Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.25 Structured version   Visualization version   GIF version

Theorem jm2.25 38409
Description: Lemma for jm2.26 38412. Remainders mod X(2n) are negaperiodic mod 2n. (Contributed by Stefan O'Rear, 2-Oct-2014.)
Assertion
Ref Expression
jm2.25 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))

Proof of Theorem jm2.25
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 789 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝐴 ∈ (ℤ‘2))
2 simprrr 802 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑁 ∈ ℤ)
3 frmx 38321 . . . . . . . . . . 11 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
43fovcl 7025 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
54nn0zd 11808 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℤ)
61, 2, 5syl2anc 581 . . . . . . . 8 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∈ ℤ)
7 simprrl 801 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑀 ∈ ℤ)
8 frmy 38322 . . . . . . . . . 10 Yrm :((ℤ‘2) × ℤ)⟶ℤ
98fovcl 7025 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ)
101, 7, 9syl2anc 581 . . . . . . . 8 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm 𝑀) ∈ ℤ)
11 congid 38381 . . . . . . . 8 (((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − (𝐴 Yrm 𝑀)))
126, 10, 11syl2anc 581 . . . . . . 7 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − (𝐴 Yrm 𝑀)))
13 2cnd 11429 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → 2 ∈ ℂ)
14 zcn 11709 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1513, 14mulcld 10377 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℂ)
1615mul02d 10553 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (0 · (2 · 𝑁)) = 0)
1716adantl 475 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 · (2 · 𝑁)) = 0)
1817oveq2d 6921 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + (0 · (2 · 𝑁))) = (𝑀 + 0))
19 zcn 11709 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
2019addid1d 10555 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → (𝑀 + 0) = 𝑀)
2120adantr 474 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 0) = 𝑀)
2218, 21eqtrd 2861 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + (0 · (2 · 𝑁))) = 𝑀)
2322ad2antll 722 . . . . . . . . 9 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑀 + (0 · (2 · 𝑁))) = 𝑀)
2423oveq2d 6921 . . . . . . . 8 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) = (𝐴 Yrm 𝑀))
2524oveq1d 6920 . . . . . . 7 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) = ((𝐴 Yrm 𝑀) − (𝐴 Yrm 𝑀)))
2612, 25breqtrrd 4901 . . . . . 6 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)))
2726orcd 906 . . . . 5 ((𝐼 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
2827ex 403 . . . 4 (𝐼 ∈ ℤ → ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))))
29 simprl 789 . . . . . . . 8 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝐴 ∈ (ℤ‘2))
30 simprrr 802 . . . . . . . 8 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑁 ∈ ℤ)
3129, 30, 5syl2anc 581 . . . . . . 7 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∈ ℤ)
32 simprrl 801 . . . . . . . 8 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑀 ∈ ℤ)
3329, 32, 9syl2anc 581 . . . . . . 7 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm 𝑀) ∈ ℤ)
34 simpl 476 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑏 ∈ ℤ)
3534peano2zd 11813 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑏 + 1) ∈ ℤ)
36 eluzel2 11973 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → 2 ∈ ℤ)
3736ad2antrl 721 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 2 ∈ ℤ)
3837, 30zmulcld 11816 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (2 · 𝑁) ∈ ℤ)
3935, 38zmulcld 11816 . . . . . . . . 9 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑏 + 1) · (2 · 𝑁)) ∈ ℤ)
4032, 39zaddcld 11814 . . . . . . . 8 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑀 + ((𝑏 + 1) · (2 · 𝑁))) ∈ ℤ)
418fovcl 7025 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 + ((𝑏 + 1) · (2 · 𝑁))) ∈ ℤ) → (𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) ∈ ℤ)
4229, 40, 41syl2anc 581 . . . . . . 7 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) ∈ ℤ)
4334, 38zmulcld 11816 . . . . . . . . 9 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑏 · (2 · 𝑁)) ∈ ℤ)
4432, 43zaddcld 11814 . . . . . . . 8 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑀 + (𝑏 · (2 · 𝑁))) ∈ ℤ)
458fovcl 7025 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 + (𝑏 · (2 · 𝑁))) ∈ ℤ) → (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℤ)
4629, 44, 45syl2anc 581 . . . . . . 7 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℤ)
473fovcl 7025 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ (2 · 𝑁) ∈ ℤ) → (𝐴 Xrm (2 · 𝑁)) ∈ ℕ0)
4847nn0zd 11808 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ (2 · 𝑁) ∈ ℤ) → (𝐴 Xrm (2 · 𝑁)) ∈ ℤ)
