Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > plelttr | Structured version Visualization version GIF version |
Description: Transitive law for chained "less than or equal to" and "less than". (sspsstr 4036 analog.) (Contributed by NM, 2-May-2012.) |
Ref | Expression |
---|---|
pltletr.b | ⊢ 𝐵 = (Base‘𝐾) |
pltletr.l | ⊢ ≤ = (le‘𝐾) |
pltletr.s | ⊢ < = (lt‘𝐾) |
Ref | Expression |
---|---|
plelttr | ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 < 𝑍) → 𝑋 < 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pltletr.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | pltletr.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
3 | pltletr.s | . . . . 5 ⊢ < = (lt‘𝐾) | |
4 | 1, 2, 3 | pleval2 17970 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 < 𝑌 ∨ 𝑋 = 𝑌))) |
5 | 4 | 3adant3r3 1182 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 ↔ (𝑋 < 𝑌 ∨ 𝑋 = 𝑌))) |
6 | 1, 3 | plttr 17975 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑍) → 𝑋 < 𝑍)) |
7 | 6 | expd 415 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 < 𝑌 → (𝑌 < 𝑍 → 𝑋 < 𝑍))) |
8 | breq1 5073 | . . . . . 6 ⊢ (𝑋 = 𝑌 → (𝑋 < 𝑍 ↔ 𝑌 < 𝑍)) | |
9 | 8 | biimprd 247 | . . . . 5 ⊢ (𝑋 = 𝑌 → (𝑌 < 𝑍 → 𝑋 < 𝑍)) |
10 | 9 | a1i 11 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 = 𝑌 → (𝑌 < 𝑍 → 𝑋 < 𝑍))) |
11 | 7, 10 | jaod 855 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∨ 𝑋 = 𝑌) → (𝑌 < 𝑍 → 𝑋 < 𝑍))) |
12 | 5, 11 | sylbid 239 | . 2 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑌 < 𝑍 → 𝑋 < 𝑍))) |
13 | 12 | impd 410 | 1 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 < 𝑍) → 𝑋 < 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 Basecbs 16840 lecple 16895 Posetcpo 17940 ltcplt 17941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-proset 17928 df-poset 17946 df-plt 17963 |
This theorem is referenced by: isarchi3 31343 archiabllem2c 31351 athgt 37397 1cvratex 37414 |
Copyright terms: Public domain | W3C validator |