MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjf2 Structured version   Visualization version   GIF version

Theorem pjf2 20275
Description: A projection is a function from the base set to the subspace. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
pjf.k 𝐾 = (proj‘𝑊)
pjf.v 𝑉 = (Base‘𝑊)
Assertion
Ref Expression
pjf2 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾𝑇):𝑉𝑇)

Proof of Theorem pjf2
StepHypRef Expression
1 eqid 2771 . . 3 (+g𝑊) = (+g𝑊)
2 eqid 2771 . . 3 (LSSum‘𝑊) = (LSSum‘𝑊)
3 eqid 2771 . . 3 (0g𝑊) = (0g𝑊)
4 eqid 2771 . . 3 (Cntz‘𝑊) = (Cntz‘𝑊)
5 phllmod 20192 . . . . . 6 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
65adantr 466 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑊 ∈ LMod)
7 eqid 2771 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
87lsssssubg 19171 . . . . 5 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
96, 8syl 17 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
10 pjf.v . . . . . 6 𝑉 = (Base‘𝑊)
11 eqid 2771 . . . . . 6 (ocv‘𝑊) = (ocv‘𝑊)
12 pjf.k . . . . . 6 𝐾 = (proj‘𝑊)
1310, 7, 11, 2, 12pjdm2 20272 . . . . 5 (𝑊 ∈ PreHil → (𝑇 ∈ dom 𝐾 ↔ (𝑇 ∈ (LSubSp‘𝑊) ∧ (𝑇(LSSum‘𝑊)((ocv‘𝑊)‘𝑇)) = 𝑉)))
1413simprbda 486 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ∈ (LSubSp‘𝑊))
159, 14sseldd 3753 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ∈ (SubGrp‘𝑊))
1610, 7lssss 19147 . . . . . 6 (𝑇 ∈ (LSubSp‘𝑊) → 𝑇𝑉)
1714, 16syl 17 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇𝑉)
1810, 11, 7ocvlss 20233 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑇𝑉) → ((ocv‘𝑊)‘𝑇) ∈ (LSubSp‘𝑊))
1917, 18syldan 579 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ((ocv‘𝑊)‘𝑇) ∈ (LSubSp‘𝑊))
209, 19sseldd 3753 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ((ocv‘𝑊)‘𝑇) ∈ (SubGrp‘𝑊))
2111, 7, 3ocvin 20235 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ (LSubSp‘𝑊)) → (𝑇 ∩ ((ocv‘𝑊)‘𝑇)) = {(0g𝑊)})
2214, 21syldan 579 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑇 ∩ ((ocv‘𝑊)‘𝑇)) = {(0g𝑊)})
23 lmodabl 19120 . . . . 5 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
246, 23syl 17 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑊 ∈ Abel)
254, 24, 15, 20ablcntzd 18467 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ⊆ ((Cntz‘𝑊)‘((ocv‘𝑊)‘𝑇)))
26 eqid 2771 . . 3 (proj1𝑊) = (proj1𝑊)
271, 2, 3, 4, 15, 20, 22, 25, 26pj1f 18317 . 2 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑇(proj1𝑊)((ocv‘𝑊)‘𝑇)):(𝑇(LSSum‘𝑊)((ocv‘𝑊)‘𝑇))⟶𝑇)
2811, 26, 12pjval 20271 . . . . 5 (𝑇 ∈ dom 𝐾 → (𝐾𝑇) = (𝑇(proj1𝑊)((ocv‘𝑊)‘𝑇)))
2928adantl 467 . . . 4 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾𝑇) = (𝑇(proj1𝑊)((ocv‘𝑊)‘𝑇)))
3029eqcomd 2777 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑇(proj1𝑊)((ocv‘𝑊)‘𝑇)) = (𝐾𝑇))
3113simplbda 487 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑇(LSSum‘𝑊)((ocv‘𝑊)‘𝑇)) = 𝑉)
3230, 31feq12d 6173 . 2 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ((𝑇(proj1𝑊)((ocv‘𝑊)‘𝑇)):(𝑇(LSSum‘𝑊)((ocv‘𝑊)‘𝑇))⟶𝑇 ↔ (𝐾𝑇):𝑉𝑇))
3327, 32mpbid 222 1 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾𝑇):𝑉𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  cin 3722  wss 3723  {csn 4316  dom cdm 5249  wf 6027  cfv 6031  (class class class)co 6793  Basecbs 16064  +gcplusg 16149  0gc0g 16308  SubGrpcsubg 17796  Cntzccntz 17955  LSSumclsm 18256  proj1cpj1 18257  Abelcabl 18401  LModclmod 19073  LSubSpclss 19142  PreHilcphl 20186  ocvcocv 20221  projcpj 20261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-sca 16165  df-vsca 16166  df-ip 16167  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-minusg 17634  df-sbg 17635  df-subg 17799  df-ghm 17866  df-cntz 17957  df-lsm 18258  df-pj1 18259  df-cmn 18402  df-abl 18403  df-mgp 18698  df-ur 18710  df-ring 18757  df-lmod 19075  df-lss 19143  df-lmhm 19235  df-lvec 19316  df-sra 19387  df-rgmod 19388  df-phl 20188  df-ocv 20224  df-pj 20264
This theorem is referenced by:  pjfo  20276
  Copyright terms: Public domain W3C validator