| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pjf2 | Structured version Visualization version GIF version | ||
| Description: A projection is a function from the base set to the subspace. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| Ref | Expression |
|---|---|
| pjf.k | ⊢ 𝐾 = (proj‘𝑊) |
| pjf.v | ⊢ 𝑉 = (Base‘𝑊) |
| Ref | Expression |
|---|---|
| pjf2 | ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾‘𝑇):𝑉⟶𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 2 | eqid 2729 | . . 3 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
| 3 | eqid 2729 | . . 3 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 4 | eqid 2729 | . . 3 ⊢ (Cntz‘𝑊) = (Cntz‘𝑊) | |
| 5 | phllmod 21537 | . . . . . 6 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑊 ∈ LMod) |
| 7 | eqid 2729 | . . . . . 6 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 8 | 7 | lsssssubg 20861 | . . . . 5 ⊢ (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊)) |
| 9 | 6, 8 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊)) |
| 10 | pjf.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 11 | eqid 2729 | . . . . . 6 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
| 12 | pjf.k | . . . . . 6 ⊢ 𝐾 = (proj‘𝑊) | |
| 13 | 10, 7, 11, 2, 12 | pjdm2 21618 | . . . . 5 ⊢ (𝑊 ∈ PreHil → (𝑇 ∈ dom 𝐾 ↔ (𝑇 ∈ (LSubSp‘𝑊) ∧ (𝑇(LSSum‘𝑊)((ocv‘𝑊)‘𝑇)) = 𝑉))) |
| 14 | 13 | simprbda 498 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ∈ (LSubSp‘𝑊)) |
| 15 | 9, 14 | sseldd 3936 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ∈ (SubGrp‘𝑊)) |
| 16 | 10, 7 | lssss 20839 | . . . . . 6 ⊢ (𝑇 ∈ (LSubSp‘𝑊) → 𝑇 ⊆ 𝑉) |
| 17 | 14, 16 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ⊆ 𝑉) |
| 18 | 10, 11, 7 | ocvlss 21579 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ⊆ 𝑉) → ((ocv‘𝑊)‘𝑇) ∈ (LSubSp‘𝑊)) |
| 19 | 17, 18 | syldan 591 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ((ocv‘𝑊)‘𝑇) ∈ (LSubSp‘𝑊)) |
| 20 | 9, 19 | sseldd 3936 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ((ocv‘𝑊)‘𝑇) ∈ (SubGrp‘𝑊)) |
| 21 | 11, 7, 3 | ocvin 21581 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ (LSubSp‘𝑊)) → (𝑇 ∩ ((ocv‘𝑊)‘𝑇)) = {(0g‘𝑊)}) |
| 22 | 14, 21 | syldan 591 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑇 ∩ ((ocv‘𝑊)‘𝑇)) = {(0g‘𝑊)}) |
| 23 | lmodabl 20812 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
| 24 | 6, 23 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑊 ∈ Abel) |
| 25 | 4, 24, 15, 20 | ablcntzd 19736 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ⊆ ((Cntz‘𝑊)‘((ocv‘𝑊)‘𝑇))) |
| 26 | eqid 2729 | . . 3 ⊢ (proj1‘𝑊) = (proj1‘𝑊) | |
| 27 | 1, 2, 3, 4, 15, 20, 22, 25, 26 | pj1f 19576 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇)):(𝑇(LSSum‘𝑊)((ocv‘𝑊)‘𝑇))⟶𝑇) |
| 28 | 11, 26, 12 | pjval 21617 | . . . . 5 ⊢ (𝑇 ∈ dom 𝐾 → (𝐾‘𝑇) = (𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇))) |
| 29 | 28 | adantl 481 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾‘𝑇) = (𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇))) |
| 30 | 29 | eqcomd 2735 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇)) = (𝐾‘𝑇)) |
| 31 | 13 | simplbda 499 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑇(LSSum‘𝑊)((ocv‘𝑊)‘𝑇)) = 𝑉) |
| 32 | 30, 31 | feq12d 6640 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ((𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇)):(𝑇(LSSum‘𝑊)((ocv‘𝑊)‘𝑇))⟶𝑇 ↔ (𝐾‘𝑇):𝑉⟶𝑇)) |
| 33 | 27, 32 | mpbid 232 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾‘𝑇):𝑉⟶𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3902 ⊆ wss 3903 {csn 4577 dom cdm 5619 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 +gcplusg 17161 0gc0g 17343 SubGrpcsubg 18999 Cntzccntz 19194 LSSumclsm 19513 proj1cpj1 19514 Abelcabl 19660 LModclmod 20763 LSubSpclss 20834 PreHilcphl 21531 ocvcocv 21567 projcpj 21607 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-sca 17177 df-vsca 17178 df-ip 17179 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-sbg 18817 df-subg 19002 df-ghm 19092 df-cntz 19196 df-lsm 19515 df-pj1 19516 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-lmod 20765 df-lss 20835 df-lmhm 20926 df-lvec 21007 df-sra 21077 df-rgmod 21078 df-phl 21533 df-ocv 21570 df-pj 21610 |
| This theorem is referenced by: pjfo 21622 |
| Copyright terms: Public domain | W3C validator |