![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pjff | Structured version Visualization version GIF version |
Description: A projection is a linear operator. (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
pjf.k | ⊢ 𝐾 = (proj‘𝑊) |
Ref | Expression |
---|---|
pjff | ⊢ (𝑊 ∈ PreHil → 𝐾:dom 𝐾⟶(𝑊 LMHom 𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2777 | . . . 4 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
2 | eqid 2777 | . . . 4 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
3 | eqid 2777 | . . . 4 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
4 | eqid 2777 | . . . 4 ⊢ (proj1‘𝑊) = (proj1‘𝑊) | |
5 | phllmod 20373 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
6 | 5 | adantr 474 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → 𝑊 ∈ LMod) |
7 | eqid 2777 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
8 | eqid 2777 | . . . . . 6 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
9 | pjf.k | . . . . . 6 ⊢ 𝐾 = (proj‘𝑊) | |
10 | 7, 1, 8, 2, 9 | pjdm2 20454 | . . . . 5 ⊢ (𝑊 ∈ PreHil → (𝑥 ∈ dom 𝐾 ↔ (𝑥 ∈ (LSubSp‘𝑊) ∧ (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥)) = (Base‘𝑊)))) |
11 | 10 | simprbda 494 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → 𝑥 ∈ (LSubSp‘𝑊)) |
12 | 7, 1 | lssss 19329 | . . . . . 6 ⊢ (𝑥 ∈ (LSubSp‘𝑊) → 𝑥 ⊆ (Base‘𝑊)) |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → 𝑥 ⊆ (Base‘𝑊)) |
14 | 7, 8, 1 | ocvlss 20415 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ⊆ (Base‘𝑊)) → ((ocv‘𝑊)‘𝑥) ∈ (LSubSp‘𝑊)) |
15 | 13, 14 | syldan 585 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → ((ocv‘𝑊)‘𝑥) ∈ (LSubSp‘𝑊)) |
16 | 8, 1, 3 | ocvin 20417 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ (LSubSp‘𝑊)) → (𝑥 ∩ ((ocv‘𝑊)‘𝑥)) = {(0g‘𝑊)}) |
17 | 11, 16 | syldan 585 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑥 ∩ ((ocv‘𝑊)‘𝑥)) = {(0g‘𝑊)}) |
18 | 1, 2, 3, 4, 6, 11, 15, 17 | pj1lmhm 19495 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑥(proj1‘𝑊)((ocv‘𝑊)‘𝑥)) ∈ ((𝑊 ↾s (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥))) LMHom 𝑊)) |
19 | 10 | simplbda 495 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥)) = (Base‘𝑊)) |
20 | 19 | oveq2d 6938 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑊 ↾s (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥))) = (𝑊 ↾s (Base‘𝑊))) |
21 | 7 | ressid 16331 | . . . . . 6 ⊢ (𝑊 ∈ PreHil → (𝑊 ↾s (Base‘𝑊)) = 𝑊) |
22 | 21 | adantr 474 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑊 ↾s (Base‘𝑊)) = 𝑊) |
23 | 20, 22 | eqtrd 2813 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑊 ↾s (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥))) = 𝑊) |
24 | 23 | oveq1d 6937 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → ((𝑊 ↾s (𝑥(LSSum‘𝑊)((ocv‘𝑊)‘𝑥))) LMHom 𝑊) = (𝑊 LMHom 𝑊)) |
25 | 18, 24 | eleqtrd 2860 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑥 ∈ dom 𝐾) → (𝑥(proj1‘𝑊)((ocv‘𝑊)‘𝑥)) ∈ (𝑊 LMHom 𝑊)) |
26 | 8, 4, 9 | pjfval2 20452 | . 2 ⊢ 𝐾 = (𝑥 ∈ dom 𝐾 ↦ (𝑥(proj1‘𝑊)((ocv‘𝑊)‘𝑥))) |
27 | 25, 26 | fmptd 6648 | 1 ⊢ (𝑊 ∈ PreHil → 𝐾:dom 𝐾⟶(𝑊 LMHom 𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2106 ∩ cin 3790 ⊆ wss 3791 {csn 4397 dom cdm 5355 ⟶wf 6131 ‘cfv 6135 (class class class)co 6922 Basecbs 16255 ↾s cress 16256 0gc0g 16486 LSSumclsm 18433 proj1cpj1 18434 LModclmod 19255 LSubSpclss 19324 LMHom clmhm 19414 PreHilcphl 20367 ocvcocv 20403 projcpj 20443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-er 8026 df-map 8142 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-7 11443 df-8 11444 df-ndx 16258 df-slot 16259 df-base 16261 df-sets 16262 df-ress 16263 df-plusg 16351 df-sca 16354 df-vsca 16355 df-ip 16356 df-0g 16488 df-mgm 17628 df-sgrp 17670 df-mnd 17681 df-submnd 17722 df-grp 17812 df-minusg 17813 df-sbg 17814 df-subg 17975 df-ghm 18042 df-cntz 18133 df-lsm 18435 df-pj1 18436 df-cmn 18581 df-abl 18582 df-mgp 18877 df-ur 18889 df-ring 18936 df-lmod 19257 df-lss 19325 df-lmhm 19417 df-lvec 19498 df-sra 19569 df-rgmod 19570 df-phl 20369 df-ocv 20406 df-pj 20446 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |