Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.25 Structured version   Visualization version   GIF version

Theorem jm2.25 41309
Description: Lemma for jm2.26 41312. Remainders mod X(2n) are negaperiodic mod 2n. (Contributed by Stefan O'Rear, 2-Oct-2014.)
Assertion
Ref Expression
jm2.25 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))

Proof of Theorem jm2.25
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 769 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝐴 ∈ (ℤ‘2))
2 simprrr 780 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑁 ∈ ℤ)
3 frmx 41223 . . . . . . . . . . 11 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
43fovcl 7484 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
54nn0zd 12525 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℤ)
61, 2, 5syl2anc 584 . . . . . . . 8 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∈ ℤ)
7 simprrl 779 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑀 ∈ ℤ)
8 frmy 41224 . . . . . . . . . 10 Yrm :((ℤ‘2) × ℤ)⟶ℤ
98fovcl 7484 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ)
101, 7, 9syl2anc 584 . . . . . . . 8 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm 𝑀) ∈ ℤ)
11 congid 41281 . . . . . . . 8 (((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − (𝐴 Yrm 𝑀)))
126, 10, 11syl2anc 584 . . . . . . 7 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − (𝐴 Yrm 𝑀)))
13 2cnd 12231 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → 2 ∈ ℂ)
14 zcn 12504 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1513, 14mulcld 11175 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℂ)
1615mul02d 11353 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (0 · (2 · 𝑁)) = 0)
1716adantl 482 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 · (2 · 𝑁)) = 0)
1817oveq2d 7373 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + (0 · (2 · 𝑁))) = (𝑀 + 0))
19 zcn 12504 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
2019addid1d 11355 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → (𝑀 + 0) = 𝑀)
2120adantr 481 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 0) = 𝑀)
2218, 21eqtrd 2776 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + (0 · (2 · 𝑁))) = 𝑀)
2322ad2antll 727 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑀 + (0 · (2 · 𝑁))) = 𝑀)
2423oveq2d 7373 . . . . . . . 8 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) = (𝐴 Yrm 𝑀))
2524oveq1d 7372 . . . . . . 7 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) = ((𝐴 Yrm 𝑀) − (𝐴 Yrm 𝑀)))
2612, 25breqtrrd 5133 . . . . . 6 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)))
2726orcd 871 . . . . 5 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
2827ex 413 . . . 4 (𝐼 ∈ ℤ → ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))))
29 simprl 769 . . . . . . . 8 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝐴 ∈ (ℤ‘2))
30 simprrr 780 . . . . . . . 8 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑁 ∈ ℤ)
3129, 30, 5syl2anc 584 . . . . . . 7 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∈ ℤ)
32 simprrl 779 . . . . . . . 8 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑀 ∈ ℤ)
3329, 32, 9syl2anc 584 . . . . . . 7 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm 𝑀) ∈ ℤ)
34 simpl 483 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑏 ∈ ℤ)
3534peano2zd 12610 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑏 + 1) ∈ ℤ)
36 eluzel2 12768 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → 2 ∈ ℤ)
3736ad2antrl 726 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 2 ∈ ℤ)
3837, 30zmulcld 12613 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (2 · 𝑁) ∈ ℤ)
3935, 38zmulcld 12613 . . . . . . . . 9 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑏 + 1) · (2 · 𝑁)) ∈ ℤ)
4032, 39zaddcld 12611 . . . . . . . 8 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑀 + ((𝑏 + 1) · (2 · 𝑁))) ∈ ℤ)
418fovcl 7484 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 + ((𝑏 + 1) · (2 · 𝑁))) ∈ ℤ) → (𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) ∈ ℤ)
4229, 40, 41syl2anc 584 . . . . . . 7 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) ∈ ℤ)
4334, 38zmulcld 12613 . . . . . . . . 9 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑏 · (2 · 𝑁)) ∈ ℤ)
4432, 43zaddcld 12611 . . . . . . . 8 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑀 + (𝑏 · (2 · 𝑁))) ∈ ℤ)
458fovcl 7484 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 + (𝑏 · (2 · 𝑁))) ∈ ℤ) → (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℤ)
4629, 44, 45syl2anc 584 . . . . . . 7 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℤ)
473fovcl 7484 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ (2 · 𝑁) ∈ ℤ) → (𝐴 Xrm (2 · 𝑁)) ∈ ℕ0)
4847nn0zd 12525 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ (2 · 𝑁) ∈ ℤ) → (𝐴 Xrm (2 · 𝑁)) ∈ ℤ)
4929, 38, 48syl2anc 584 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm (2 · 𝑁)) ∈ ℤ)
5046, 49zmulcld 12613 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) ∈ ℤ)
5146znegcld 12609 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℤ)
5250, 51zsubcld 12612 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) ∈ ℤ)
533fovcl 7484 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 + (𝑏 · (2 · 𝑁))) ∈ ℤ) → (𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℕ0)
5453nn0zd 12525 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 + (𝑏 · (2 · 𝑁))) ∈ ℤ) → (𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℤ)
5529, 44, 54syl2anc 584 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℤ)
568fovcl 7484 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ (2 · 𝑁) ∈ ℤ) → (𝐴 Yrm (2 · 𝑁)) ∈ ℤ)
5729, 38, 56syl2anc 584 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm (2 · 𝑁)) ∈ ℤ)
5855, 57zmulcld 12613 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁))) ∈ ℤ)
5937, 31zmulcld 12613 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (2 · (𝐴 Xrm 𝑁)) ∈ ℤ)
60 dvdsmul2 16161 . . . . . . . . . . . . . 14 (((2 · (𝐴 Xrm 𝑁)) ∈ ℤ ∧ (𝐴 Xrm 𝑁) ∈ ℤ) → (𝐴 Xrm 𝑁) ∥ ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Xrm 𝑁)))
6159, 31, 60syl2anc 584 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Xrm 𝑁)))
62 rmxdbl 41249 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (2 · 𝑁)) = ((2 · ((𝐴 Xrm 𝑁)↑2)) − 1))
6329, 30, 62syl2anc 584 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm (2 · 𝑁)) = ((2 · ((𝐴 Xrm 𝑁)↑2)) − 1))
6463oveq1d 7372 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm (2 · 𝑁)) + 1) = (((2 · ((𝐴 Xrm 𝑁)↑2)) − 1) + 1))
65 2cnd 12231 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 2 ∈ ℂ)
6629, 30, 4syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∈ ℕ0)
6766nn0cnd 12475 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∈ ℂ)
6867sqcld 14049 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm 𝑁)↑2) ∈ ℂ)
6965, 68mulcld 11175 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (2 · ((𝐴 Xrm 𝑁)↑2)) ∈ ℂ)
70 1cnd 11150 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 1 ∈ ℂ)
7169, 70npcand 11516 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (((2 · ((𝐴 Xrm 𝑁)↑2)) − 1) + 1) = (2 · ((𝐴 Xrm 𝑁)↑2)))
7267sqvald 14048 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm 𝑁)↑2) = ((𝐴 Xrm 𝑁) · (𝐴 Xrm 𝑁)))
7372oveq2d 7373 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (2 · ((𝐴 Xrm 𝑁)↑2)) = (2 · ((𝐴 Xrm 𝑁) · (𝐴 Xrm 𝑁))))
74 mulass 11139 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ (𝐴 Xrm 𝑁) ∈ ℂ ∧ (𝐴 Xrm 𝑁) ∈ ℂ) → ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Xrm 𝑁)) = (2 · ((𝐴 Xrm 𝑁) · (𝐴 Xrm 𝑁))))
7574eqcomd 2742 . . . . . . . . . . . . . . . 16 ((2 ∈ ℂ ∧ (𝐴 Xrm 𝑁) ∈ ℂ ∧ (𝐴 Xrm 𝑁) ∈ ℂ) → (2 · ((𝐴 Xrm 𝑁) · (𝐴 Xrm 𝑁))) = ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Xrm 𝑁)))
7665, 67, 67, 75syl3anc 1371 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (2 · ((𝐴 Xrm 𝑁) · (𝐴 Xrm 𝑁))) = ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Xrm 𝑁)))
7773, 76eqtrd 2776 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (2 · ((𝐴 Xrm 𝑁)↑2)) = ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Xrm 𝑁)))
7864, 71, 773eqtrd 2780 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm (2 · 𝑁)) + 1) = ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Xrm 𝑁)))
7961, 78breqtrrd 5133 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Xrm (2 · 𝑁)) + 1))
8049peano2zd 12610 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm (2 · 𝑁)) + 1) ∈ ℤ)
81 dvdsmultr2 16180 . . . . . . . . . . . . 13 (((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℤ ∧ ((𝐴 Xrm (2 · 𝑁)) + 1) ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Xrm (2 · 𝑁)) + 1) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · ((𝐴 Xrm (2 · 𝑁)) + 1))))
8231, 46, 80, 81syl3anc 1371 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Xrm (2 · 𝑁)) + 1) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · ((𝐴 Xrm (2 · 𝑁)) + 1))))
