Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.25 Structured version   Visualization version   GIF version

Theorem jm2.25 42988
Description: Lemma for jm2.26 42991. Remainders mod X(2n) are negaperiodic mod 2n. (Contributed by Stefan O'Rear, 2-Oct-2014.)
Assertion
Ref Expression
jm2.25 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))

Proof of Theorem jm2.25
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 771 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝐴 ∈ (ℤ‘2))
2 simprrr 782 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑁 ∈ ℤ)
3 frmx 42902 . . . . . . . . . . 11 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
43fovcl 7561 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
54nn0zd 12637 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℤ)
61, 2, 5syl2anc 584 . . . . . . . 8 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∈ ℤ)
7 simprrl 781 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑀 ∈ ℤ)
8 frmy 42903 . . . . . . . . . 10 Yrm :((ℤ‘2) × ℤ)⟶ℤ
98fovcl 7561 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ)
101, 7, 9syl2anc 584 . . . . . . . 8 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm 𝑀) ∈ ℤ)
11 congid 42960 . . . . . . . 8 (((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − (𝐴 Yrm 𝑀)))
126, 10, 11syl2anc 584 . . . . . . 7 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − (𝐴 Yrm 𝑀)))
13 2cnd 12342 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → 2 ∈ ℂ)
14 zcn 12616 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1513, 14mulcld 11279 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℂ)
1615mul02d 11457 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (0 · (2 · 𝑁)) = 0)
1716adantl 481 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 · (2 · 𝑁)) = 0)
1817oveq2d 7447 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + (0 · (2 · 𝑁))) = (𝑀 + 0))
19 zcn 12616 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
2019addridd 11459 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → (𝑀 + 0) = 𝑀)
2120adantr 480 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 0) = 𝑀)
2218, 21eqtrd 2775 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + (0 · (2 · 𝑁))) = 𝑀)
2322ad2antll 729 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑀 + (0 · (2 · 𝑁))) = 𝑀)
2423oveq2d 7447 . . . . . . . 8 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) = (𝐴 Yrm 𝑀))
2524oveq1d 7446 . . . . . . 7 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) = ((𝐴 Yrm 𝑀) − (𝐴 Yrm 𝑀)))
2612, 25breqtrrd 5176 . . . . . 6 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)))
2726orcd 873 . . . . 5 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
2827ex 412 . . . 4 (𝐼 ∈ ℤ → ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))))
29 simprl 771 . . . . . . . 8 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝐴 ∈ (ℤ‘2))
30 simprrr 782 . . . . . . . 8 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑁 ∈ ℤ)
3129, 30, 5syl2anc 584 . . . . . . 7 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∈ ℤ)
32 simprrl 781 . . . . . . . 8 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑀 ∈ ℤ)
3329, 32, 9syl2anc 584 . . . . . . 7 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm 𝑀) ∈ ℤ)
34 simpl 482 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑏 ∈ ℤ)
3534peano2zd 12723 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑏 + 1) ∈ ℤ)
36 eluzel2 12881 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → 2 ∈ ℤ)
3736ad2antrl 728 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 2 ∈ ℤ)
3837, 30zmulcld 12726 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (2 · 𝑁) ∈ ℤ)
3935, 38zmulcld 12726 . . . . . . . . 9 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑏 + 1) · (2 · 𝑁)) ∈ ℤ)
4032, 39zaddcld 12724 . . . . . . . 8 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑀 + ((𝑏 + 1) · (2 · 𝑁))) ∈ ℤ)
418fovcl 7561 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 + ((𝑏 + 1) · (2 · 𝑁))) ∈ ℤ) → (𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) ∈ ℤ)
4229, 40, 41syl2anc 584 . . . . . . 7 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) ∈ ℤ)
4334, 38zmulcld 12726 . . . . . . . . 9 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑏 · (2 · 𝑁)) ∈ ℤ)
4432, 43zaddcld 12724 . . . . . . . 8 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑀 + (𝑏 · (2 · 𝑁))) ∈ ℤ)
