MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjff Structured version   Visualization version   GIF version

Theorem pjff 20707
Description: A projection is a linear operator. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypothesis
Ref Expression
pjf.k 𝐾 = (proj‘𝑊)
Assertion
Ref Expression
pjff (𝑊 ∈ PreHil → 𝐾:dom 𝐾⟶(𝑊 LMHom 𝑊))

Proof of Theorem pjff
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2739 . . . 4 (LSubSp‘𝑊) = (LSubSp‘𝑊)
2 eqid 2739 . . . 4 (LSSum‘𝑊) = (LSSum‘𝑊)
3 eqid 2739 . . . 4 (0g𝑊) = (0g𝑊)
4 eqid 2739 . . . 4 (proj1𝑊) = (proj1𝑊)
5 phllmod 20625 . . . . 5 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
65adantr 484 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → 𝑊 ∈ LMod)
7 eqid 2739 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
8 eqid 2739 . . . . . 6 (ocv‘𝑊) = (ocv‘𝑊)
9 pjf.k . . . . . 6 𝐾 = (proj‘𝑊)
107, 1, 8, 2, 9pjdm2 20706 . . . . 5 (𝑊 ∈ PreHil → (𝑥 ∈ dom 𝐾 ↔ (𝑥 ∈ (LSubSp‘𝑊) ∧ (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥)) = (Base‘𝑊))))
1110simprbda 502 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → 𝑥 ∈ (LSubSp‘𝑊))
127, 1lssss 20006 . . . . . 6 (𝑥 ∈ (LSubSp‘𝑊) → 𝑥 ⊆ (Base‘𝑊))
1311, 12syl 17 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → 𝑥 ⊆ (Base‘𝑊))
147, 8, 1ocvlss 20667 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ (Base‘𝑊)) → ((ocv‘𝑊)‘𝑥) ∈ (LSubSp‘𝑊))
1513, 14syldan 594 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → ((ocv‘𝑊)‘𝑥) ∈ (LSubSp‘𝑊))
168, 1, 3ocvin 20669 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ (LSubSp‘𝑊)) → (𝑥 ∩ ((ocv‘𝑊)‘𝑥)) = {(0g𝑊)})
1711, 16syldan 594 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑥 ∩ ((ocv‘𝑊)‘𝑥)) = {(0g𝑊)})
181, 2, 3, 4, 6, 11, 15, 17pj1lmhm 20170 . . 3 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥)) ∈ ((𝑊s (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥))) LMHom 𝑊))
1910simplbda 503 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥)) = (Base‘𝑊))
2019oveq2d 7251 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑊s (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥))) = (𝑊s (Base‘𝑊)))
217ressid 16829 . . . . . 6 (𝑊 ∈ PreHil → (𝑊s (Base‘𝑊)) = 𝑊)
2221adantr 484 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑊s (Base‘𝑊)) = 𝑊)
2320, 22eqtrd 2779 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑊s (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥))) = 𝑊)
2423oveq1d 7250 . . 3 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → ((𝑊s (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥))) LMHom 𝑊) = (𝑊 LMHom 𝑊))
2518, 24eleqtrd 2842 . 2 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥)) ∈ (𝑊 LMHom 𝑊))
268, 4, 9pjfval2 20704 . 2 𝐾 = (𝑥 ∈ dom 𝐾 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥)))
2725, 26fmptd 6953 1 (𝑊 ∈ PreHil → 𝐾:dom 𝐾⟶(𝑊 LMHom 𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  cin 3882  wss 3883  {csn 4558  dom cdm 5569  wf 6397  cfv 6401  (class class class)co 7235  Basecbs 16793  s cress 16817  0gc0g 16977  LSSumclsm 19056  proj1cpj1 19057  LModclmod 19932  LSubSpclss 20001   LMHom clmhm 20089  PreHilcphl 20619  ocvcocv 20655  projcpj 20695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5196  ax-sep 5209  ax-nul 5216  ax-pow 5275  ax-pr 5339  ax-un 7545  ax-cnex 10815  ax-resscn 10816  ax-1cn 10817  ax-icn 10818  ax-addcl 10819  ax-addrcl 10820  ax-mulcl 10821  ax-mulrcl 10822  ax-mulcom 10823  ax-addass 10824  ax-mulass 10825  ax-distr 10826  ax-i2m1 10827  ax-1ne0 10828  ax-1rid 10829  ax-rnegex 10830  ax-rrecex 10831  ax-cnre 10832  ax-pre-lttri 10833  ax-pre-lttrn 10834  ax-pre-ltadd 10835  ax-pre-mulgt0 10836
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3425  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5153  df-tr 5179  df-id 5472  df-eprel 5478  df-po 5486  df-so 5487  df-fr 5527  df-we 5529  df-xp 5575  df-rel 5576  df-cnv 5577  df-co 5578  df-dm 5579  df-rn 5580  df-res 5581  df-ima 5582  df-pred 6179  df-ord 6237  df-on 6238  df-lim 6239  df-suc 6240  df-iota 6359  df-fun 6403  df-fn 6404  df-f 6405  df-f1 6406  df-fo 6407  df-f1o 6408  df-fv 6409  df-riota 7192  df-ov 7238  df-oprab 7239  df-mpo 7240  df-om 7667  df-1st 7783  df-2nd 7784  df-wrecs 8071  df-recs 8132  df-rdg 8170  df-er 8415  df-map 8534  df-en 8651  df-dom 8652  df-sdom 8653  df-pnf 10899  df-mnf 10900  df-xr 10901  df-ltxr 10902  df-le 10903  df-sub 11094  df-neg 11095  df-nn 11861  df-2 11923  df-3 11924  df-4 11925  df-5 11926  df-6 11927  df-7 11928  df-8 11929  df-sets 16750  df-slot 16768  df-ndx 16778  df-base 16794  df-ress 16818  df-plusg 16848  df-sca 16851  df-vsca 16852  df-ip 16853  df-0g 16979  df-mgm 18147  df-sgrp 18196  df-mnd 18207  df-submnd 18252  df-grp 18401  df-minusg 18402  df-sbg 18403  df-subg 18573  df-ghm 18653  df-cntz 18744  df-lsm 19058  df-pj1 19059  df-cmn 19205  df-abl 19206  df-mgp 19538  df-ur 19550  df-ring 19597  df-lmod 19934  df-lss 20002  df-lmhm 20092  df-lvec 20173  df-sra 20242  df-rgmod 20243  df-phl 20621  df-ocv 20658  df-pj 20698
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator