| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > plelttr | Structured version Visualization version GIF version | ||
| Description: Transitive law for chained "less than or equal to" and "less than". (sspsstr 4057 analog.) (Contributed by NM, 2-May-2012.) |
| Ref | Expression |
|---|---|
| pltletr.b | ⊢ 𝐵 = (Base‘𝐾) |
| pltletr.l | ⊢ ≤ = (le‘𝐾) |
| pltletr.s | ⊢ < = (lt‘𝐾) |
| Ref | Expression |
|---|---|
| plelttr | ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 < 𝑍) → 𝑋 < 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pltletr.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | pltletr.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 3 | pltletr.s | . . . . 5 ⊢ < = (lt‘𝐾) | |
| 4 | 1, 2, 3 | pleval2 18245 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 < 𝑌 ∨ 𝑋 = 𝑌))) |
| 5 | 4 | 3adant3r3 1185 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 ↔ (𝑋 < 𝑌 ∨ 𝑋 = 𝑌))) |
| 6 | 1, 3 | plttr 18250 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑍) → 𝑋 < 𝑍)) |
| 7 | 6 | expd 415 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 < 𝑌 → (𝑌 < 𝑍 → 𝑋 < 𝑍))) |
| 8 | breq1 5098 | . . . . . 6 ⊢ (𝑋 = 𝑌 → (𝑋 < 𝑍 ↔ 𝑌 < 𝑍)) | |
| 9 | 8 | biimprd 248 | . . . . 5 ⊢ (𝑋 = 𝑌 → (𝑌 < 𝑍 → 𝑋 < 𝑍)) |
| 10 | 9 | a1i 11 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 = 𝑌 → (𝑌 < 𝑍 → 𝑋 < 𝑍))) |
| 11 | 7, 10 | jaod 859 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∨ 𝑋 = 𝑌) → (𝑌 < 𝑍 → 𝑋 < 𝑍))) |
| 12 | 5, 11 | sylbid 240 | . 2 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑌 < 𝑍 → 𝑋 < 𝑍))) |
| 13 | 12 | impd 410 | 1 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 < 𝑍) → 𝑋 < 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 ‘cfv 6488 Basecbs 17124 lecple 17172 Posetcpo 18217 ltcplt 18218 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6444 df-fun 6490 df-fv 6496 df-proset 18204 df-poset 18223 df-plt 18238 |
| This theorem is referenced by: isarchi3 33165 archiabllem2c 33173 athgt 39578 1cvratex 39595 |
| Copyright terms: Public domain | W3C validator |