458fovcl 7561 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 + (𝑏 · (2 · 𝑁))) ∈ ℤ) → (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℤ)
4629, 44, 45syl2anc 584 . . . . . . 7 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℤ)
473fovcl 7561 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ (2 · 𝑁) ∈ ℤ) → (𝐴 Xrm (2 · 𝑁)) ∈ ℕ0)
4847nn0zd 12637 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ (2 · 𝑁) ∈ ℤ) → (𝐴 Xrm (2 · 𝑁)) ∈ ℤ)
4929, 38, 48syl2anc 584 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm (2 · 𝑁)) ∈ ℤ)
5046, 49zmulcld 12726 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) ∈ ℤ)
5146znegcld 12722 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℤ)
5250, 51zsubcld 12725 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) ∈ ℤ)
533fovcl 7561 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 + (𝑏 · (2 · 𝑁))) ∈ ℤ) → (𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℕ0)
5453nn0zd 12637 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 + (𝑏 · (2 · 𝑁))) ∈ ℤ) → (𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℤ)
5529, 44, 54syl2anc 584 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℤ)
568fovcl 7561 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ (2 · 𝑁) ∈ ℤ) → (𝐴 Yrm (2 · 𝑁)) ∈ ℤ)
5729, 38, 56syl2anc 584 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm (2 · 𝑁)) ∈ ℤ)
5855, 57zmulcld 12726 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁))) ∈ ℤ)
5937, 31zmulcld 12726 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (2 · (𝐴 Xrm 𝑁)) ∈ ℤ)
60 dvdsmul2 16313 . . . . . . . . . . . . . 14 (((2 · (𝐴 Xrm 𝑁)) ∈ ℤ ∧ (𝐴 Xrm 𝑁) ∈ ℤ) → (𝐴 Xrm 𝑁) ∥ ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Xrm 𝑁)))
6159, 31, 60syl2anc 584 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Xrm 𝑁)))
62 rmxdbl 42928 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (2 · 𝑁)) = ((2 · ((𝐴 Xrm 𝑁)↑2)) − 1))
6329, 30, 62syl2anc 584 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm (2 · 𝑁)) = ((2 · ((𝐴 Xrm 𝑁)↑2)) − 1))
6463oveq1d 7446 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm (2 · 𝑁)) + 1) = (((2 · ((𝐴 Xrm 𝑁)↑2)) − 1) + 1))
65 2cnd 12342 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 2 ∈ ℂ)
6629, 30, 4syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∈ ℕ0)
6766nn0cnd 12587 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∈ ℂ)
6867sqcld 14181 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm 𝑁)↑2) ∈ ℂ)
6965, 68mulcld 11279 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (2 · ((𝐴 Xrm 𝑁)↑2)) ∈ ℂ)
70 1cnd 11254 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 1 ∈ ℂ)
7169, 70npcand 11622 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (((2 · ((𝐴 Xrm 𝑁)↑2)) − 1) + 1) = (2 · ((𝐴 Xrm 𝑁)↑2)))
7267sqvald 14180 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm 𝑁)↑2) = ((𝐴 Xrm 𝑁) · (𝐴 Xrm 𝑁)))
7372oveq2d 7447 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (2 · ((𝐴 Xrm 𝑁)↑2)) = (2 · ((𝐴 Xrm 𝑁) · (𝐴 Xrm 𝑁))))
74 mulass 11241 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ (𝐴 Xrm 𝑁) ∈ ℂ ∧ (𝐴 Xrm 𝑁) ∈ ℂ) → ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Xrm 𝑁)) = (2 · ((𝐴 Xrm 𝑁) · (𝐴 Xrm 𝑁))))
7574eqcomd 2741 . . . . . . . . . . . . . . . 16 ((2 ∈ ℂ ∧ (𝐴 Xrm 𝑁) ∈ ℂ ∧ (𝐴 Xrm 𝑁) ∈ ℂ) → (2 · ((𝐴 Xrm 𝑁) · (𝐴 Xrm 𝑁))) = ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Xrm 𝑁)))
7665, 67, 67, 75syl3anc 1370 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (2 · ((𝐴 Xrm 𝑁) · (𝐴 Xrm 𝑁))) = ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Xrm 𝑁)))
7773, 76eqtrd 2775 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (2 · ((𝐴 Xrm 𝑁)↑2)) = ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Xrm 𝑁)))
7864, 71, 773eqtrd 2779 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm (2 · 𝑁)) + 1) = ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Xrm 𝑁)))
7961, 78breqtrrd 5176 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Xrm (2 · 𝑁)) + 1))
8049peano2zd 12723 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm (2 · 𝑁)) + 1) ∈ ℤ)
81 dvdsmultr2 16332 . . . . . . . . . . . . 13 (((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℤ ∧ ((𝐴 Xrm (2 · 𝑁)) + 1) ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Xrm (2 · 𝑁)) + 1) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · ((𝐴 Xrm (2 · 𝑁)) + 1))))
8231, 46, 80, 81syl3anc 1370 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Xrm (2 · 𝑁)) + 1) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · ((𝐴 Xrm (2 · 𝑁)) + 1))))
