MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjff Structured version   Visualization version   GIF version

Theorem pjff 21663
Description: A projection is a linear operator. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypothesis
Ref Expression
pjf.k 𝐾 = (proj‘𝑊)
Assertion
Ref Expression
pjff (𝑊 ∈ PreHil → 𝐾:dom 𝐾⟶(𝑊 LMHom 𝑊))

Proof of Theorem pjff
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2725 . . . 4 (LSubSp‘𝑊) = (LSubSp‘𝑊)
2 eqid 2725 . . . 4 (LSSum‘𝑊) = (LSSum‘𝑊)
3 eqid 2725 . . . 4 (0g𝑊) = (0g𝑊)
4 eqid 2725 . . . 4 (proj1𝑊) = (proj1𝑊)
5 phllmod 21579 . . . . 5 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
65adantr 479 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → 𝑊 ∈ LMod)
7 eqid 2725 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
8 eqid 2725 . . . . . 6 (ocv‘𝑊) = (ocv‘𝑊)
9 pjf.k . . . . . 6 𝐾 = (proj‘𝑊)
107, 1, 8, 2, 9pjdm2 21662 . . . . 5 (𝑊 ∈ PreHil → (𝑥 ∈ dom 𝐾 ↔ (𝑥 ∈ (LSubSp‘𝑊) ∧ (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥)) = (Base‘𝑊))))
1110simprbda 497 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → 𝑥 ∈ (LSubSp‘𝑊))
127, 1lssss 20832 . . . . . 6 (𝑥 ∈ (LSubSp‘𝑊) → 𝑥 ⊆ (Base‘𝑊))
1311, 12syl 17 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → 𝑥 ⊆ (Base‘𝑊))
147, 8, 1ocvlss 21621 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ (Base‘𝑊)) → ((ocv‘𝑊)‘𝑥) ∈ (LSubSp‘𝑊))
1513, 14syldan 589 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → ((ocv‘𝑊)‘𝑥) ∈ (LSubSp‘𝑊))
168, 1, 3ocvin 21623 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ (LSubSp‘𝑊)) → (𝑥 ∩ ((ocv‘𝑊)‘𝑥)) = {(0g𝑊)})
1711, 16syldan 589 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑥 ∩ ((ocv‘𝑊)‘𝑥)) = {(0g𝑊)})
181, 2, 3, 4, 6, 11, 15, 17pj1lmhm 20997 . . 3 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥)) ∈ ((𝑊s (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥))) LMHom 𝑊))
1910simplbda 498 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥)) = (Base‘𝑊))
2019oveq2d 7435 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑊s (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥))) = (𝑊s (Base‘𝑊)))
217ressid 17228 . . . . . 6 (𝑊 ∈ PreHil → (𝑊s (Base‘𝑊)) = 𝑊)
2221adantr 479 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑊s (Base‘𝑊)) = 𝑊)
2320, 22eqtrd 2765 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑊s (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥))) = 𝑊)
2423oveq1d 7434 . . 3 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → ((𝑊s (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥))) LMHom 𝑊) = (𝑊 LMHom 𝑊))
2518, 24eleqtrd 2827 . 2 ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥)) ∈ (𝑊 LMHom 𝑊))
268, 4, 9pjfval2 21660 . 2 𝐾 = (𝑥 ∈ dom 𝐾 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥)))
2725, 26fmptd 7123 1 (𝑊 ∈ PreHil → 𝐾:dom 𝐾⟶(𝑊 LMHom 𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  cin 3943  wss 3944  {csn 4630  dom cdm 5678  wf 6545  cfv 6549  (class class class)co 7419  Basecbs 17183  s cress 17212  0gc0g 17424  LSSumclsm 19601  proj1cpj1 19602  LModclmod 20755  LSubSpclss 20827   LMHom clmhm 20916  PreHilcphl 21573  ocvcocv 21609  projcpj 21651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-sca 17252  df-vsca 17253  df-ip 17254  df-0g 17426  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-grp 18901  df-minusg 18902  df-sbg 18903  df-subg 19086  df-ghm 19176  df-cntz 19280  df-lsm 19603  df-pj1 19604  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-lmod 20757  df-lss 20828  df-lmhm 20919  df-lvec 21000  df-sra 21070  df-rgmod 21071  df-phl 21575  df-ocv 21612  df-pj 21654
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator