MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumparts Structured version   Visualization version   GIF version

Theorem fsumparts 15155
Description: Summation by parts. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
fsumparts.b (𝑘 = 𝑗 → (𝐴 = 𝐵𝑉 = 𝑊))
fsumparts.c (𝑘 = (𝑗 + 1) → (𝐴 = 𝐶𝑉 = 𝑋))
fsumparts.d (𝑘 = 𝑀 → (𝐴 = 𝐷𝑉 = 𝑌))
fsumparts.e (𝑘 = 𝑁 → (𝐴 = 𝐸𝑉 = 𝑍))
fsumparts.1 (𝜑𝑁 ∈ (ℤ𝑀))
fsumparts.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
fsumparts.3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝑉 ∈ ℂ)
Assertion
Ref Expression
fsumparts (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋𝑊)) = (((𝐸 · 𝑍) − (𝐷 · 𝑌)) − Σ𝑗 ∈ (𝑀..^𝑁)((𝐶𝐵) · 𝑋)))
Distinct variable groups:   𝐴,𝑗   𝐵,𝑘   𝐶,𝑘   𝐷,𝑘   𝑘,𝐸   𝑗,𝑉   𝑘,𝑊   𝑗,𝑘,𝑀   𝑗,𝑁,𝑘   𝜑,𝑗,𝑘   𝑘,𝑋   𝑘,𝑌   𝑘,𝑍
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑗)   𝐶(𝑗)   𝐷(𝑗)   𝐸(𝑗)   𝑉(𝑘)   𝑊(𝑗)   𝑋(𝑗)   𝑌(𝑗)   𝑍(𝑗)

Proof of Theorem fsumparts
StepHypRef Expression
1 sum0 15072 . . . 4 Σ𝑗 ∈ ∅ (𝐵 · (𝑋𝑊)) = 0
2 0m0e0 11751 . . . 4 (0 − 0) = 0
31, 2eqtr4i 2847 . . 3 Σ𝑗 ∈ ∅ (𝐵 · (𝑋𝑊)) = (0 − 0)
4 simpr 487 . . . . . 6 ((𝜑𝑁 = 𝑀) → 𝑁 = 𝑀)
54oveq2d 7166 . . . . 5 ((𝜑𝑁 = 𝑀) → (𝑀..^𝑁) = (𝑀..^𝑀))
6 fzo0 13055 . . . . 5 (𝑀..^𝑀) = ∅
75, 6syl6eq 2872 . . . 4 ((𝜑𝑁 = 𝑀) → (𝑀..^𝑁) = ∅)
87sumeq1d 15052 . . 3 ((𝜑𝑁 = 𝑀) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋𝑊)) = Σ𝑗 ∈ ∅ (𝐵 · (𝑋𝑊)))
9 fsumparts.1 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ𝑀))
10 eluzfz1 12908 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
119, 10syl 17 . . . . . . 7 (𝜑𝑀 ∈ (𝑀...𝑁))
12 eqtr3 2843 . . . . . . . . . . . 12 ((𝑘 = 𝑀𝑁 = 𝑀) → 𝑘 = 𝑁)
13 fsumparts.e . . . . . . . . . . . 12 (𝑘 = 𝑁 → (𝐴 = 𝐸𝑉 = 𝑍))
14 oveq12 7159 . . . . . . . . . . . 12 ((𝐴 = 𝐸𝑉 = 𝑍) → (𝐴 · 𝑉) = (𝐸 · 𝑍))
1512, 13, 143syl 18 . . . . . . . . . . 11 ((𝑘 = 𝑀𝑁 = 𝑀) → (𝐴 · 𝑉) = (𝐸 · 𝑍))
16 fsumparts.d . . . . . . . . . . . . 13 (𝑘 = 𝑀 → (𝐴 = 𝐷𝑉 = 𝑌))
17 oveq12 7159 . . . . . . . . . . . . 13 ((𝐴 = 𝐷𝑉 = 𝑌) → (𝐴 · 𝑉) = (𝐷 · 𝑌))
1816, 17syl 17 . . . . . . . . . . . 12 (𝑘 = 𝑀 → (𝐴 · 𝑉) = (𝐷 · 𝑌))
1918adantr 483 . . . . . . . . . . 11 ((𝑘 = 𝑀𝑁 = 𝑀) → (𝐴 · 𝑉) = (𝐷 · 𝑌))
2015, 19eqeq12d 2837 . . . . . . . . . 10 ((𝑘 = 𝑀𝑁 = 𝑀) → ((𝐴 · 𝑉) = (𝐴 · 𝑉) ↔ (𝐸 · 𝑍) = (𝐷 · 𝑌)))
2120pm5.74da 802 . . . . . . . . 9 (𝑘 = 𝑀 → ((𝑁 = 𝑀 → (𝐴 · 𝑉) = (𝐴 · 𝑉)) ↔ (𝑁 = 𝑀 → (𝐸 · 𝑍) = (𝐷 · 𝑌))))
22 eqidd 2822 . . . . . . . . 9 (𝑁 = 𝑀 → (𝐴 · 𝑉) = (𝐴 · 𝑉))
2321, 22vtoclg 3567 . . . . . . . 8 (𝑀 ∈ (𝑀...𝑁) → (𝑁 = 𝑀 → (𝐸 · 𝑍) = (𝐷 · 𝑌)))
2423imp 409 . . . . . . 7 ((𝑀 ∈ (𝑀...𝑁) ∧ 𝑁 = 𝑀) → (𝐸 · 𝑍) = (𝐷 · 𝑌))
2511, 24sylan 582 . . . . . 6 ((𝜑𝑁 = 𝑀) → (𝐸 · 𝑍) = (𝐷 · 𝑌))
2625oveq1d 7165 . . . . 5 ((𝜑𝑁 = 𝑀) → ((𝐸 · 𝑍) − (𝐷 · 𝑌)) = ((𝐷 · 𝑌) − (𝐷 · 𝑌)))
2716simpld 497 . . . . . . . . . 10 (𝑘 = 𝑀𝐴 = 𝐷)
2827eleq1d 2897 . . . . . . . . 9 (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ 𝐷 ∈ ℂ))
29 fsumparts.2 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
3029ralrimiva 3182 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ)