8379, 82mpd 15 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · ((𝐴 Xrm (2 · 𝑁)) + 1)))
8446zcnd 12721 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℂ)
8584mulridd 11276 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · 1) = (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))))
8685oveq2d 7447 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) + ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · 1)) = (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) + (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))))
8749zcnd 12721 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm (2 · 𝑁)) ∈ ℂ)
8884, 87, 70adddid 11283 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · ((𝐴 Xrm (2 · 𝑁)) + 1)) = (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) + ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · 1)))
8950zcnd 12721 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) ∈ ℂ)
9089, 84subnegd 11625 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) = (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) + (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))))
9186, 88, 903eqtr4d 2785 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · ((𝐴 Xrm (2 · 𝑁)) + 1)) = (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))))
9283, 91breqtrd 5174 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))))
938fovcl 7561 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
9429, 30, 93syl2anc 584 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm 𝑁) ∈ ℤ)
9537, 94zmulcld 12726 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (2 · (𝐴 Yrm 𝑁)) ∈ ℤ)
96 dvdsmul2 16313 . . . . . . . . . . . . 13 (((2 · (𝐴 Yrm 𝑁)) ∈ ℤ ∧ (𝐴 Xrm 𝑁) ∈ ℤ) → (𝐴 Xrm 𝑁) ∥ ((2 · (𝐴 Yrm 𝑁)) · (𝐴 Xrm 𝑁)))
9795, 31, 96syl2anc 584 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ ((2 · (𝐴 Yrm 𝑁)) · (𝐴 Xrm 𝑁)))
98 rmydbl 42929 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (2 · 𝑁)) = ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Yrm 𝑁)))
9929, 30, 98syl2anc 584 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm (2 · 𝑁)) = ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Yrm 𝑁)))
10094zcnd 12721 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm 𝑁) ∈ ℂ)
10165, 67, 100mul32d 11469 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Yrm 𝑁)) = ((2 · (𝐴 Yrm 𝑁)) · (𝐴 Xrm 𝑁)))
10299, 101eqtrd 2775 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm (2 · 𝑁)) = ((2 · (𝐴 Yrm 𝑁)) · (𝐴 Xrm 𝑁)))
10397, 102breqtrrd 5176 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ (𝐴 Yrm (2 · 𝑁)))
104 dvdsmultr2 16332 . . . . . . . . . . . 12 (((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℤ ∧ (𝐴 Yrm (2 · 𝑁)) ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ (𝐴 Yrm (2 · 𝑁)) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))))
10531, 55, 57, 104syl3anc 1370 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm 𝑁) ∥ (𝐴 Yrm (2 · 𝑁)) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))))
106103, 105mpd 15 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁))))
10731, 52, 58, 92, 106dvds2addd 16326 . . . . . . . . 9 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ ((((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) + ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))))
10834zcnd 12721 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑏 ∈ ℂ)
10938zcnd 12721 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (2 · 𝑁) ∈ ℂ)
110108, 70, 109adddird 11284 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑏 + 1) · (2 · 𝑁)) = ((𝑏 · (2 · 𝑁)) + (1 · (2 · 𝑁))))
111110oveq2d 7447 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑀 + ((𝑏 + 1) · (2 · 𝑁))) = (𝑀 + ((𝑏 · (2 · 𝑁)) + (1 · (2 · 𝑁)))))
11232zcnd 12721 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑀 ∈ ℂ)
11343zcnd 12721 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑏 · (2 · 𝑁)) ∈ ℂ)
114 1zzd 12646 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 1 ∈ ℤ)
115114, 38zmulcld 12726 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (1 · (2 · 𝑁)) ∈ ℤ)
116115zcnd 12721 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (1 · (2 · 𝑁)) ∈ ℂ)
117112, 113, 116addassd 11281 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑀 + (𝑏 · (2 · 𝑁))) + (1 · (2 · 𝑁))) = (𝑀 + ((𝑏 · (2 · 𝑁)) + (1 · (2 · 𝑁)))))
118109mullidd 11277 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (1 · (2 · 𝑁)) = (2 · 𝑁))
