MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjf2 Structured version   Visualization version   GIF version

Theorem pjf2 21623
Description: A projection is a function from the base set to the subspace. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
pjf.k 𝐾 = (proj‘𝑊)
pjf.v 𝑉 = (Base‘𝑊)
Assertion
Ref Expression
pjf2 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾𝑇):𝑉𝑇)

Proof of Theorem pjf2
StepHypRef Expression
1 eqid 2729 . . 3 (+g𝑊) = (+g𝑊)
2 eqid 2729 . . 3 (LSSum‘𝑊) = (LSSum‘𝑊)
3 eqid 2729 . . 3 (0g𝑊) = (0g𝑊)
4 eqid 2729 . . 3 (Cntz‘𝑊) = (Cntz‘𝑊)
5 phllmod 21539 . . . . . 6 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
65adantr 480 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑊 ∈ LMod)
7 eqid 2729 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
87lsssssubg 20864 . . . . 5 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
96, 8syl 17 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
10 pjf.v . . . . . 6 𝑉 = (Base‘𝑊)
11 eqid 2729 . . . . . 6 (ocv‘𝑊) = (ocv‘𝑊)
12 pjf.k . . . . . 6 𝐾 = (proj‘𝑊)
1310, 7, 11, 2, 12pjdm2 21620 . . . . 5 (𝑊 ∈ PreHil → (𝑇 ∈ dom 𝐾 ↔ (𝑇 ∈ (LSubSp‘𝑊) ∧ (𝑇(LSSum‘𝑊)((ocv‘𝑊)‘𝑇)) = 𝑉)))
1413simprbda 498 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ∈ (LSubSp‘𝑊))
159, 14sseldd 3947 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ∈ (SubGrp‘𝑊))
1610, 7lssss 20842 . . . . . 6 (𝑇 ∈ (LSubSp‘𝑊) → 𝑇𝑉)
1714, 16syl 17 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇𝑉)
1810, 11, 7ocvlss 21581 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑇𝑉) → ((ocv‘𝑊)‘𝑇) ∈ (LSubSp‘𝑊))
1917, 18syldan 591 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ((ocv‘𝑊)‘𝑇) ∈ (LSubSp‘𝑊))
209, 19sseldd 3947 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ((ocv‘𝑊)‘𝑇) ∈ (SubGrp‘𝑊))
2111, 7, 3ocvin 21583 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ (LSubSp‘𝑊)) → (𝑇 ∩ ((ocv‘𝑊)‘𝑇)) = {(0g𝑊)})
2214, 21syldan 591 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑇 ∩ ((ocv‘𝑊)‘𝑇)) = {(0g𝑊)})
23 lmodabl 20815 . . . . 5 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
246, 23syl 17 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑊 ∈ Abel)
254, 24, 15, 20ablcntzd 19787 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ⊆ ((Cntz‘𝑊)‘((ocv‘𝑊)‘𝑇)))
26 eqid 2729 . . 3 (proj1𝑊) = (proj1𝑊)
271, 2, 3, 4, 15, 20, 22, 25, 26pj1f 19627 . 2 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑇(proj1𝑊)((ocv‘𝑊)‘𝑇)):(𝑇(LSSum‘𝑊)((ocv‘𝑊)‘𝑇))⟶𝑇)
2811, 26, 12pjval 21619 . . . . 5 (𝑇 ∈ dom 𝐾 → (𝐾𝑇) = (𝑇(proj1𝑊)((ocv‘𝑊)‘𝑇)))
2928adantl 481 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾𝑇) = (𝑇(proj1𝑊)((ocv‘𝑊)‘𝑇)))
3029eqcomd 2735 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑇(proj1𝑊)((ocv‘𝑊)‘𝑇)) = (𝐾𝑇))
3113simplbda 499 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑇(LSSum‘𝑊)((ocv‘𝑊)‘𝑇)) = 𝑉)
3230, 31feq12d 6676 . 2 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ((𝑇(proj1𝑊)((ocv‘𝑊)‘𝑇)):(𝑇(LSSum‘𝑊)((ocv‘𝑊)‘𝑇))⟶𝑇 ↔ (𝐾𝑇):𝑉𝑇))
3327, 32mpbid 232 1 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾𝑇):𝑉𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cin 3913  wss 3914  {csn 4589  dom cdm 5638  wf 6507  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  0gc0g 17402  SubGrpcsubg 19052  Cntzccntz 19247  LSSumclsm 19564  proj1cpj1 19565  Abelcabl 19711  LModclmod 20766  LSubSpclss 20837  PreHilcphl 21533  ocvcocv 21569  projcpj 21609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-sca 17236  df-vsca 17237  df-ip 17238  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-ghm 19145  df-cntz 19249  df-lsm 19566  df-pj1 19567  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-lmod 20768  df-lss 20838  df-lmhm 20929  df-lvec 21010  df-sra 21080  df-rgmod 21081  df-phl 21535  df-ocv 21572  df-pj 21612
This theorem is referenced by:  pjfo  21624
  Copyright terms: Public domain W3C validator