![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pjff | Structured version Visualization version GIF version |
Description: A projection is a linear operator. (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
pjf.k | β’ πΎ = (projβπ) |
Ref | Expression |
---|---|
pjff | β’ (π β PreHil β πΎ:dom πΎβΆ(π LMHom π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . 4 β’ (LSubSpβπ) = (LSubSpβπ) | |
2 | eqid 2732 | . . . 4 β’ (LSSumβπ) = (LSSumβπ) | |
3 | eqid 2732 | . . . 4 β’ (0gβπ) = (0gβπ) | |
4 | eqid 2732 | . . . 4 β’ (proj1βπ) = (proj1βπ) | |
5 | phllmod 21174 | . . . . 5 β’ (π β PreHil β π β LMod) | |
6 | 5 | adantr 481 | . . . 4 β’ ((π β PreHil β§ π₯ β dom πΎ) β π β LMod) |
7 | eqid 2732 | . . . . . 6 β’ (Baseβπ) = (Baseβπ) | |
8 | eqid 2732 | . . . . . 6 β’ (ocvβπ) = (ocvβπ) | |
9 | pjf.k | . . . . . 6 β’ πΎ = (projβπ) | |
10 | 7, 1, 8, 2, 9 | pjdm2 21257 | . . . . 5 β’ (π β PreHil β (π₯ β dom πΎ β (π₯ β (LSubSpβπ) β§ (π₯(LSSumβπ)((ocvβπ)βπ₯)) = (Baseβπ)))) |
11 | 10 | simprbda 499 | . . . 4 β’ ((π β PreHil β§ π₯ β dom πΎ) β π₯ β (LSubSpβπ)) |
12 | 7, 1 | lssss 20539 | . . . . . 6 β’ (π₯ β (LSubSpβπ) β π₯ β (Baseβπ)) |
13 | 11, 12 | syl 17 | . . . . 5 β’ ((π β PreHil β§ π₯ β dom πΎ) β π₯ β (Baseβπ)) |
14 | 7, 8, 1 | ocvlss 21216 | . . . . 5 β’ ((π β PreHil β§ π₯ β (Baseβπ)) β ((ocvβπ)βπ₯) β (LSubSpβπ)) |
15 | 13, 14 | syldan 591 | . . . 4 β’ ((π β PreHil β§ π₯ β dom πΎ) β ((ocvβπ)βπ₯) β (LSubSpβπ)) |
16 | 8, 1, 3 | ocvin 21218 | . . . . 5 β’ ((π β PreHil β§ π₯ β (LSubSpβπ)) β (π₯ β© ((ocvβπ)βπ₯)) = {(0gβπ)}) |
17 | 11, 16 | syldan 591 | . . . 4 β’ ((π β PreHil β§ π₯ β dom πΎ) β (π₯ β© ((ocvβπ)βπ₯)) = {(0gβπ)}) |
18 | 1, 2, 3, 4, 6, 11, 15, 17 | pj1lmhm 20703 | . . 3 β’ ((π β PreHil β§ π₯ β dom πΎ) β (π₯(proj1βπ)((ocvβπ)βπ₯)) β ((π βΎs (π₯(LSSumβπ)((ocvβπ)βπ₯))) LMHom π)) |
19 | 10 | simplbda 500 | . . . . . 6 β’ ((π β PreHil β§ π₯ β dom πΎ) β (π₯(LSSumβπ)((ocvβπ)βπ₯)) = (Baseβπ)) |
20 | 19 | oveq2d 7421 | . . . . 5 β’ ((π β PreHil β§ π₯ β dom πΎ) β (π βΎs (π₯(LSSumβπ)((ocvβπ)βπ₯))) = (π βΎs (Baseβπ))) |
21 | 7 | ressid 17185 | . . . . . 6 β’ (π β PreHil β (π βΎs (Baseβπ)) = π) |
22 | 21 | adantr 481 | . . . . 5 β’ ((π β PreHil β§ π₯ β dom πΎ) β (π βΎs (Baseβπ)) = π) |
23 | 20, 22 | eqtrd 2772 | . . . 4 β’ ((π β PreHil β§ π₯ β dom πΎ) β (π βΎs (π₯(LSSumβπ)((ocvβπ)βπ₯))) = π) |
24 | 23 | oveq1d 7420 | . . 3 β’ ((π β PreHil β§ π₯ β dom πΎ) β ((π βΎs (π₯(LSSumβπ)((ocvβπ)βπ₯))) LMHom π) = (π LMHom π)) |
25 | 18, 24 | eleqtrd 2835 | . 2 β’ ((π β PreHil β§ π₯ β dom πΎ) β (π₯(proj1βπ)((ocvβπ)βπ₯)) β (π LMHom π)) |
26 | 8, 4, 9 | pjfval2 21255 | . 2 β’ πΎ = (π₯ β dom πΎ β¦ (π₯(proj1βπ)((ocvβπ)βπ₯))) |
27 | 25, 26 | fmptd 7110 | 1 β’ (π β PreHil β πΎ:dom πΎβΆ(π LMHom π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β© cin 3946 β wss 3947 {csn 4627 dom cdm 5675 βΆwf 6536 βcfv 6540 (class class class)co 7405 Basecbs 17140 βΎs cress 17169 0gc0g 17381 LSSumclsm 19496 proj1cpj1 19497 LModclmod 20463 LSubSpclss 20534 LMHom clmhm 20622 PreHilcphl 21168 ocvcocv 21204 projcpj 21246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-sca 17209 df-vsca 17210 df-ip 17211 df-0g 17383 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-submnd 18668 df-grp 18818 df-minusg 18819 df-sbg 18820 df-subg 18997 df-ghm 19084 df-cntz 19175 df-lsm 19498 df-pj1 19499 df-cmn 19644 df-abl 19645 df-mgp 19982 df-ur 19999 df-ring 20051 df-lmod 20465 df-lss 20535 df-lmhm 20625 df-lvec 20706 df-sra 20777 df-rgmod 20778 df-phl 21170 df-ocv 21207 df-pj 21249 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |