Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.25 Structured version   Visualization version   GIF version

Theorem jm2.25 42956
Description: Lemma for jm2.26 42959. Remainders mod X(2n) are negaperiodic mod 2n. (Contributed by Stefan O'Rear, 2-Oct-2014.)
Assertion
Ref Expression
jm2.25 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))

Proof of Theorem jm2.25
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 770 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝐴 ∈ (ℤ‘2))
2 simprrr 781 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑁 ∈ ℤ)
3 frmx 42870 . . . . . . . . . . 11 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
43fovcl 7578 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
54nn0zd 12665 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℤ)
61, 2, 5syl2anc 583 . . . . . . . 8 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∈ ℤ)
7 simprrl 780 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑀 ∈ ℤ)
8 frmy 42871 . . . . . . . . . 10 Yrm :((ℤ‘2) × ℤ)⟶ℤ
98fovcl 7578 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ)
101, 7, 9syl2anc 583 . . . . . . . 8 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm 𝑀) ∈ ℤ)
11 congid 42928 . . . . . . . 8 (((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − (𝐴 Yrm 𝑀)))
126, 10, 11syl2anc 583 . . . . . . 7 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − (𝐴 Yrm 𝑀)))
13 2cnd 12371 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → 2 ∈ ℂ)
14 zcn 12644 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1513, 14mulcld 11310 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℂ)
1615mul02d 11488 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (0 · (2 · 𝑁)) = 0)
1716adantl 481 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 · (2 · 𝑁)) = 0)
1817oveq2d 7464 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + (0 · (2 · 𝑁))) = (𝑀 + 0))
19 zcn 12644 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
2019addridd 11490 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → (𝑀 + 0) = 𝑀)
2120adantr 480 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 0) = 𝑀)
2218, 21eqtrd 2780 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + (0 · (2 · 𝑁))) = 𝑀)
2322ad2antll 728 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑀 + (0 · (2 · 𝑁))) = 𝑀)
2423oveq2d 7464 . . . . . . . 8 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) = (𝐴 Yrm 𝑀))
2524oveq1d 7463 . . . . . . 7 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) = ((𝐴 Yrm 𝑀) − (𝐴 Yrm 𝑀)))
2612, 25breqtrrd 5194 . . . . . 6 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)))
2726orcd 872 . . . . 5 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
2827ex 412 . . . 4 (𝐼 ∈ ℤ → ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))))
29 simprl 770 . . . . . . . 8 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝐴 ∈ (ℤ‘2))
30 simprrr 781 . . . . . . . 8 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑁 ∈ ℤ)
3129, 30, 5syl2anc 583 . . . . . . 7 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∈ ℤ)
32 simprrl 780 . . . . . . . 8 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑀 ∈ ℤ)
3329, 32, 9syl2anc 583 . . . . . . 7 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm 𝑀) ∈ ℤ)
34 simpl 482 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑏 ∈ ℤ)
3534peano2zd 12750 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑏 + 1) ∈ ℤ)
36 eluzel2 12908 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → 2 ∈ ℤ)
3736ad2antrl 727 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 2 ∈ ℤ)
3837, 30zmulcld 12753 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (2 · 𝑁) ∈ ℤ)
3935, 38zmulcld 12753 . . . . . . . . 9 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑏 + 1) · (2 · 𝑁)) ∈ ℤ)
4032, 39zaddcld 12751 . . . . . . . 8 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑀 + ((𝑏 + 1) · (2 · 𝑁))) ∈ ℤ)
418fovcl 7578 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 + ((𝑏 + 1) · (2 · 𝑁))) ∈ ℤ) → (𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) ∈ ℤ)
4229, 40, 41syl2anc 583 . . . . . . 7 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) ∈ ℤ)
4334, 38zmulcld 12753 . . . . . . . . 9 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑏 · (2 · 𝑁)) ∈ ℤ)
4432, 43zaddcld 12751 . . . . . . . 8 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑀 + (𝑏 · (2 · 𝑁))) ∈ ℤ)