4929, 38, 48syl2anc 581 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm (2 · 𝑁)) ∈ ℤ)
5046, 49zmulcld 11816 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) ∈ ℤ)
5146znegcld 11812 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℤ)
5250, 51zsubcld 11815 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) ∈ ℤ)
533fovcl 7025 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 + (𝑏 · (2 · 𝑁))) ∈ ℤ) → (𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℕ0)
5453nn0zd 11808 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 + (𝑏 · (2 · 𝑁))) ∈ ℤ) → (𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℤ)
5529, 44, 54syl2anc 581 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℤ)
568fovcl 7025 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ (2 · 𝑁) ∈ ℤ) → (𝐴 Yrm (2 · 𝑁)) ∈ ℤ)
5729, 38, 56syl2anc 581 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm (2 · 𝑁)) ∈ ℤ)
5855, 57zmulcld 11816 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁))) ∈ ℤ)
5937, 31zmulcld 11816 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (2 · (𝐴 Xrm 𝑁)) ∈ ℤ)
60 dvdsmul2 15381 . . . . . . . . . . . . . 14 (((2 · (𝐴 Xrm 𝑁)) ∈ ℤ ∧ (𝐴 Xrm 𝑁) ∈ ℤ) → (𝐴 Xrm 𝑁) ∥ ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Xrm 𝑁)))
6159, 31, 60syl2anc 581 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Xrm 𝑁)))
62 rmxdbl 38347 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (2 · 𝑁)) = ((2 · ((𝐴 Xrm 𝑁)↑2)) − 1))
6329, 30, 62syl2anc 581 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm (2 · 𝑁)) = ((2 · ((𝐴 Xrm 𝑁)↑2)) − 1))
6463oveq1d 6920 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm (2 · 𝑁)) + 1) = (((2 · ((𝐴 Xrm 𝑁)↑2)) − 1) + 1))
65 2cnd 11429 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 2 ∈ ℂ)
6629, 30, 4syl2anc 581 . . . . . . . . . . . . . . . . . 18 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∈ ℕ0)
6766nn0cnd 11680 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∈ ℂ)
6867sqcld 13300 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm 𝑁)↑2) ∈ ℂ)
6965, 68mulcld 10377 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (2 · ((𝐴 Xrm 𝑁)↑2)) ∈ ℂ)
70 1cnd 10351 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 1 ∈ ℂ)
7169, 70npcand 10717 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (((2 · ((𝐴 Xrm 𝑁)↑2)) − 1) + 1) = (2 · ((𝐴 Xrm 𝑁)↑2)))
7267sqvald 13299 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm 𝑁)↑2) = ((𝐴 Xrm 𝑁) · (𝐴 Xrm 𝑁)))
7372oveq2d 6921 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (2 · ((𝐴 Xrm 𝑁)↑2)) = (2 · ((𝐴 Xrm 𝑁) · (𝐴 Xrm 𝑁))))
74 mulass 10340 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ (𝐴 Xrm 𝑁) ∈ ℂ ∧ (𝐴 Xrm 𝑁) ∈ ℂ) → ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Xrm 𝑁)) = (2 · ((𝐴 Xrm 𝑁) · (𝐴 Xrm 𝑁))))
7574eqcomd 2831 . . . . . . . . . . . . . . . 16 ((2 ∈ ℂ ∧ (𝐴 Xrm 𝑁) ∈ ℂ ∧ (𝐴 Xrm 𝑁) ∈ ℂ) → (2 · ((𝐴 Xrm 𝑁) · (𝐴 Xrm 𝑁))) = ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Xrm 𝑁)))
7665, 67, 67, 75syl3anc 1496 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (2 · ((𝐴 Xrm 𝑁) · (𝐴 Xrm 𝑁))) = ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Xrm 𝑁)))
7773, 76eqtrd 2861 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (2 · ((𝐴 Xrm 𝑁)↑2)) = ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Xrm 𝑁)))
7864, 71, 773eqtrd 2865 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm (2 · 𝑁)) + 1) = ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Xrm 𝑁)))
7961, 78breqtrrd 4901 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Xrm (2 · 𝑁)) + 1))
8049peano2zd 11813 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm (2 · 𝑁)) + 1) ∈ ℤ)
81 dvdsmultr2 15398 . . . . . . . . . . . . 13 (((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℤ ∧ ((𝐴 Xrm (2 · 𝑁)) + 1) ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Xrm (2 · 𝑁)) + 1) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · ((𝐴 Xrm (2 · 𝑁)) + 1))))
8231, 46, 80, 81syl3anc 1496 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Xrm (2 · 𝑁)) + 1) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · ((𝐴 Xrm (2 · 𝑁)) + 1))))
8379, 82mpd 15 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · ((𝐴 Xrm (2 · 𝑁)) + 1)))
8446zcnd 11811 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℂ)
8584mulid1d 10374 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · 1) = (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))))
8685oveq2d 6921 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) + ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · 1)) = (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) + (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))))
8749zcnd 11811 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm (2 · 𝑁)) ∈ ℂ)
8884, 87, 70adddid 10381 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · ((