MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plelttr Structured version   Visualization version   GIF version

Theorem plelttr 18252
Description: Transitive law for chained "less than or equal to" and "less than". (sspsstr 4057 analog.) (Contributed by NM, 2-May-2012.)
Hypotheses
Ref Expression
pltletr.b 𝐵 = (Base‘𝐾)
pltletr.l = (le‘𝐾)
pltletr.s < = (lt‘𝐾)
Assertion
Ref Expression
plelttr ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌𝑌 < 𝑍) → 𝑋 < 𝑍))

Proof of Theorem plelttr
StepHypRef Expression
1 pltletr.b . . . . 5 𝐵 = (Base‘𝐾)
2 pltletr.l . . . . 5 = (le‘𝐾)
3 pltletr.s . . . . 5 < = (lt‘𝐾)
41, 2, 3pleval2 18245 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑋 < 𝑌𝑋 = 𝑌)))
543adant3r3 1185 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌 ↔ (𝑋 < 𝑌𝑋 = 𝑌)))
61, 3plttr 18250 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 < 𝑍) → 𝑋 < 𝑍))
76expd 415 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 < 𝑌 → (𝑌 < 𝑍𝑋 < 𝑍)))
8 breq1 5098 . . . . . 6 (𝑋 = 𝑌 → (𝑋 < 𝑍𝑌 < 𝑍))
98biimprd 248 . . . . 5 (𝑋 = 𝑌 → (𝑌 < 𝑍𝑋 < 𝑍))
109a1i 11 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 = 𝑌 → (𝑌 < 𝑍𝑋 < 𝑍)))
117, 10jaod 859 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑋 = 𝑌) → (𝑌 < 𝑍𝑋 < 𝑍)))
125, 11sylbid 240 . 2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌 → (𝑌 < 𝑍𝑋 < 𝑍)))
1312impd 410 1 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌𝑌 < 𝑍) → 𝑋 < 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113   class class class wbr 5095  cfv 6488  Basecbs 17124  lecple 17172  Posetcpo 18217  ltcplt 18218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6444  df-fun 6490  df-fv 6496  df-proset 18204  df-poset 18223  df-plt 18238
This theorem is referenced by:  isarchi3  33165  archiabllem2c  33173  athgt  39578  1cvratex  39595
  Copyright terms: Public domain W3C validator