8379, 82mpd 15 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · ((𝐴 Xrm (2 · 𝑁)) + 1)))
8446zcnd 12608 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℂ)
8584mulid1d 11172 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · 1) = (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))))
8685oveq2d 7373 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) + ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · 1)) = (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) + (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))))
8749zcnd 12608 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm (2 · 𝑁)) ∈ ℂ)
8884, 87, 70adddid 11179 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · ((𝐴 Xrm (2 · 𝑁)) + 1)) = (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) + ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · 1)))
8950zcnd 12608 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) ∈ ℂ)
9089, 84subnegd 11519 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) = (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) + (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))))
9186, 88, 903eqtr4d 2786 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · ((𝐴 Xrm (2 · 𝑁)) + 1)) = (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))))
9283, 91breqtrd 5131 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))))
938fovcl 7484 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
9429, 30, 93syl2anc 584 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm 𝑁) ∈ ℤ)
9537, 94zmulcld 12613 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (2 · (𝐴 Yrm 𝑁)) ∈ ℤ)
96 dvdsmul2 16161 . . . . . . . . . . . . 13 (((2 · (𝐴 Yrm 𝑁)) ∈ ℤ ∧ (𝐴 Xrm 𝑁) ∈ ℤ) → (𝐴 Xrm 𝑁) ∥ ((2 · (𝐴 Yrm 𝑁)) · (𝐴 Xrm 𝑁)))
9795, 31, 96syl2anc 584 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ ((2 · (𝐴 Yrm 𝑁)) · (𝐴 Xrm 𝑁)))
98 rmydbl 41250 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (2 · 𝑁)) = ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Yrm 𝑁)))
9929, 30, 98syl2anc 584 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm (2 · 𝑁)) = ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Yrm 𝑁)))
10094zcnd 12608 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm 𝑁) ∈ ℂ)
10165, 67, 100mul32d 11365 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Yrm 𝑁)) = ((2 · (𝐴 Yrm 𝑁)) · (𝐴 Xrm 𝑁)))
10299, 101eqtrd 2776 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm (2 · 𝑁)) = ((2 · (𝐴 Yrm 𝑁)) · (𝐴 Xrm 𝑁)))
10397, 102breqtrrd 5133 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ (𝐴 Yrm (2 · 𝑁)))
104 dvdsmultr2 16180 . . . . . . . . . . . 12 (((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℤ ∧ (𝐴 Yrm (2 · 𝑁)) ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ (𝐴 Yrm (2 · 𝑁)) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))))
10531, 55, 57, 104syl3anc 1371 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm 𝑁) ∥ (𝐴 Yrm (2 · 𝑁)) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))))
106103, 105mpd 15 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁))))
10731, 52, 58, 92, 106dvds2addd 16174 . . . . . . . . 9 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ ((((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) + ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))))
10834zcnd 12608 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑏 ∈ ℂ)
10938zcnd 12608 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (2 · 𝑁) ∈ ℂ)
110108, 70, 109adddird 11180 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑏 + 1) · (2 · 𝑁)) = ((𝑏 · (2 · 𝑁)) + (1 · (2 · 𝑁))))
111110oveq2d 7373 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑀 + ((𝑏 + 1) · (2 · 𝑁))) = (𝑀 + ((𝑏 · (2 · 𝑁)) + (1 · (2 · 𝑁)))))
11232zcnd 12608 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑀 ∈ ℂ)
11343zcnd 12608 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑏 · (2 · 𝑁)) ∈ ℂ)
114 1zzd 12534 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 1 ∈ ℤ)
115114, 38zmulcld 12613 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (1 · (2 · 𝑁)) ∈ ℤ)
116115zcnd 12608 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (1 · (2 · 𝑁)) ∈ ℂ)
117112, 113, 116addassd 11177 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑀 + (𝑏 · (2 · 𝑁))) + (1 · (2 · 𝑁))) = (𝑀 + ((𝑏 · (2 · 𝑁)) + (1 · (2 · 𝑁)))))
