MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plelttr Structured version   Visualization version   GIF version

Theorem plelttr 18354
Description: Transitive law for chained "less than or equal to" and "less than". (sspsstr 4083 analog.) (Contributed by NM, 2-May-2012.)
Hypotheses
Ref Expression
pltletr.b 𝐵 = (Base‘𝐾)
pltletr.l = (le‘𝐾)
pltletr.s < = (lt‘𝐾)
Assertion
Ref Expression
plelttr ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌𝑌 < 𝑍) → 𝑋 < 𝑍))

Proof of Theorem plelttr
StepHypRef Expression
1 pltletr.b . . . . 5 𝐵 = (Base‘𝐾)
2 pltletr.l . . . . 5 = (le‘𝐾)
3 pltletr.s . . . . 5 < = (lt‘𝐾)
41, 2, 3pleval2 18347 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑋 < 𝑌𝑋 = 𝑌)))
543adant3r3 1185 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌 ↔ (𝑋 < 𝑌𝑋 = 𝑌)))
61, 3plttr 18352 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 < 𝑍) → 𝑋 < 𝑍))
76expd 415 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 < 𝑌 → (𝑌 < 𝑍𝑋 < 𝑍)))
8 breq1 5122 . . . . . 6 (𝑋 = 𝑌 → (𝑋 < 𝑍𝑌 < 𝑍))
98biimprd 248 . . . . 5 (𝑋 = 𝑌 → (𝑌 < 𝑍𝑋 < 𝑍))
109a1i 11 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 = 𝑌 → (𝑌 < 𝑍𝑋 < 𝑍)))
117, 10jaod 859 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑋 = 𝑌) → (𝑌 < 𝑍𝑋 < 𝑍)))
125, 11sylbid 240 . 2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌 → (𝑌 < 𝑍𝑋 < 𝑍)))
1312impd 410 1 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌𝑌 < 𝑍) → 𝑋 < 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108   class class class wbr 5119  cfv 6531  Basecbs 17228  lecple 17278  Posetcpo 18319  ltcplt 18320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-proset 18306  df-poset 18325  df-plt 18340
This theorem is referenced by:  isarchi3  33185  archiabllem2c  33193  athgt  39475  1cvratex  39492
  Copyright terms: Public domain W3C validator