3128, 30, 11rspcdva 3624 . . . . . . . 8 (𝜑𝐷 ∈ ℂ)
3216simprd 498 . . . . . . . . . 10 (𝑘 = 𝑀𝑉 = 𝑌)
3332eleq1d 2897 . . . . . . . . 9 (𝑘 = 𝑀 → (𝑉 ∈ ℂ ↔ 𝑌 ∈ ℂ))
34 fsumparts.3 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝑉 ∈ ℂ)
3534ralrimiva 3182 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝑉 ∈ ℂ)
3633, 35, 11rspcdva 3624 . . . . . . . 8 (𝜑𝑌 ∈ ℂ)
3731, 36mulcld 10655 . . . . . . 7 (𝜑 → (𝐷 · 𝑌) ∈ ℂ)
3837subidd 10979 . . . . . 6 (𝜑 → ((𝐷 · 𝑌) − (𝐷 · 𝑌)) = 0)
3938adantr 483 . . . . 5 ((𝜑𝑁 = 𝑀) → ((𝐷 · 𝑌) − (𝐷 · 𝑌)) = 0)
4026, 39eqtrd 2856 . . . 4 ((𝜑𝑁 = 𝑀) → ((𝐸 · 𝑍) − (𝐷 · 𝑌)) = 0)
417sumeq1d 15052 . . . . 5 ((𝜑𝑁 = 𝑀) → Σ𝑗 ∈ (𝑀..^𝑁)((𝐶𝐵) · 𝑋) = Σ𝑗 ∈ ∅ ((𝐶𝐵) · 𝑋))
42 sum0 15072 . . . . 5 Σ𝑗 ∈ ∅ ((𝐶𝐵) · 𝑋) = 0
4341, 42syl6eq 2872 . . . 4 ((𝜑𝑁 = 𝑀) → Σ𝑗 ∈ (𝑀..^𝑁)((𝐶𝐵) · 𝑋) = 0)
4440, 43oveq12d 7168 . . 3 ((𝜑𝑁 = 𝑀) → (((𝐸 · 𝑍) − (𝐷 · 𝑌)) − Σ𝑗 ∈ (𝑀..^𝑁)((𝐶𝐵) · 𝑋)) = (0 − 0))
453, 8, 443eqtr4a 2882 . 2 ((𝜑𝑁 = 𝑀) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋𝑊)) = (((𝐸 · 𝑍) − (𝐷 · 𝑌)) − Σ𝑗 ∈ (𝑀..^𝑁)((𝐶𝐵) · 𝑋)))
46 fzofi 13336 . . . . . . . . 9 ((𝑀 + 1)..^𝑁) ∈ Fin
4746a1i 11 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝑀 + 1)..^𝑁) ∈ Fin)
48 eluzel2 12242 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
499, 48syl 17 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
5049adantr 483 . . . . . . . . . . 11 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 ∈ ℤ)
51 uzid 12252 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
52 peano2uz 12295 . . . . . . . . . . 11 (𝑀 ∈ (ℤ𝑀) → (𝑀 + 1) ∈ (ℤ𝑀))
53 fzoss1 13058 . . . . . . . . . . 11 ((𝑀 + 1) ∈ (ℤ𝑀) → ((𝑀 + 1)..^𝑁) ⊆ (𝑀..^𝑁))
5450, 51, 52, 534syl 19 . . . . . . . . . 10 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝑀 + 1)..^𝑁) ⊆ (𝑀..^𝑁))
5554sselda 3966 . . . . . . . . 9 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ ((𝑀 + 1)..^𝑁)) → 𝑘 ∈ (𝑀..^𝑁))
56 elfzofz 13047 . . . . . . . . . . 11 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ (𝑀...𝑁))
5729, 34mulcld 10655 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐴 · 𝑉) ∈ ℂ)
5856, 57sylan2 594 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝐴 · 𝑉) ∈ ℂ)
5958adantlr 713 . . . . . . . . 9 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝐴 · 𝑉) ∈ ℂ)
6055, 59syldan 593 . . . . . . . 8 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ ((𝑀 + 1)..^𝑁)) → (𝐴 · 𝑉) ∈ ℂ)
6147, 60fsumcl 15084 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉) ∈ ℂ)
6213simpld 497 . . . . . . . . . . 11 (𝑘 = 𝑁𝐴 = 𝐸)
6362eleq1d 2897 . . . . . . . . . 10 (𝑘 = 𝑁 → (𝐴 ∈ ℂ ↔ 𝐸 ∈ ℂ))
64 eluzfz2 12909 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
659, 64syl 17 . . . . . . . . . 10 (𝜑𝑁 ∈ (𝑀...𝑁))
6663, 30, 65rspcdva 3624 . . . . . . . . 9 (𝜑𝐸 ∈ ℂ)
6713simprd 498 . . . . . . . . . . 11 (𝑘 = 𝑁𝑉 = 𝑍)
6867eleq1d 2897 . . . . . . . . . 10 (𝑘 = 𝑁 → (𝑉 ∈ ℂ ↔ 𝑍 ∈ ℂ))
6968, 35, 65rspcdva 3624 . . . . . . . . 9 (𝜑𝑍 ∈ ℂ)
7066, 69mulcld 10655 . . . . . . . 8 (𝜑 → (𝐸 · 𝑍) ∈ ℂ)
7170adantr 483 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝐸 · 𝑍) ∈ ℂ)
72 simpr 487 . . . . . . . . 9 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑁 ∈ (ℤ‘(𝑀 + 1)))
73 fzp1ss 12952 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
7450, 73syl 17 . . . . . . . . . . 11 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
7574sselda 3966 . . . . . . . . . 10 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ (𝑀...𝑁))
7657adantlr 713 . . . . . . . . . 10 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐴 · 𝑉) ∈ ℂ)
7775, 76syldan 593 . . . . . . . . 9 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → (𝐴 · 𝑉) ∈ ℂ)
7813, 14syl 17 . . . . . . . . 9 (𝑘 = 𝑁 → (𝐴 · 𝑉) = (𝐸 · 𝑍))
7972, 77, 78fsumm1 15100 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐴 · 𝑉) = (Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))(𝐴 · 𝑉) + (𝐸 · 𝑍)))
80 eluzelz 12247 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
819, 80syl 17 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℤ)
8281adantr 483 . . . . . . . . . . . 12 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑁 ∈ ℤ)
83 fzoval 13033 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
8482, 83syl 17 . . . . . . . . . . 11 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
8550zcnd 12082 . . . . . . . . . . . . 13 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 ∈ ℂ)
86 ax-1cn 10589 . . . . . . . . . . . . 13 1 ∈ ℂ
87 pncan 10886 . . . . . . . . . . . . 13 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) − 1) = 𝑀)
8885, 86, 87sylancl 588 . . . . . . . . . . . 12 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝑀 + 1) − 1) = 𝑀)
8988oveq1d 7165 . . . . . . . . . . 11 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (((𝑀 + 1) − 1)...(𝑁 − 1)) = (𝑀...(𝑁 − 1)))
9084, 89eqtr4d 2859 . . . . . . . . . 10 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑀..^𝑁) = (((𝑀 + 1) − 1)...(𝑁 − 1)))
9190sumeq1d 15052 . . . . . . . . 9 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 · 𝑋) = Σ𝑗 ∈ (((𝑀 + 1) − 1)...(𝑁 − 1))(𝐶 · 𝑋))
92 1zzd 12007 . . . . . . . . . 10 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → 1 ∈ ℤ)
9350peano2zd 12084 . . . . . . . . . 10 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑀 + 1) ∈ ℤ)
94 fsumparts.c . . . . . . . . . . 11 (𝑘 = (𝑗 + 1) → (𝐴 = 𝐶𝑉 = 𝑋))
95 oveq12 7159 . . . . . . . . . . 11 ((𝐴 = 𝐶𝑉 = 𝑋) → (𝐴 · 𝑉) = (𝐶 · 𝑋))
9694, 95syl 17 . . . . . . . . . 10 (𝑘 = (𝑗 + 1) → (𝐴 · 𝑉) = (𝐶 · 𝑋))
9792, 93, 82, 77, 96fsumshftm 15130 . . . . . . . . 9 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐴 · 𝑉) = Σ𝑗 ∈ (((𝑀 + 1) − 1)...(𝑁 − 1))(𝐶 · 𝑋))
9891, 97eqtr4d 2859 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 · 𝑋) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐴 · 𝑉))
99 fzoval 13033 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((𝑀 + 1)..^𝑁) = ((𝑀 + 1)...(𝑁 − 1)))
10082, 99syl 17 . . . . . . . . . 10 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝑀 + 1)..^𝑁) = ((𝑀 + 1)...(𝑁 − 1)))
101100sumeq1d 15052 . . . . . . . . 9 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉) = Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))(𝐴 · 𝑉))
102101oveq1d 7165 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉) + (𝐸 · 𝑍)) = (Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))(𝐴 · 𝑉) + (𝐸 · 𝑍)))
10379, 98, 1023eqtr4d 2866 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 · 𝑋) = (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉) + (𝐸 · 𝑍)))
10461, 71, 103comraddd 10848 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 · 𝑋) = ((𝐸 · 𝑍) + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)))
105104oveq1d 7165 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 · 𝑋) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋)) = (((𝐸 · 𝑍) + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋)))
106 fzofzp1 13128 . . . . . . . . . 10 (𝑗 ∈ (𝑀..^𝑁) → (𝑗 + 1) ∈ (𝑀...𝑁))
10794simpld 497 . . . . . . . . . . . 12 (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
108107eleq1d 2897 . . . . . . . . . . 11 (𝑘 = (𝑗 + 1) → (𝐴 ∈ ℂ ↔ 𝐶 ∈ ℂ))
109108rspccva 3621 . . . . . . . . . 10 ((∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ ∧ (𝑗 + 1) ∈ (𝑀...𝑁)) → 𝐶 ∈ ℂ)
11030, 106, 109syl2an 597 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝐶 ∈ ℂ)
111 elfzofz 13047 . . . . . . . . . 10 (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ (𝑀...𝑁))
112 fsumparts.b . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝐴 = 𝐵𝑉 = 𝑊))
113112simpld 497 . . . . . . . . . . . 12 (𝑘 = 𝑗𝐴 = 𝐵)
114113eleq1d 2897 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ))
115114rspccva 3621 . . . . . . . . . 10 ((∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ)
11630, 111, 115syl2an 597 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝐵 ∈ ℂ)
11794simprd 498 . . . . . . . . . . . 12 (𝑘 = (𝑗 + 1) → 𝑉 = 𝑋)
118117eleq1d 2897 . . . . . . . . . . 11 (𝑘 = (𝑗 + 1) → (𝑉 ∈ ℂ ↔ 𝑋 ∈ ℂ))
119118rspccva 3621 . . . . . . . . . 10 ((∀𝑘 ∈ (𝑀...𝑁)𝑉 ∈ ℂ ∧ (𝑗 + 1) ∈ (𝑀...𝑁)) → 𝑋 ∈ ℂ)
12035, 106, 119syl2an 597 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℂ)
121110, 116, 120subdird 11091 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((𝐶𝐵) · 𝑋) = ((𝐶 · 𝑋) − (𝐵 · 𝑋)))
122121sumeq2dv 15054 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)((𝐶𝐵) · 𝑋) = Σ𝑗 ∈ (𝑀..^𝑁)((𝐶 · 𝑋) − (𝐵 · 𝑋)))
123 fzofi 13336 . . . . . . . . 9 (𝑀..^𝑁) ∈ Fin
124123a1i 11 . . . . . . . 8 (𝜑 → (𝑀..^𝑁) ∈ Fin)
125110, 120mulcld 10655 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝐶 · 𝑋) ∈ ℂ)
126116, 120mulcld 10655 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝐵 · 𝑋) ∈ ℂ)
127124, 125, 126fsumsub 15137 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)((𝐶 · 𝑋) − (𝐵 · 𝑋)) = (Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 · 𝑋) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋)))
128122, 127eqtrd 2856 . . . . . 6 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)((𝐶𝐵) · 𝑋) = (Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 · 𝑋) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋)))