458fovcl 7578 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 + (𝑏 · (2 · 𝑁))) ∈ ℤ) → (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℤ)
4629, 44, 45syl2anc 583 . . . . . . 7 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℤ)
473fovcl 7578 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ (2 · 𝑁) ∈ ℤ) → (𝐴 Xrm (2 · 𝑁)) ∈ ℕ0)
4847nn0zd 12665 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ (2 · 𝑁) ∈ ℤ) → (𝐴 Xrm (2 · 𝑁)) ∈ ℤ)
4929, 38, 48syl2anc 583 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm (2 · 𝑁)) ∈ ℤ)
5046, 49zmulcld 12753 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) ∈ ℤ)
5146znegcld 12749 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℤ)
5250, 51zsubcld 12752 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) ∈ ℤ)
533fovcl 7578 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 + (𝑏 · (2 · 𝑁))) ∈ ℤ) → (𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℕ0)
5453nn0zd 12665 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 + (𝑏 · (2 · 𝑁))) ∈ ℤ) → (𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℤ)
5529, 44, 54syl2anc 583 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℤ)
568fovcl 7578 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ (2 · 𝑁) ∈ ℤ) → (𝐴 Yrm (2 · 𝑁)) ∈ ℤ)
5729, 38, 56syl2anc 583 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm (2 · 𝑁)) ∈ ℤ)
5855, 57zmulcld 12753 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁))) ∈ ℤ)
5937, 31zmulcld 12753 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (2 · (𝐴 Xrm 𝑁)) ∈ ℤ)
60 dvdsmul2 16327 . . . . . . . . . . . . . 14 (((2 · (𝐴 Xrm 𝑁)) ∈ ℤ ∧ (𝐴 Xrm 𝑁) ∈ ℤ) → (𝐴 Xrm 𝑁) ∥ ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Xrm 𝑁)))
6159, 31, 60syl2anc 583 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Xrm 𝑁)))
62 rmxdbl 42896 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (2 · 𝑁)) = ((2 · ((𝐴 Xrm 𝑁)↑2)) − 1))
6329, 30, 62syl2anc 583 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm (2 · 𝑁)) = ((2 · ((𝐴 Xrm 𝑁)↑2)) − 1))
6463oveq1d 7463 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm (2 · 𝑁)) + 1) = (((2 · ((𝐴 Xrm 𝑁)↑2)) − 1) + 1))
65 2cnd 12371 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 2 ∈ ℂ)
6629, 30, 4syl2anc 583 . . . . . . . . . . . . . . . . . 18 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∈ ℕ0)
6766nn0cnd 12615 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∈ ℂ)
6867sqcld 14194 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm 𝑁)↑2) ∈ ℂ)
6965, 68mulcld 11310 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (2 · ((𝐴 Xrm 𝑁)↑2)) ∈ ℂ)
70 1cnd 11285 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 1 ∈ ℂ)
7169, 70npcand 11651 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (((2 · ((𝐴 Xrm 𝑁)↑2)) − 1) + 1) = (2 · ((𝐴 Xrm 𝑁)↑2)))
7267sqvald 14193 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm 𝑁)↑2) = ((𝐴 Xrm 𝑁) · (𝐴 Xrm 𝑁)))
7372oveq2d 7464 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (2 · ((𝐴 Xrm 𝑁)↑2)) = (2 · ((𝐴 Xrm 𝑁) · (𝐴 Xrm 𝑁))))
74 mulass 11272 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ (𝐴 Xrm 𝑁) ∈ ℂ ∧ (𝐴 Xrm 𝑁) ∈ ℂ) → ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Xrm 𝑁)) = (2 · ((𝐴 Xrm 𝑁) · (𝐴 Xrm 𝑁))))
7574eqcomd 2746 . . . . . . . . . . . . . . . 16 ((2 ∈ ℂ ∧ (𝐴 Xrm 𝑁) ∈ ℂ ∧ (𝐴 Xrm 𝑁) ∈ ℂ) → (2 · ((𝐴 Xrm 𝑁) · (𝐴 Xrm 𝑁))) = ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Xrm 𝑁)))
7665, 67, 67, 75syl3anc 1371 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (2 · ((𝐴 Xrm 𝑁) · (𝐴 Xrm 𝑁))) = ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Xrm 𝑁)))
7773, 76eqtrd 2780 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (2 · ((𝐴 Xrm 𝑁)↑2)) = ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Xrm 𝑁)))
7864, 71, 773eqtrd 2784 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm (2 · 𝑁)) + 1) = ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Xrm 𝑁)))
7961, 78breqtrrd 5194 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Xrm (2 · 𝑁)) + 1))
8049peano2zd 12750 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm (2 · 𝑁)) + 1) ∈ ℤ)
81 dvdsmultr2 16346 . . . . . . . . . . . . 13 (((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℤ ∧ ((𝐴 Xrm (2 · 𝑁)) + 1) ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Xrm (2 · 𝑁)) + 1) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · ((𝐴 Xrm (2 · 𝑁)) + 1))))
