| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pjf2 | Structured version Visualization version GIF version | ||
| Description: A projection is a function from the base set to the subspace. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| Ref | Expression |
|---|---|
| pjf.k | ⊢ 𝐾 = (proj‘𝑊) |
| pjf.v | ⊢ 𝑉 = (Base‘𝑊) |
| Ref | Expression |
|---|---|
| pjf2 | ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾‘𝑇):𝑉⟶𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 2 | eqid 2731 | . . 3 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
| 3 | eqid 2731 | . . 3 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 4 | eqid 2731 | . . 3 ⊢ (Cntz‘𝑊) = (Cntz‘𝑊) | |
| 5 | phllmod 21562 | . . . . . 6 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑊 ∈ LMod) |
| 7 | eqid 2731 | . . . . . 6 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 8 | 7 | lsssssubg 20886 | . . . . 5 ⊢ (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊)) |
| 9 | 6, 8 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊)) |
| 10 | pjf.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 11 | eqid 2731 | . . . . . 6 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
| 12 | pjf.k | . . . . . 6 ⊢ 𝐾 = (proj‘𝑊) | |
| 13 | 10, 7, 11, 2, 12 | pjdm2 21643 | . . . . 5 ⊢ (𝑊 ∈ PreHil → (𝑇 ∈ dom 𝐾 ↔ (𝑇 ∈ (LSubSp‘𝑊) ∧ (𝑇(LSSum‘𝑊)((ocv‘𝑊)‘𝑇)) = 𝑉))) |
| 14 | 13 | simprbda 498 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ∈ (LSubSp‘𝑊)) |
| 15 | 9, 14 | sseldd 3930 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ∈ (SubGrp‘𝑊)) |
| 16 | 10, 7 | lssss 20864 | . . . . . 6 ⊢ (𝑇 ∈ (LSubSp‘𝑊) → 𝑇 ⊆ 𝑉) |
| 17 | 14, 16 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ⊆ 𝑉) |
| 18 | 10, 11, 7 | ocvlss 21604 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ⊆ 𝑉) → ((ocv‘𝑊)‘𝑇) ∈ (LSubSp‘𝑊)) |
| 19 | 17, 18 | syldan 591 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ((ocv‘𝑊)‘𝑇) ∈ (LSubSp‘𝑊)) |
| 20 | 9, 19 | sseldd 3930 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ((ocv‘𝑊)‘𝑇) ∈ (SubGrp‘𝑊)) |
| 21 | 11, 7, 3 | ocvin 21606 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ (LSubSp‘𝑊)) → (𝑇 ∩ ((ocv‘𝑊)‘𝑇)) = {(0g‘𝑊)}) |
| 22 | 14, 21 | syldan 591 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑇 ∩ ((ocv‘𝑊)‘𝑇)) = {(0g‘𝑊)}) |
| 23 | lmodabl 20837 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
| 24 | 6, 23 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑊 ∈ Abel) |
| 25 | 4, 24, 15, 20 | ablcntzd 19764 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ⊆ ((Cntz‘𝑊)‘((ocv‘𝑊)‘𝑇))) |
| 26 | eqid 2731 | . . 3 ⊢ (proj1‘𝑊) = (proj1‘𝑊) | |
| 27 | 1, 2, 3, 4, 15, 20, 22, 25, 26 | pj1f 19604 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇)):(𝑇(LSSum‘𝑊)((ocv‘𝑊)‘𝑇))⟶𝑇) |
| 28 | 11, 26, 12 | pjval 21642 | . . . . 5 ⊢ (𝑇 ∈ dom 𝐾 → (𝐾‘𝑇) = (𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇))) |
| 29 | 28 | adantl 481 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾‘𝑇) = (𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇))) |
| 30 | 29 | eqcomd 2737 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇)) = (𝐾‘𝑇)) |
| 31 | 13 | simplbda 499 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑇(LSSum‘𝑊)((ocv‘𝑊)‘𝑇)) = 𝑉) |
| 32 | 30, 31 | feq12d 6634 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ((𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇)):(𝑇(LSSum‘𝑊)((ocv‘𝑊)‘𝑇))⟶𝑇 ↔ (𝐾‘𝑇):𝑉⟶𝑇)) |
| 33 | 27, 32 | mpbid 232 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾‘𝑇):𝑉⟶𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 ⊆ wss 3897 {csn 4571 dom cdm 5611 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 +gcplusg 17156 0gc0g 17338 SubGrpcsubg 19028 Cntzccntz 19222 LSSumclsm 19541 proj1cpj1 19542 Abelcabl 19688 LModclmod 20788 LSubSpclss 20859 PreHilcphl 21556 ocvcocv 21592 projcpj 21632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-sca 17172 df-vsca 17173 df-ip 17174 df-0g 17340 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-sbg 18846 df-subg 19031 df-ghm 19120 df-cntz 19224 df-lsm 19543 df-pj1 19544 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-lmod 20790 df-lss 20860 df-lmhm 20951 df-lvec 21032 df-sra 21102 df-rgmod 21103 df-phl 21558 df-ocv 21595 df-pj 21635 |
| This theorem is referenced by: pjfo 21647 |
| Copyright terms: Public domain | W3C validator |