129128adantr 483 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)((𝐶𝐵) · 𝑋) = (Σ𝑗 ∈ (𝑀..^𝑁)(𝐶 · 𝑋) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋)))
130124, 126fsumcl 15084 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) ∈ ℂ)
131130adantr 483 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) ∈ ℂ)
13271, 131, 61subsub3d 11021 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝐸 · 𝑍) − (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉))) = (((𝐸 · 𝑍) + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋)))
133105, 129, 1323eqtr4d 2866 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)((𝐶𝐵) · 𝑋) = ((𝐸 · 𝑍) − (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉))))
134133oveq2d 7166 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (((𝐸 · 𝑍) − (𝐷 · 𝑌)) − Σ𝑗 ∈ (𝑀..^𝑁)((𝐶𝐵) · 𝑋)) = (((𝐸 · 𝑍) − (𝐷 · 𝑌)) − ((𝐸 · 𝑍) − (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)))))
13537adantr 483 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝐷 · 𝑌) ∈ ℂ)
136131, 61subcld 10991 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)) ∈ ℂ)
13771, 135, 136nnncan1d 11025 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (((𝐸 · 𝑍) − (𝐷 · 𝑌)) − ((𝐸 · 𝑍) − (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)))) = ((Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)) − (𝐷 · 𝑌)))
13861, 135addcomd 10836 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉) + (𝐷 · 𝑌)) = ((𝐷 · 𝑌) + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)))
139 eluzp1m1 12262 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
14049, 139sylan 582 . . . . . . . . 9 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
14184eleq2d 2898 . . . . . . . . . . 11 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑘 ∈ (𝑀..^𝑁) ↔ 𝑘 ∈ (𝑀...(𝑁 − 1))))
142141biimpar 480 . . . . . . . . . 10 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝑘 ∈ (𝑀..^𝑁))
143142, 59syldan 593 . . . . . . . . 9 (((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐴 · 𝑉) ∈ ℂ)
144140, 143, 18fsum1p 15102 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ (𝑀...(𝑁 − 1))(𝐴 · 𝑉) = ((𝐷 · 𝑌) + Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))(𝐴 · 𝑉)))
14584sumeq1d 15052 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴 · 𝑉) = Σ𝑘 ∈ (𝑀...(𝑁 − 1))(𝐴 · 𝑉))
146101oveq2d 7166 . . . . . . . 8 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝐷 · 𝑌) + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)) = ((𝐷 · 𝑌) + Σ𝑘 ∈ ((𝑀 + 1)...(𝑁 − 1))(𝐴 · 𝑉)))
147144, 145, 1463eqtr4d 2866 . . . . . . 7 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴 · 𝑉) = ((𝐷 · 𝑌) + Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)))
148138, 147eqtr4d 2859 . . . . . 6 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉) + (𝐷 · 𝑌)) = Σ𝑘 ∈ (𝑀..^𝑁)(𝐴 · 𝑉))
149 oveq12 7159 . . . . . . . 8 ((𝐴 = 𝐵𝑉 = 𝑊) → (𝐴 · 𝑉) = (𝐵 · 𝑊))
150112, 149syl 17 . . . . . . 7 (𝑘 = 𝑗 → (𝐴 · 𝑉) = (𝐵 · 𝑊))
