Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > plelttr | Structured version Visualization version GIF version |
Description: Transitive law for chained "less than or equal to" and "less than". (sspsstr 4013 analog.) (Contributed by NM, 2-May-2012.) |
Ref | Expression |
---|---|
pltletr.b | ⊢ 𝐵 = (Base‘𝐾) |
pltletr.l | ⊢ ≤ = (le‘𝐾) |
pltletr.s | ⊢ < = (lt‘𝐾) |
Ref | Expression |
---|---|
plelttr | ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 < 𝑍) → 𝑋 < 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pltletr.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | pltletr.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
3 | pltletr.s | . . . . 5 ⊢ < = (lt‘𝐾) | |
4 | 1, 2, 3 | pleval2 17646 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 < 𝑌 ∨ 𝑋 = 𝑌))) |
5 | 4 | 3adant3r3 1181 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 ↔ (𝑋 < 𝑌 ∨ 𝑋 = 𝑌))) |
6 | 1, 3 | plttr 17651 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑍) → 𝑋 < 𝑍)) |
7 | 6 | expd 419 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 < 𝑌 → (𝑌 < 𝑍 → 𝑋 < 𝑍))) |
8 | breq1 5038 | . . . . . 6 ⊢ (𝑋 = 𝑌 → (𝑋 < 𝑍 ↔ 𝑌 < 𝑍)) | |
9 | 8 | biimprd 251 | . . . . 5 ⊢ (𝑋 = 𝑌 → (𝑌 < 𝑍 → 𝑋 < 𝑍)) |
10 | 9 | a1i 11 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 = 𝑌 → (𝑌 < 𝑍 → 𝑋 < 𝑍))) |
11 | 7, 10 | jaod 856 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∨ 𝑋 = 𝑌) → (𝑌 < 𝑍 → 𝑋 < 𝑍))) |
12 | 5, 11 | sylbid 243 | . 2 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑌 < 𝑍 → 𝑋 < 𝑍))) |
13 | 12 | impd 414 | 1 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 < 𝑍) → 𝑋 < 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∨ wo 844 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 class class class wbr 5035 ‘cfv 6339 Basecbs 16546 lecple 16635 Posetcpo 17621 ltcplt 17622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-iota 6298 df-fun 6341 df-fv 6347 df-proset 17609 df-poset 17627 df-plt 17639 |
This theorem is referenced by: isarchi3 30971 archiabllem2c 30979 athgt 37058 1cvratex 37075 |
Copyright terms: Public domain | W3C validator |