119118oveq2d 7447 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑀 + (𝑏 · (2 · 𝑁))) + (1 · (2 · 𝑁))) = ((𝑀 + (𝑏 · (2 · 𝑁))) + (2 · 𝑁)))
120111, 117, 1193eqtr2d 2781 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑀 + ((𝑏 + 1) · (2 · 𝑁))) = ((𝑀 + (𝑏 · (2 · 𝑁))) + (2 · 𝑁)))
121120oveq2d 7447 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) = (𝐴 Yrm ((𝑀 + (𝑏 · (2 · 𝑁))) + (2 · 𝑁))))
122 rmyadd 42920 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 + (𝑏 · (2 · 𝑁))) ∈ ℤ ∧ (2 · 𝑁) ∈ ℤ) → (𝐴 Yrm ((𝑀 + (𝑏 · (2 · 𝑁))) + (2 · 𝑁))) = (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) + ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))))
12329, 44, 38, 122syl3anc 1370 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm ((𝑀 + (𝑏 · (2 · 𝑁))) + (2 · 𝑁))) = (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) + ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))))
124121, 123eqtrd 2775 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) = (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) + ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))))
125124oveq1d 7446 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) = ((((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) + ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))))
12658zcnd 12721 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁))) ∈ ℂ)
12751zcnd 12721 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℂ)
12889, 126, 127addsubd 11639 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) + ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) = ((((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) + ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))))
129125, 128eqtrd 2775 . . . . . . . . 9 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) = ((((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) + ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))))
130107, 129breqtrrd 5176 . . . . . . . 8 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))))
131130olcd 874 . . . . . . 7 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))))))
132 jm2.25lem1 42987 . . . . . . 7 ((((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ) ∧ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) ∈ ℤ ∧ (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℤ) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))))) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))) ↔ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))))
13331, 33, 42, 46, 131, 132syl221anc 1380 . . . . . 6 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))) ↔ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))))
134133pm5.74da 804 . . . . 5 (𝑏 ∈ ℤ → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))))
135 oveq1 7438 . . . . . . . . . . 11 (𝑎 = 𝑏 → (𝑎 · (2 · 𝑁)) = (𝑏 · (2 · 𝑁)))
136135oveq2d 7447 . . . . . . . . . 10 (𝑎 = 𝑏 → (𝑀 + (𝑎 · (2 · 𝑁))) = (𝑀 + (𝑏 · (2 · 𝑁))))
137136oveq2d 7447 . . . . . . . . 9 (𝑎 = 𝑏 → (𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) = (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))))
138137oveq1d 7446 . . . . . . . 8 (𝑎 = 𝑏 → ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) = ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)))
139138breq2d 5160 . . . . . . 7 (𝑎 = 𝑏 → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ↔ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀))))
140137oveq1d 7446 . . . . . . . 8 (𝑎 = 𝑏 → ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)) = ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))
141140breq2d 5160 . . . . . . 7 (𝑎 = 𝑏 → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)) ↔ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
142139, 141orbi12d 918 . . . . . 6 (𝑎 = 𝑏 → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))) ↔ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))))
143142imbi2d 340 . . . . 5 (𝑎 = 𝑏 → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))))
144 oveq1 7438 . . . . . . . . . . 11 (𝑎 = (𝑏 + 1) → (𝑎 · (2 · 𝑁)) = ((𝑏 + 1) · (2 · 𝑁)))
145144oveq2d 7447 . . . . . . . . . 10 (𝑎 = (𝑏 + 1) → (𝑀 + (𝑎 · (2 · 𝑁))) = (𝑀 + ((𝑏 + 1) · (2 · 𝑁))))
146145oveq2d 7447 . . . . . . . . 9 (𝑎 = (𝑏 + 1) → (𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) = (𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))))
147146oveq1d 7446 . . . . . . . 8 (𝑎 = (𝑏 + 1) → ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) = ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)))