8231, 46, 80, 81syl3anc 1371 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Xrm (2 · 𝑁)) + 1) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · ((𝐴 Xrm (2 · 𝑁)) + 1))))
8379, 82mpd 15 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · ((𝐴 Xrm (2 · 𝑁)) + 1)))
8446zcnd 12748 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℂ)
8584mulridd 11307 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · 1) = (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))))
8685oveq2d 7464 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) + ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · 1)) = (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) + (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))))
8749zcnd 12748 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm (2 · 𝑁)) ∈ ℂ)
8884, 87, 70adddid 11314 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · ((𝐴 Xrm (2 · 𝑁)) + 1)) = (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) + ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · 1)))
8950zcnd 12748 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) ∈ ℂ)
9089, 84subnegd 11654 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) = (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) + (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))))
9186, 88, 903eqtr4d 2790 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · ((𝐴 Xrm (2 · 𝑁)) + 1)) = (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))))
9283, 91breqtrd 5192 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))))
938fovcl 7578 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
9429, 30, 93syl2anc 583 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm 𝑁) ∈ ℤ)
9537, 94zmulcld 12753 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (2 · (𝐴 Yrm 𝑁)) ∈ ℤ)
96 dvdsmul2 16327 . . . . . . . . . . . . 13 (((2 · (𝐴 Yrm 𝑁)) ∈ ℤ ∧ (𝐴 Xrm 𝑁) ∈ ℤ) → (𝐴 Xrm 𝑁) ∥ ((2 · (𝐴 Yrm 𝑁)) · (𝐴 Xrm 𝑁)))
9795, 31, 96syl2anc 583 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ ((2 · (𝐴 Yrm 𝑁)) · (𝐴 Xrm 𝑁)))
98 rmydbl 42897 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (2 · 𝑁)) = ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Yrm 𝑁)))
9929, 30, 98syl2anc 583 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm (2 · 𝑁)) = ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Yrm 𝑁)))
10094zcnd 12748 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm 𝑁) ∈ ℂ)
10165, 67, 100mul32d 11500 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Yrm 𝑁)) = ((2 · (𝐴 Yrm 𝑁)) · (𝐴 Xrm 𝑁)))
10299, 101eqtrd 2780 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm (2 · 𝑁)) = ((2 · (𝐴 Yrm 𝑁)) · (𝐴 Xrm 𝑁)))
10397, 102breqtrrd 5194 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ (𝐴 Yrm (2 · 𝑁)))
104 dvdsmultr2 16346 . . . . . . . . . . . 12 (((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℤ ∧ (𝐴 Yrm (2 · 𝑁)) ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ (𝐴 Yrm (2 · 𝑁)) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))))
10531, 55, 57, 104syl3anc 1371 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm 𝑁) ∥ (𝐴 Yrm (2 · 𝑁)) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))))
106103, 105mpd 15 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁))))
10731, 52, 58, 92, 106dvds2addd 16340 . . . . . . . . 9 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ ((((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) + ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))))
10834zcnd 12748 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑏 ∈ ℂ)
10938zcnd 12748 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (2 · 𝑁) ∈ ℂ)
110108, 70, 109adddird 11315 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑏 + 1) · (2 · 𝑁)) = ((𝑏 · (2 · 𝑁)) + (1 · (2 · 𝑁))))
111110oveq2d 7464 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑀 + ((𝑏 + 1) · (2 · 𝑁))) = (𝑀 + ((𝑏 · (2 · 𝑁)) + (1 · (2 · 𝑁)))))
11232zcnd 12748 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑀 ∈ ℂ)
11343zcnd 12748 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑏 · (2 · 𝑁)) ∈ ℂ)
114 1zzd 12674 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 1 ∈ ℤ)
115114, 38zmulcld 12753 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (1 · (2 · 𝑁)) ∈ ℤ)
116115zcnd 12748 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (1 · (2 · 𝑁)) ∈ ℂ)