118109mulid2d 11173 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (1 · (2 · 𝑁)) = (2 · 𝑁))
119118oveq2d 7373 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑀 + (𝑏 · (2 · 𝑁))) + (1 · (2 · 𝑁))) = ((𝑀 + (𝑏 · (2 · 𝑁))) + (2 · 𝑁)))
120111, 117, 1193eqtr2d 2782 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑀 + ((𝑏 + 1) · (2 · 𝑁))) = ((𝑀 + (𝑏 · (2 · 𝑁))) + (2 · 𝑁)))
121120oveq2d 7373 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) = (𝐴 Yrm ((𝑀 + (𝑏 · (2 · 𝑁))) + (2 · 𝑁))))
122 rmyadd 41241 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 + (𝑏 · (2 · 𝑁))) ∈ ℤ ∧ (2 · 𝑁) ∈ ℤ) → (𝐴 Yrm ((𝑀 + (𝑏 · (2 · 𝑁))) + (2 · 𝑁))) = (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) + ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))))
12329, 44, 38, 122syl3anc 1371 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm ((𝑀 + (𝑏 · (2 · 𝑁))) + (2 · 𝑁))) = (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) + ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))))
124121, 123eqtrd 2776 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) = (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) + ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))))
125124oveq1d 7372 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) = ((((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) + ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))))
12658zcnd 12608 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁))) ∈ ℂ)
12751zcnd 12608 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℂ)
12889, 126, 127addsubd 11533 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) + ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) = ((((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) + ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))))
129125, 128eqtrd 2776 . . . . . . . . 9 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) = ((((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) + ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))))
130107, 129breqtrrd 5133 . . . . . . . 8 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))))
131130olcd 872 . . . . . . 7 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))))))
132 jm2.25lem1 41308 . . . . . . 7 ((((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ) ∧ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) ∈ ℤ ∧ (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℤ) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))))) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))) ↔ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))))
13331, 33, 42, 46, 131, 132syl221anc 1381 . . . . . 6 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))) ↔ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))))
134133pm5.74da 802 . . . . 5 (𝑏 ∈ ℤ → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))))
135 oveq1 7364 . . . . . . . . . . 11 (𝑎 = 𝑏 → (𝑎 · (2 · 𝑁)) = (𝑏 · (2 · 𝑁)))
136135oveq2d 7373 . . . . . . . . . 10 (𝑎 = 𝑏 → (𝑀 + (𝑎 · (2 · 𝑁))) = (𝑀 + (𝑏 · (2 · 𝑁))))
137136oveq2d 7373 . . . . . . . . 9 (𝑎 = 𝑏 → (𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) = (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))))
138137oveq1d 7372 . . . . . . . 8 (𝑎 = 𝑏 → ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) = ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)))
139138breq2d 5117 . . . . . . 7 (𝑎 = 𝑏 → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ↔ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀))))
140137oveq1d 7372 . . . . . . . 8 (𝑎 = 𝑏 → ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)) = ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))
141140breq2d 5117 . . . . . . 7 (𝑎 = 𝑏 → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)) ↔ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
142139, 141orbi12d 917 . . . . . 6 (𝑎 = 𝑏 → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))) ↔ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))))
143142imbi2d 340 . . . . 5 (𝑎 = 𝑏 → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))))
144 oveq1 7364 . . . . . . . . . . 11 (𝑎 = (𝑏 + 1) → (𝑎 · (2 · 𝑁)) = ((𝑏 + 1) · (2 · 𝑁)))
145144oveq2d 7373 . . . . . . . . . 10 (𝑎 = (𝑏 + 1) → (𝑀 + (𝑎 · (2 · 𝑁))) = (𝑀 + ((𝑏 + 1) · (2 · 𝑁))))
146145oveq2d 7373 . . . . . . . . 9 (𝑎 = (𝑏 + 1) → (𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) = (𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))))
