MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjf2 Structured version   Visualization version   GIF version

Theorem pjf2 20403
Description: A projection is a function from the base set to the subspace. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
pjf.k 𝐾 = (proj‘𝑊)
pjf.v 𝑉 = (Base‘𝑊)
Assertion
Ref Expression
pjf2 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾𝑇):𝑉𝑇)

Proof of Theorem pjf2
StepHypRef Expression
1 eqid 2798 . . 3 (+g𝑊) = (+g𝑊)
2 eqid 2798 . . 3 (LSSum‘𝑊) = (LSSum‘𝑊)
3 eqid 2798 . . 3 (0g𝑊) = (0g𝑊)
4 eqid 2798 . . 3 (Cntz‘𝑊) = (Cntz‘𝑊)
5 phllmod 20319 . . . . . 6 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
65adantr 484 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑊 ∈ LMod)
7 eqid 2798 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
87lsssssubg 19723 . . . . 5 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
96, 8syl 17 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
10 pjf.v . . . . . 6 𝑉 = (Base‘𝑊)
11 eqid 2798 . . . . . 6 (ocv‘𝑊) = (ocv‘𝑊)
12 pjf.k . . . . . 6 𝐾 = (proj‘𝑊)
1310, 7, 11, 2, 12pjdm2 20400 . . . . 5 (𝑊 ∈ PreHil → (𝑇 ∈ dom 𝐾 ↔ (𝑇 ∈ (LSubSp‘𝑊) ∧ (𝑇(LSSum‘𝑊)((ocv‘𝑊)‘𝑇)) = 𝑉)))
1413simprbda 502 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ∈ (LSubSp‘𝑊))
159, 14sseldd 3916 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ∈ (SubGrp‘𝑊))
1610, 7lssss 19701 . . . . . 6 (𝑇 ∈ (LSubSp‘𝑊) → 𝑇𝑉)
1714, 16syl 17 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇𝑉)
1810, 11, 7ocvlss 20361 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑇𝑉) → ((ocv‘𝑊)‘𝑇) ∈ (LSubSp‘𝑊))
1917, 18syldan 594 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ((ocv‘𝑊)‘𝑇) ∈ (LSubSp‘𝑊))
209, 19sseldd 3916 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ((ocv‘𝑊)‘𝑇) ∈ (SubGrp‘𝑊))
2111, 7, 3ocvin 20363 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ (LSubSp‘𝑊)) → (𝑇 ∩ ((ocv‘𝑊)‘𝑇)) = {(0g𝑊)})
2214, 21syldan 594 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑇 ∩ ((ocv‘𝑊)‘𝑇)) = {(0g𝑊)})
23 lmodabl 19674 . . . . 5 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
246, 23syl 17 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑊 ∈ Abel)
254, 24, 15, 20ablcntzd 18970 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ⊆ ((Cntz‘𝑊)‘((ocv‘𝑊)‘𝑇)))
26 eqid 2798 . . 3 (proj1𝑊) = (proj1𝑊)
271, 2, 3, 4, 15, 20, 22, 25, 26pj1f 18815 . 2 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑇(proj1𝑊)((ocv‘𝑊)‘𝑇)):(𝑇(LSSum‘𝑊)((ocv‘𝑊)‘𝑇))⟶𝑇)
2811, 26, 12pjval 20399 . . . . 5 (𝑇 ∈ dom 𝐾 → (𝐾𝑇) = (𝑇(proj1𝑊)((ocv‘𝑊)‘𝑇)))
2928adantl 485 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾𝑇) = (𝑇(proj1𝑊)((ocv‘𝑊)‘𝑇)))
3029eqcomd 2804 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑇(proj1𝑊)((ocv‘𝑊)‘𝑇)) = (𝐾𝑇))
3113simplbda 503 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑇(LSSum‘𝑊)((ocv‘𝑊)‘𝑇)) = 𝑉)
3230, 31feq12d 6475 . 2 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ((𝑇(proj1𝑊)((ocv‘𝑊)‘𝑇)):(𝑇(LSSum‘𝑊)((ocv‘𝑊)‘𝑇))⟶𝑇 ↔ (𝐾𝑇):𝑉𝑇))
3327, 32mpbid 235 1 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾𝑇):𝑉𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  cin 3880  wss 3881  {csn 4525  dom cdm 5519  wf 6320  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  0gc0g 16705  SubGrpcsubg 18265  Cntzccntz 18437  LSSumclsm 18751  proj1cpj1 18752  Abelcabl 18899  LModclmod 19627  LSubSpclss 19696  PreHilcphl 20313  ocvcocv 20349  projcpj 20389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-sca 16573  df-vsca 16574  df-ip 16575  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-ghm 18348  df-cntz 18439  df-lsm 18753  df-pj1 18754  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-lmod 19629  df-lss 19697  df-lmhm 19787  df-lvec 19868  df-sra 19937  df-rgmod 19938  df-phl 20315  df-ocv 20352  df-pj 20392
This theorem is referenced by:  pjfo  20404
  Copyright terms: Public domain W3C validator