148147breq2d 5160 . . . . . . 7 (𝑎 = (𝑏 + 1) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ↔ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − (𝐴 Yrm 𝑀))))
149146oveq1d 7446 . . . . . . . 8 (𝑎 = (𝑏 + 1) → ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)) = ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))
150149breq2d 5160 . . . . . . 7 (𝑎 = (𝑏 + 1) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)) ↔ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
151148, 150orbi12d 918 . . . . . 6 (𝑎 = (𝑏 + 1) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))) ↔ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))))
152151imbi2d 340 . . . . 5 (𝑎 = (𝑏 + 1) → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))))
153 oveq1 7438 . . . . . . . . . . 11 (𝑎 = 0 → (𝑎 · (2 · 𝑁)) = (0 · (2 · 𝑁)))
154153oveq2d 7447 . . . . . . . . . 10 (𝑎 = 0 → (𝑀 + (𝑎 · (2 · 𝑁))) = (𝑀 + (0 · (2 · 𝑁))))
155154oveq2d 7447 . . . . . . . . 9 (𝑎 = 0 → (𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) = (𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))))
156155oveq1d 7446 . . . . . . . 8 (𝑎 = 0 → ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) = ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)))
157156breq2d 5160 . . . . . . 7 (𝑎 = 0 → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ↔ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀))))
158155oveq1d 7446 . . . . . . . 8 (𝑎 = 0 → ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)) = ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))
159158breq2d 5160 . . . . . . 7 (𝑎 = 0 → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)) ↔ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
160157, 159orbi12d 918 . . . . . 6 (𝑎 = 0 → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))) ↔ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))))
161160imbi2d 340 . . . . 5 (𝑎 = 0 → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))))
162 oveq1 7438 . . . . . . . . . . 11 (𝑎 = 𝐼 → (𝑎 · (2 · 𝑁)) = (𝐼 · (2 · 𝑁)))
163162oveq2d 7447 . . . . . . . . . 10 (𝑎 = 𝐼 → (𝑀 + (𝑎 · (2 · 𝑁))) = (𝑀 + (𝐼 · (2 · 𝑁))))
164163oveq2d 7447 . . . . . . . . 9 (𝑎 = 𝐼 → (𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) = (𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))))
165164oveq1d 7446 . . . . . . . 8 (𝑎 = 𝐼 → ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) = ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)))
166165breq2d 5160 . . . . . . 7 (𝑎 = 𝐼 → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ↔ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀))))
167164oveq1d 7446 . . . . . . . 8 (𝑎 = 𝐼 → ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)) = ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))
168167breq2d 5160 . . . . . . 7 (𝑎 = 𝐼 → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)) ↔ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
169166, 168orbi12d 918 . . . . . 6 (𝑎 = 𝐼 → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))) ↔ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))))
170169imbi2d 340 . . . . 5 (𝑎 = 𝐼 → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))))
171134, 143, 152, 161, 170zindbi 42935 . . . 4 (𝐼 ∈ ℤ → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))))
17228, 171mpbid 232 . . 3 (𝐼 ∈ ℤ → ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))))
173172impcom 407 . 2 (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
1741733impa 1109 1 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106   class class class wbr 5148  cfv 6563  (class class class)co 7431  cc 11151  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  cmin 11490  -cneg 11491  2c2 12319  0cn0 12524  cz 12611  cuz 12876  cexp 14099  cdvds 16287   Xrm crmx 42888   Yrm crmy 42889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-omul 8510  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-acn 9980  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12598  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-ef 16100  df-sin 16102  df-cos 16103  df-pi 16105  df-dvds 16288  df-gcd 16529  df-numer 16769  df-denom 16770  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917  df-log 26613  df-squarenn 42829  df-pell1qr 42830  df-pell14qr 42831  df-pell1234qr 42832  df-pellfund 42833  df-rmx 42890  df-rmy 42891
This theorem is referenced by:  jm2.26a  42989
  Copyright terms: Public domain W3C validator