| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pjff | Structured version Visualization version GIF version | ||
| Description: A projection is a linear operator. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| Ref | Expression |
|---|---|
| pjf.k | ⊢ 𝐾 = (proj‘𝑊) |
| Ref | Expression |
|---|---|
| pjff | ⊢ (𝑊 ∈ PreHil → 𝐾:dom 𝐾⟶(𝑊 LMHom 𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . 4 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 2 | eqid 2733 | . . . 4 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
| 3 | eqid 2733 | . . . 4 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 4 | eqid 2733 | . . . 4 ⊢ (proj1‘𝑊) = (proj1‘𝑊) | |
| 5 | phllmod 21571 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → 𝑊 ∈ LMod) |
| 7 | eqid 2733 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 8 | eqid 2733 | . . . . . 6 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
| 9 | pjf.k | . . . . . 6 ⊢ 𝐾 = (proj‘𝑊) | |
| 10 | 7, 1, 8, 2, 9 | pjdm2 21652 | . . . . 5 ⊢ (𝑊 ∈ PreHil → (𝑥 ∈ dom 𝐾 ↔ (𝑥 ∈ (LSubSp‘𝑊) ∧ (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥)) = (Base‘𝑊)))) |
| 11 | 10 | simprbda 498 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → 𝑥 ∈ (LSubSp‘𝑊)) |
| 12 | 7, 1 | lssss 20873 | . . . . . 6 ⊢ (𝑥 ∈ (LSubSp‘𝑊) → 𝑥 ⊆ (Base‘𝑊)) |
| 13 | 11, 12 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → 𝑥 ⊆ (Base‘𝑊)) |
| 14 | 7, 8, 1 | ocvlss 21613 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ (Base‘𝑊)) → ((ocv‘𝑊)‘𝑥) ∈ (LSubSp‘𝑊)) |
| 15 | 13, 14 | syldan 591 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → ((ocv‘𝑊)‘𝑥) ∈ (LSubSp‘𝑊)) |
| 16 | 8, 1, 3 | ocvin 21615 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ (LSubSp‘𝑊)) → (𝑥 ∩ ((ocv‘𝑊)‘𝑥)) = {(0g‘𝑊)}) |
| 17 | 11, 16 | syldan 591 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑥 ∩ ((ocv‘𝑊)‘𝑥)) = {(0g‘𝑊)}) |
| 18 | 1, 2, 3, 4, 6, 11, 15, 17 | pj1lmhm 21038 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑥(proj1‘𝑊)((ocv‘𝑊)‘𝑥)) ∈ ((𝑊 ↾s (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥))) LMHom 𝑊)) |
| 19 | 10 | simplbda 499 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥)) = (Base‘𝑊)) |
| 20 | 19 | oveq2d 7370 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑊 ↾s (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥))) = (𝑊 ↾s (Base‘𝑊))) |
| 21 | 7 | ressid 17159 | . . . . . 6 ⊢ (𝑊 ∈ PreHil → (𝑊 ↾s (Base‘𝑊)) = 𝑊) |
| 22 | 21 | adantr 480 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑊 ↾s (Base‘𝑊)) = 𝑊) |
| 23 | 20, 22 | eqtrd 2768 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑊 ↾s (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥))) = 𝑊) |
| 24 | 23 | oveq1d 7369 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → ((𝑊 ↾s (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥))) LMHom 𝑊) = (𝑊 LMHom 𝑊)) |
| 25 | 18, 24 | eleqtrd 2835 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑥(proj1‘𝑊)((ocv‘𝑊)‘𝑥)) ∈ (𝑊 LMHom 𝑊)) |
| 26 | 8, 4, 9 | pjfval2 21650 | . 2 ⊢ 𝐾 = (𝑥 ∈ dom 𝐾 ↦ (𝑥(proj1‘𝑊)((ocv‘𝑊)‘𝑥))) |
| 27 | 25, 26 | fmptd 7055 | 1 ⊢ (𝑊 ∈ PreHil → 𝐾:dom 𝐾⟶(𝑊 LMHom 𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∩ cin 3897 ⊆ wss 3898 {csn 4577 dom cdm 5621 ⟶wf 6484 ‘cfv 6488 (class class class)co 7354 Basecbs 17124 ↾s cress 17145 0gc0g 17347 LSSumclsm 19550 proj1cpj1 19551 LModclmod 20797 LSubSpclss 20868 LMHom clmhm 20957 PreHilcphl 21565 ocvcocv 21601 projcpj 21641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-er 8630 df-map 8760 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-sca 17181 df-vsca 17182 df-ip 17183 df-0g 17349 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-submnd 18696 df-grp 18853 df-minusg 18854 df-sbg 18855 df-subg 19040 df-ghm 19129 df-cntz 19233 df-lsm 19552 df-pj1 19553 df-cmn 19698 df-abl 19699 df-mgp 20063 df-rng 20075 df-ur 20104 df-ring 20157 df-lmod 20799 df-lss 20869 df-lmhm 20960 df-lvec 21041 df-sra 21111 df-rgmod 21112 df-phl 21567 df-ocv 21604 df-pj 21644 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |