MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plelttr Structured version   Visualization version   GIF version

Theorem plelttr 18303
Description: Transitive law for chained "less than or equal to" and "less than". (sspsstr 4071 analog.) (Contributed by NM, 2-May-2012.)
Hypotheses
Ref Expression
pltletr.b 𝐵 = (Base‘𝐾)
pltletr.l = (le‘𝐾)
pltletr.s < = (lt‘𝐾)
Assertion
Ref Expression
plelttr ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌𝑌 < 𝑍) → 𝑋 < 𝑍))

Proof of Theorem plelttr
StepHypRef Expression
1 pltletr.b . . . . 5 𝐵 = (Base‘𝐾)
2 pltletr.l . . . . 5 = (le‘𝐾)
3 pltletr.s . . . . 5 < = (lt‘𝐾)
41, 2, 3pleval2 18296 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑋 < 𝑌𝑋 = 𝑌)))
543adant3r3 1185 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌 ↔ (𝑋 < 𝑌𝑋 = 𝑌)))
61, 3plttr 18301 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 < 𝑍) → 𝑋 < 𝑍))
76expd 415 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 < 𝑌 → (𝑌 < 𝑍𝑋 < 𝑍)))
8 breq1 5110 . . . . . 6 (𝑋 = 𝑌 → (𝑋 < 𝑍𝑌 < 𝑍))
98biimprd 248 . . . . 5 (𝑋 = 𝑌 → (𝑌 < 𝑍𝑋 < 𝑍))
109a1i 11 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 = 𝑌 → (𝑌 < 𝑍𝑋 < 𝑍)))
117, 10jaod 859 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑋 = 𝑌) → (𝑌 < 𝑍𝑋 < 𝑍)))
125, 11sylbid 240 . 2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑌 → (𝑌 < 𝑍𝑋 < 𝑍)))
1312impd 410 1 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌𝑌 < 𝑍) → 𝑋 < 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  Basecbs 17179  lecple 17227  Posetcpo 18268  ltcplt 18269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-proset 18255  df-poset 18274  df-plt 18289
This theorem is referenced by:  isarchi3  33141  archiabllem2c  33149  athgt  39450  1cvratex  39467
  Copyright terms: Public domain W3C validator