MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjf2 Structured version   Visualization version   GIF version

Theorem pjf2 21621
Description: A projection is a function from the base set to the subspace. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
pjf.k 𝐾 = (proj‘𝑊)
pjf.v 𝑉 = (Base‘𝑊)
Assertion
Ref Expression
pjf2 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾𝑇):𝑉𝑇)

Proof of Theorem pjf2
StepHypRef Expression
1 eqid 2729 . . 3 (+g𝑊) = (+g𝑊)
2 eqid 2729 . . 3 (LSSum‘𝑊) = (LSSum‘𝑊)
3 eqid 2729 . . 3 (0g𝑊) = (0g𝑊)
4 eqid 2729 . . 3 (Cntz‘𝑊) = (Cntz‘𝑊)
5 phllmod 21537 . . . . . 6 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
65adantr 480 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑊 ∈ LMod)
7 eqid 2729 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
87lsssssubg 20861 . . . . 5 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
96, 8syl 17 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
10 pjf.v . . . . . 6 𝑉 = (Base‘𝑊)
11 eqid 2729 . . . . . 6 (ocv‘𝑊) = (ocv‘𝑊)
12 pjf.k . . . . . 6 𝐾 = (proj‘𝑊)
1310, 7, 11, 2, 12pjdm2 21618 . . . . 5 (𝑊 ∈ PreHil → (𝑇 ∈ dom 𝐾 ↔ (𝑇 ∈ (LSubSp‘𝑊) ∧ (𝑇(LSSum‘𝑊)((ocv‘𝑊)‘𝑇)) = 𝑉)))
1413simprbda 498 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ∈ (LSubSp‘𝑊))
159, 14sseldd 3936 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ∈ (SubGrp‘𝑊))
1610, 7lssss 20839 . . . . . 6 (𝑇 ∈ (LSubSp‘𝑊) → 𝑇𝑉)
1714, 16syl 17 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇𝑉)
1810, 11, 7ocvlss 21579 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑇𝑉) → ((ocv‘𝑊)‘𝑇) ∈ (LSubSp‘𝑊))
1917, 18syldan 591 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ((ocv‘𝑊)‘𝑇) ∈ (LSubSp‘𝑊))
209, 19sseldd 3936 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ((ocv‘𝑊)‘𝑇) ∈ (SubGrp‘𝑊))
2111, 7, 3ocvin 21581 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ (LSubSp‘𝑊)) → (𝑇 ∩ ((ocv‘𝑊)‘𝑇)) = {(0g𝑊)})
2214, 21syldan 591 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑇 ∩ ((ocv‘𝑊)‘𝑇)) = {(0g𝑊)})
23 lmodabl 20812 . . . . 5 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
246, 23syl 17 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑊 ∈ Abel)
254, 24, 15, 20ablcntzd 19736 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ⊆ ((Cntz‘𝑊)‘((ocv‘𝑊)‘𝑇)))
26 eqid 2729 . . 3 (proj1𝑊) = (proj1𝑊)
271, 2, 3, 4, 15, 20, 22, 25, 26pj1f 19576 . 2 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑇(proj1𝑊)((ocv‘𝑊)‘𝑇)):(𝑇(LSSum‘𝑊)((ocv‘𝑊)‘𝑇))⟶𝑇)
2811, 26, 12pjval 21617 . . . . 5 (𝑇 ∈ dom 𝐾 → (𝐾𝑇) = (𝑇(proj1𝑊)((ocv‘𝑊)‘𝑇)))
2928adantl 481 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾𝑇) = (𝑇(proj1𝑊)((ocv‘𝑊)‘𝑇)))
3029eqcomd 2735 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑇(proj1𝑊)((ocv‘𝑊)‘𝑇)) = (𝐾𝑇))
3113simplbda 499 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑇(LSSum‘𝑊)((ocv‘𝑊)‘𝑇)) = 𝑉)
3230, 31feq12d 6640 . 2 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ((𝑇(proj1𝑊)((ocv‘𝑊)‘𝑇)):(𝑇(LSSum‘𝑊)((ocv‘𝑊)‘𝑇))⟶𝑇 ↔ (𝐾𝑇):𝑉𝑇))
3327, 32mpbid 232 1 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾𝑇):𝑉𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cin 3902  wss 3903  {csn 4577  dom cdm 5619  wf 6478  cfv 6482  (class class class)co 7349  Basecbs 17120  +gcplusg 17161  0gc0g 17343  SubGrpcsubg 18999  Cntzccntz 19194  LSSumclsm 19513  proj1cpj1 19514  Abelcabl 19660  LModclmod 20763  LSubSpclss 20834  PreHilcphl 21531  ocvcocv 21567  projcpj 21607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-sca 17177  df-vsca 17178  df-ip 17179  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-sbg 18817  df-subg 19002  df-ghm 19092  df-cntz 19196  df-lsm 19515  df-pj1 19516  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-lmod 20765  df-lss 20835  df-lmhm 20926  df-lvec 21007  df-sra 21077  df-rgmod 21078  df-phl 21533  df-ocv 21570  df-pj 21610
This theorem is referenced by:  pjfo  21622
  Copyright terms: Public domain W3C validator