151150cbvsumv 15047 . . . . . 6 Σ𝑘 ∈ (𝑀..^𝑁)(𝐴 · 𝑉) = Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑊)
152148, 151syl6eq 2872 . . . . 5 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉) + (𝐷 · 𝑌)) = Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑊))
153152oveq2d 7166 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉) + (𝐷 · 𝑌))) = (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑊)))
154131, 61, 135subsub4d 11022 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)) − (𝐷 · 𝑌)) = (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − (Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉) + (𝐷 · 𝑌))))
155112simprd 498 . . . . . . . . . . 11 (𝑘 = 𝑗𝑉 = 𝑊)
156155eleq1d 2897 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝑉 ∈ ℂ ↔ 𝑊 ∈ ℂ))
157156rspccva 3621 . . . . . . . . 9 ((∀𝑘 ∈ (𝑀...𝑁)𝑉 ∈ ℂ ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝑊 ∈ ℂ)
15835, 111, 157syl2an 597 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑊 ∈ ℂ)
159116, 120, 158subdid 11090 . . . . . . 7 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝐵 · (𝑋𝑊)) = ((𝐵 · 𝑋) − (𝐵 · 𝑊)))
160159sumeq2dv 15054 . . . . . 6 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋𝑊)) = Σ𝑗 ∈ (𝑀..^𝑁)((𝐵 · 𝑋) − (𝐵 · 𝑊)))
161116, 158mulcld 10655 . . . . . . 7 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝐵 · 𝑊) ∈ ℂ)
162124, 126, 161fsumsub 15137 . . . . . 6 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)((𝐵 · 𝑋) − (𝐵 · 𝑊)) = (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑊)))
163160, 162eqtrd 2856 . . . . 5 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋𝑊)) = (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑊)))
164163adantr 483 . . . 4 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋𝑊)) = (Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑊)))
165153, 154, 1643eqtr4d 2866 . . 3 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · 𝑋) − Σ𝑘 ∈ ((𝑀 + 1)..^𝑁)(𝐴 · 𝑉)) − (𝐷 · 𝑌)) = Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋𝑊)))
166134, 137, 1653eqtrrd 2861 . 2 ((𝜑𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋𝑊)) = (((𝐸 · 𝑍) − (𝐷 · 𝑌)) − Σ𝑗 ∈ (𝑀..^𝑁)((𝐶𝐵) · 𝑋)))
167 uzp1 12273 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
1689, 167syl 17 . 2 (𝜑 → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
16945, 166, 168mpjaodan 955 1 (𝜑 → Σ𝑗 ∈ (𝑀..^𝑁)(𝐵 · (𝑋𝑊)) = (((𝐸 · 𝑍) − (𝐷 · 𝑌)) − Σ𝑗 ∈ (𝑀..^𝑁)((𝐶𝐵) · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1533  wcel 2110  wral 3138  wss 3935  c0 4290  cfv 6349  (class class class)co 7150  Fincfn 8503  cc 10529  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536  cmin 10864  cz 11975  cuz 12237  ...cfz 12886  ..^cfzo 13027  Σcsu 15036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037
This theorem is referenced by:  dchrisumlem2  26060  selberg2lem  26120  logdivbnd  26126  pntrsumo1  26135  pntrlog2bndlem2  26148  pntrlog2bndlem4  26150
  Copyright terms: Public domain W3C validator