
| 13 | 11, 12 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → 𝑥 ⊆ (Base‘𝑊)) |
| 14 | 7, 8, 1 | ocvlss 21597 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ (Base‘𝑊)) → ((ocv‘𝑊)‘𝑥) ∈ (LSubSp‘𝑊)) |
| 15 | 13, 14 | syldan 591 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → ((ocv‘𝑊)‘𝑥) ∈ (LSubSp‘𝑊)) |
| 16 | 8, 1, 3 | ocvin 21599 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ (LSubSp‘𝑊)) → (𝑥 ∩ ((ocv‘𝑊)‘𝑥)) = {(0g‘𝑊)}) |
| 17 | 11, 16 | syldan 591 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑥 ∩ ((ocv‘𝑊)‘𝑥)) = {(0g‘𝑊)}) |
| 18 | 1, 2, 3, 4, 6, 11, 15, 17 | pj1lmhm 21022 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑥(proj1‘𝑊)((ocv‘𝑊)‘𝑥)) ∈ ((𝑊 ↾s (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥))) LMHom 𝑊)) |
| 19 | 10 | simplbda 499 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥)) = (Base‘𝑊)) |
| 20 | 19 | oveq2d 7369 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑊 ↾s (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥))) = (𝑊 ↾s (Base‘𝑊))) |
| 21 | 7 | ressid 17173 | . . . . . 6 ⊢ (𝑊 ∈ PreHil → (𝑊 ↾s (Base‘𝑊)) = 𝑊) |
| 22 | 21 | adantr 480 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑊 ↾s (Base‘𝑊)) = 𝑊) |
| 23 | 20, 22 | eqtrd 2764 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑊 ↾s (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥))) = 𝑊) |
| 24 | 23 | oveq1d 7368 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → ((𝑊 ↾s (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥))) LMHom 𝑊) = (𝑊 LMHom 𝑊)) |
| 25 | 18, 24 | eleqtrd 2830 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑥(proj1‘𝑊)((ocv‘𝑊)‘𝑥)) ∈ (𝑊 LMHom 𝑊)) |
| 26 | 8, 4, 9 | pjfval2 21634 | . 2 ⊢ 𝐾 = (𝑥 ∈ dom 𝐾 ↦ (𝑥(proj1‘𝑊)((ocv‘𝑊)‘𝑥))) |
| 27 | 25, 26 | fmptd 7052 | 1 ⊢ (𝑊 ∈ PreHil → 𝐾:dom 𝐾⟶(𝑊 LMHom 𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3904 ⊆ wss 3905 {csn 4579 dom cdm 5623 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 ↾s cress 17159 0gc0g 17361 LSSumclsm 19531 proj1cpj1 19532 LModclmod 20781 LSubSpclss 20852 LMHom clmhm 20941 PreHilcphl 21549 ocvcocv 21585 projcpj 21625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-sca 17195 df-vsca 17196 df-ip 17197 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-subg 19020 df-ghm 19110 df-cntz 19214 df-lsm 19533 df-pj1 19534 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-lmod 20783 df-lss 20853 df-lmhm 20944 df-lvec 21025 df-sra 21095 df-rgmod 21096 df-phl 21551 df-ocv 21588 df-pj 21628 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |