| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pjff | Structured version Visualization version GIF version | ||
| Description: A projection is a linear operator. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| Ref | Expression |
|---|---|
| pjf.k | ⊢ 𝐾 = (proj‘𝑊) |
| Ref | Expression |
|---|---|
| pjff | ⊢ (𝑊 ∈ PreHil → 𝐾:dom 𝐾⟶(𝑊 LMHom 𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 2 | eqid 2731 | . . . 4 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
| 3 | eqid 2731 | . . . 4 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 4 | eqid 2731 | . . . 4 ⊢ (proj1‘𝑊) = (proj1‘𝑊) | |
| 5 | phllmod 21568 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → 𝑊 ∈ LMod) |
| 7 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 8 | eqid 2731 | . . . . . 6 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
| 9 | pjf.k | . . . . . 6 ⊢ 𝐾 = (proj‘𝑊) | |
| 10 | 7, 1, 8, 2, 9 | pjdm2 21649 | . . . . 5 ⊢ (𝑊 ∈ PreHil → (𝑥 ∈ dom 𝐾 ↔ (𝑥 ∈ (LSubSp‘𝑊) ∧ (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥)) = (Base‘𝑊)))) |
| 11 | 10 | simprbda 498 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → 𝑥 ∈ (LSubSp‘𝑊)) |
| 12 | 7, 1 | lssss 20870 | . . . . . 6 ⊢ (𝑥 ∈ (LSubSp‘𝑊) → 𝑥 ⊆ (Base‘𝑊)) |
| 13 | 11, 12 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → 𝑥 ⊆ (Base‘𝑊)) |
| 14 | 7, 8, 1 | ocvlss 21610 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ (Base‘𝑊)) → ((ocv‘𝑊)‘𝑥) ∈ (LSubSp‘𝑊)) |
| 15 | 13, 14 | syldan 591 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → ((ocv‘𝑊)‘𝑥) ∈ (LSubSp‘𝑊)) |
| 16 | 8, 1, 3 | ocvin 21612 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ (LSubSp‘𝑊)) → (𝑥 ∩ ((ocv‘𝑊)‘𝑥)) = {(0g‘𝑊)}) |
| 17 | 11, 16 | syldan 591 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑥 ∩ ((ocv‘𝑊)‘𝑥)) = {(0g‘𝑊)}) |
| 18 | 1, 2, 3, 4, 6, 11, 15, 17 | pj1lmhm 21035 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑥(proj1‘𝑊)((ocv‘𝑊)‘𝑥)) ∈ ((𝑊 ↾s (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥))) LMHom 𝑊)) |
| 19 | 10 | simplbda 499 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥)) = (Base‘𝑊)) |
| 20 | 19 | oveq2d 7362 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑊 ↾s (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥))) = (𝑊 ↾s (Base‘𝑊))) |
| 21 | 7 | ressid 17155 | . . . . . 6 ⊢ (𝑊 ∈ PreHil → (𝑊 ↾s (Base‘𝑊)) = 𝑊) |
| 22 | 21 | adantr 480 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑊 ↾s (Base‘𝑊)) = 𝑊) |
| 23 | 20, 22 | eqtrd 2766 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑊 ↾s (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥))) = 𝑊) |
| 24 | 23 | oveq1d 7361 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → ((𝑊 ↾s (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥))) LMHom 𝑊) = (𝑊 LMHom 𝑊)) |
| 25 | 18, 24 | eleqtrd 2833 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑥(proj1‘𝑊)((ocv‘𝑊)‘𝑥)) ∈ (𝑊 LMHom 𝑊)) |
| 26 | 8, 4, 9 | pjfval2 21647 | . 2 ⊢ 𝐾 = (𝑥 ∈ dom 𝐾 ↦ (𝑥(proj1‘𝑊)((ocv‘𝑊)‘𝑥))) |
| 27 | 25, 26 | fmptd 7047 | 1 ⊢ (𝑊 ∈ PreHil → 𝐾:dom 𝐾⟶(𝑊 LMHom 𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3901 ⊆ wss 3902 {csn 4576 dom cdm 5616 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 ↾s cress 17141 0gc0g 17343 LSSumclsm 19547 proj1cpj1 19548 LModclmod 20794 LSubSpclss 20865 LMHom clmhm 20954 PreHilcphl 21562 ocvcocv 21598 projcpj 21638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-sca 17177 df-vsca 17178 df-ip 17179 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-subg 19036 df-ghm 19126 df-cntz 19230 df-lsm 19549 df-pj1 19550 df-cmn 19695 df-abl 19696 df-mgp 20060 df-rng 20072 df-ur 20101 df-ring 20154 df-lmod 20796 df-lss 20866 df-lmhm 20957 df-lvec 21038 df-sra 21108 df-rgmod 21109 df-phl 21564 df-ocv 21601 df-pj 21641 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |