Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pjff | Structured version Visualization version GIF version |
Description: A projection is a linear operator. (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
pjf.k | ⊢ 𝐾 = (proj‘𝑊) |
Ref | Expression |
---|---|
pjff | ⊢ (𝑊 ∈ PreHil → 𝐾:dom 𝐾⟶(𝑊 LMHom 𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
2 | eqid 2738 | . . . 4 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
3 | eqid 2738 | . . . 4 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
4 | eqid 2738 | . . . 4 ⊢ (proj1‘𝑊) = (proj1‘𝑊) | |
5 | phllmod 20747 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
6 | 5 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → 𝑊 ∈ LMod) |
7 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
8 | eqid 2738 | . . . . . 6 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
9 | pjf.k | . . . . . 6 ⊢ 𝐾 = (proj‘𝑊) | |
10 | 7, 1, 8, 2, 9 | pjdm2 20828 | . . . . 5 ⊢ (𝑊 ∈ PreHil → (𝑥 ∈ dom 𝐾 ↔ (𝑥 ∈ (LSubSp‘𝑊) ∧ (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥)) = (Base‘𝑊)))) |
11 | 10 | simprbda 498 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → 𝑥 ∈ (LSubSp‘𝑊)) |
12 | 7, 1 | lssss 20113 | . . . . . 6 ⊢ (𝑥 ∈ (LSubSp‘𝑊) → 𝑥 ⊆ (Base‘𝑊)) |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → 𝑥 ⊆ (Base‘𝑊)) |
14 | 7, 8, 1 | ocvlss 20789 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ (Base‘𝑊)) → ((ocv‘𝑊)‘𝑥) ∈ (LSubSp‘𝑊)) |
15 | 13, 14 | syldan 590 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → ((ocv‘𝑊)‘𝑥) ∈ (LSubSp‘𝑊)) |
16 | 8, 1, 3 | ocvin 20791 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ (LSubSp‘𝑊)) → (𝑥 ∩ ((ocv‘𝑊)‘𝑥)) = {(0g‘𝑊)}) |
17 | 11, 16 | syldan 590 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑥 ∩ ((ocv‘𝑊)‘𝑥)) = {(0g‘𝑊)}) |
18 | 1, 2, 3, 4, 6, 11, 15, 17 | pj1lmhm 20277 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑥(proj1‘𝑊)((ocv‘𝑊)‘𝑥)) ∈ ((𝑊 ↾s (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥))) LMHom 𝑊)) |
19 | 10 | simplbda 499 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥)) = (Base‘𝑊)) |
20 | 19 | oveq2d 7271 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑊 ↾s (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥))) = (𝑊 ↾s (Base‘𝑊))) |
21 | 7 | ressid 16880 | . . . . . 6 ⊢ (𝑊 ∈ PreHil → (𝑊 ↾s (Base‘𝑊)) = 𝑊) |
22 | 21 | adantr 480 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑊 ↾s (Base‘𝑊)) = 𝑊) |
23 | 20, 22 | eqtrd 2778 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑊 ↾s (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥))) = 𝑊) |
24 | 23 | oveq1d 7270 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → ((𝑊 ↾s (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥))) LMHom 𝑊) = (𝑊 LMHom 𝑊)) |
25 | 18, 24 | eleqtrd 2841 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑥(proj1‘𝑊)((ocv‘𝑊)‘𝑥)) ∈ (𝑊 LMHom 𝑊)) |
26 | 8, 4, 9 | pjfval2 20826 | . 2 ⊢ 𝐾 = (𝑥 ∈ dom 𝐾 ↦ (𝑥(proj1‘𝑊)((ocv‘𝑊)‘𝑥))) |
27 | 25, 26 | fmptd 6970 | 1 ⊢ (𝑊 ∈ PreHil → 𝐾:dom 𝐾⟶(𝑊 LMHom 𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∩ cin 3882 ⊆ wss 3883 {csn 4558 dom cdm 5580 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 ↾s cress 16867 0gc0g 17067 LSSumclsm 19154 proj1cpj1 19155 LModclmod 20038 LSubSpclss 20108 LMHom clmhm 20196 PreHilcphl 20741 ocvcocv 20777 projcpj 20817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-sca 16904 df-vsca 16905 df-ip 16906 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-ghm 18747 df-cntz 18838 df-lsm 19156 df-pj1 19157 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-lmod 20040 df-lss 20109 df-lmhm 20199 df-lvec 20280 df-sra 20349 df-rgmod 20350 df-phl 20743 df-ocv 20780 df-pj 20820 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |