![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > plelttr | Structured version Visualization version GIF version |
Description: Transitive law for chained "less than or equal to" and "less than". (sspsstr 4131 analog.) (Contributed by NM, 2-May-2012.) |
Ref | Expression |
---|---|
pltletr.b | ⊢ 𝐵 = (Base‘𝐾) |
pltletr.l | ⊢ ≤ = (le‘𝐾) |
pltletr.s | ⊢ < = (lt‘𝐾) |
Ref | Expression |
---|---|
plelttr | ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 < 𝑍) → 𝑋 < 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pltletr.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | pltletr.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
3 | pltletr.s | . . . . 5 ⊢ < = (lt‘𝐾) | |
4 | 1, 2, 3 | pleval2 18407 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 < 𝑌 ∨ 𝑋 = 𝑌))) |
5 | 4 | 3adant3r3 1184 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 ↔ (𝑋 < 𝑌 ∨ 𝑋 = 𝑌))) |
6 | 1, 3 | plttr 18412 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑍) → 𝑋 < 𝑍)) |
7 | 6 | expd 415 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 < 𝑌 → (𝑌 < 𝑍 → 𝑋 < 𝑍))) |
8 | breq1 5169 | . . . . . 6 ⊢ (𝑋 = 𝑌 → (𝑋 < 𝑍 ↔ 𝑌 < 𝑍)) | |
9 | 8 | biimprd 248 | . . . . 5 ⊢ (𝑋 = 𝑌 → (𝑌 < 𝑍 → 𝑋 < 𝑍)) |
10 | 9 | a1i 11 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 = 𝑌 → (𝑌 < 𝑍 → 𝑋 < 𝑍))) |
11 | 7, 10 | jaod 858 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∨ 𝑋 = 𝑌) → (𝑌 < 𝑍 → 𝑋 < 𝑍))) |
12 | 5, 11 | sylbid 240 | . 2 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑌 < 𝑍 → 𝑋 < 𝑍))) |
13 | 12 | impd 410 | 1 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 < 𝑍) → 𝑋 < 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 Basecbs 17258 lecple 17318 Posetcpo 18377 ltcplt 18378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-proset 18365 df-poset 18383 df-plt 18400 |
This theorem is referenced by: isarchi3 33167 archiabllem2c 33175 athgt 39413 1cvratex 39430 |
Copyright terms: Public domain | W3C validator |