117112, 113, 116addassd 11312 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑀 + (𝑏 · (2 · 𝑁))) + (1 · (2 · 𝑁))) = (𝑀 + ((𝑏 · (2 · 𝑁)) + (1 · (2 · 𝑁)))))
118109mullidd 11308 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (1 · (2 · 𝑁)) = (2 · 𝑁))
119118oveq2d 7464 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑀 + (𝑏 · (2 · 𝑁))) + (1 · (2 · 𝑁))) = ((𝑀 + (𝑏 · (2 · 𝑁))) + (2 · 𝑁)))
120111, 117, 1193eqtr2d 2786 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑀 + ((𝑏 + 1) · (2 · 𝑁))) = ((𝑀 + (𝑏 · (2 · 𝑁))) + (2 · 𝑁)))
121120oveq2d 7464 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) = (𝐴 Yrm ((𝑀 + (𝑏 · (2 · 𝑁))) + (2 · 𝑁))))
122 rmyadd 42888 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 + (𝑏 · (2 · 𝑁))) ∈ ℤ ∧ (2 · 𝑁) ∈ ℤ) → (𝐴 Yrm ((𝑀 + (𝑏 · (2 · 𝑁))) + (2 · 𝑁))) = (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) + ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))))
12329, 44, 38, 122syl3anc 1371 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm ((𝑀 + (𝑏 · (2 · 𝑁))) + (2 · 𝑁))) = (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) + ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))))
124121, 123eqtrd 2780 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) = (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) + ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))))
125124oveq1d 7463 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) = ((((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) + ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))))
12658zcnd 12748 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁))) ∈ ℂ)
12751zcnd 12748 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℂ)
12889, 126, 127addsubd 11668 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) + ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) = ((((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) + ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))))
129125, 128eqtrd 2780 . . . . . . . . 9 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) = ((((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) + ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))))
130107, 129breqtrrd 5194 . . . . . . . 8 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))))
131130olcd 873 . . . . . . 7 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))))))
132 jm2.25lem1 42955 . . . . . . 7 ((((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ) ∧ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) ∈ ℤ ∧ (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℤ) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))))) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))) ↔ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))))
13331, 33, 42, 46, 131, 132syl221anc 1381 . . . . . 6 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))) ↔ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))))
134133pm5.74da 803 . . . . 5 (𝑏 ∈ ℤ → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))))
135 oveq1 7455 . . . . . . . . . . 11 (𝑎 = 𝑏 → (𝑎 · (2 · 𝑁)) = (𝑏 · (2 · 𝑁)))
136135oveq2d 7464 . . . . . . . . . 10 (𝑎 = 𝑏 → (𝑀 + (𝑎 · (2 · 𝑁))) = (𝑀 + (𝑏 · (2 · 𝑁))))
137136oveq2d 7464 . . . . . . . . 9 (𝑎 = 𝑏 → (𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) = (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))))
138137oveq1d 7463 . . . . . . . 8 (𝑎 = 𝑏 → ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) = ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)))
139138breq2d 5178 . . . . . . 7 (𝑎 = 𝑏 → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ↔ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀))))
140137oveq1d 7463 . . . . . . . 8 (𝑎 = 𝑏 → ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)) = ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))
141140breq2d 5178 . . . . . . 7 (𝑎 = 𝑏 → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)) ↔ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
142139, 141orbi12d 917 . . . . . 6 (𝑎 = 𝑏 → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))) ↔ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))))
143142imbi2d 340 . . . . 5 (𝑎 = 𝑏 → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))))
144 oveq1 7455 . . . . . . . . . . 11 (𝑎 = (𝑏 + 1) → (𝑎 · (2 · 𝑁)) = ((𝑏 + 1) · (2 · 𝑁)))
145144oveq2d 7464 . . . . . . . . . 10 (𝑎 = (𝑏 + 1) → (𝑀 + (𝑎 · (2 · 𝑁))) = (𝑀 + ((𝑏 + 1) · (2 · 𝑁))))
146145oveq2d 7464 . . . . . . . . 9 (𝑎 = (𝑏 + 1) → (𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) = (𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))))
147146oveq1d 7463 . . . . . . . 8 (𝑎 = (𝑏 + 1) → ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) = ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)))
148147breq2d 5178 . . . . . . 7 (𝑎 = (𝑏 + 1) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ↔ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − (𝐴 Yrm 𝑀))))
149146oveq1d 7463 . . . . . . . 8 (𝑎 = (𝑏 + 1) → ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)) = ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))
150149breq2d 5178 . . . . . . 7 (𝑎 = (𝑏 + 1) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)) ↔ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
151148, 150orbi12d 917 . . . . . 6 (𝑎 = (𝑏 + 1) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))) ↔ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))))
152151imbi2d 340 . . . . 5 (𝑎 = (𝑏 + 1) → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))))
153 oveq1 7455 . . . . . . . . . . 11 (𝑎 = 0 → (𝑎 · (2 · 𝑁)) = (0 · (2 · 𝑁)))
154153oveq2d 7464 . . . . . . . . . 10 (𝑎 = 0 → (𝑀 + (𝑎 · (2 · 𝑁))) = (𝑀 + (0 · (2 · 𝑁))))
155154oveq2d 7464 . . . . . . . . 9 (𝑎 = 0 → (𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) = (𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))))
156155oveq1d 7463 . . . . . . . 8 (𝑎 = 0 → ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) = ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)))
157156breq2d 5178 . . . . . . 7 (𝑎 = 0 → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ↔ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀))))
158155oveq1d 7463 . . . . . . . 8 (𝑎 = 0 → ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)) = ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))
159158breq2d 5178 . . . . . . 7 (𝑎 = 0 → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)) ↔ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
160157, 159orbi12d 917 . . . . . 6 (𝑎 = 0 → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))) ↔ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))))
161160imbi2d 340 . . . . 5 (𝑎 = 0 → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))))
162 oveq1 7455 . . . . . . . . . . 11 (𝑎 = 𝐼 → (𝑎 · (2 · 𝑁)) = (𝐼 · (2 · 𝑁)))
163162oveq2d 7464 . . . . . . . . . 10 (𝑎 = 𝐼 → (𝑀 + (𝑎 · (2 · 𝑁))) = (𝑀 + (𝐼 · (2 · 𝑁))))
164163oveq2d 7464 . . . . . . . . 9 (𝑎 = 𝐼 → (𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) = (𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))))
165164oveq1d 7463 . . . . . . . 8 (𝑎 = 𝐼 → ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) = ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)))
166165breq2d 5178 . . . . . . 7 (𝑎 = 𝐼 → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ↔ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀))))
167164oveq1d 7463 . . . . . . . 8 (𝑎 = 𝐼 → ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)) = ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))
168167breq2d 5178 . . . . . . 7 (𝑎 = 𝐼 → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)) ↔ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
169166, 168orbi12d 917 . . . . . 6 (𝑎 = 𝐼 → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))) ↔ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))))
170169imbi2d 340 . . . . 5 (𝑎 = 𝐼 → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))))
171134, 143, 152, 161, 170zindbi 42903 . . . 4 (𝐼 ∈ ℤ → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))))
17228, 171mpbid 232 . . 3 (𝐼 ∈ ℤ → ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))))
173172impcom 407 . 2 (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
1741733impa 1110 1 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cmin 11520  -cneg 11521  2c2 12348  0cn0 12553  cz 12639  cuz 12903  cexp 14112  cdvds 16302   Xrm crmx 42856   Yrm crmy 42857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-dvds 16303  df-gcd 16541  df-numer 16782  df-denom 16783  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616  df-squarenn 42797  df-pell1qr 42798  df-pell14qr 42799  df-pell1234qr 42800  df-pellfund 42801  df-rmx 42858  df-rmy 42859
This theorem is referenced by:  jm2.26a  42957
  Copyright terms: Public domain W3C validator