147146oveq1d 7372 . . . . . . . 8 (𝑎 = (𝑏 + 1) → ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) = ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)))
148147breq2d 5117 . . . . . . 7 (𝑎 = (𝑏 + 1) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ↔ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − (𝐴 Yrm 𝑀))))
149146oveq1d 7372 . . . . . . . 8 (𝑎 = (𝑏 + 1) → ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)) = ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))
150149breq2d 5117 . . . . . . 7 (𝑎 = (𝑏 + 1) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)) ↔ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
151148, 150orbi12d 917 . . . . . 6 (𝑎 = (𝑏 + 1) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))) ↔ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))))
152151imbi2d 340 . . . . 5 (𝑎 = (𝑏 + 1) → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))))
153 oveq1 7364 . . . . . . . . . . 11 (𝑎 = 0 → (𝑎 · (2 · 𝑁)) = (0 · (2 · 𝑁)))
154153oveq2d 7373 . . . . . . . . . 10 (𝑎 = 0 → (𝑀 + (𝑎 · (2 · 𝑁))) = (𝑀 + (0 · (2 · 𝑁))))
155154oveq2d 7373 . . . . . . . . 9 (𝑎 = 0 → (𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) = (𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))))
156155oveq1d 7372 . . . . . . . 8 (𝑎 = 0 → ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) = ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)))
157156breq2d 5117 . . . . . . 7 (𝑎 = 0 → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ↔ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀))))
158155oveq1d 7372 . . . . . . . 8 (𝑎 = 0 → ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)) = ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))
159158breq2d 5117 . . . . . . 7 (𝑎 = 0 → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)) ↔ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
160157, 159orbi12d 917 . . . . . 6 (𝑎 = 0 → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))) ↔ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))))
161160imbi2d 340 . . . . 5 (𝑎 = 0 → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))))
162 oveq1 7364 . . . . . . . . . . 11 (𝑎 = 𝐼 → (𝑎 · (2 · 𝑁)) = (𝐼 · (2 · 𝑁)))
163162oveq2d 7373 . . . . . . . . . 10 (𝑎 = 𝐼 → (𝑀 + (𝑎 · (2 · 𝑁))) = (𝑀 + (𝐼 · (2 · 𝑁))))
164163oveq2d 7373 . . . . . . . . 9 (𝑎 = 𝐼 → (𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) = (𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))))
165164oveq1d 7372 . . . . . . . 8 (𝑎 = 𝐼 → ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) = ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)))
166165breq2d 5117 . . . . . . 7 (𝑎 = 𝐼 → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ↔ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀))))
167164oveq1d 7372 . . . . . . . 8 (𝑎 = 𝐼 → ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)) = ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))
168167breq2d 5117 . . . . . . 7 (𝑎 = 𝐼 → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)) ↔ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
169166, 168orbi12d 917 . . . . . 6 (𝑎 = 𝐼 → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))) ↔ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))))
170169imbi2d 340 . . . . 5 (𝑎 = 𝐼 → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))))
171134, 143, 152, 161, 170zindbi 41256 . . . 4 (𝐼 ∈ ℤ → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))))
17228, 171mpbid 231 . . 3 (𝐼 ∈ ℤ → ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))))
173172impcom 408 . 2 (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
1741733impa 1110 1 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106   class class class wbr 5105  cfv 6496  (class class class)co 7357  cc 11049  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  cmin 11385  -cneg 11386  2c2 12208  0cn0 12413  cz 12499  cuz 12763  cexp 13967  cdvds 16136   Xrm crmx 41209   Yrm crmy 41210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-acn 9878  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-dvds 16137  df-gcd 16375  df-numer 16610  df-denom 16611  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912  df-squarenn 41150  df-pell1qr 41151  df-pell14qr 41152  df-pell1234qr 41153  df-pellfund 41154  df-rmx 41211  df-rmy 41212
This theorem is referenced by:  jm2.26a  41310
  Copyright terms: Public domain W3C validator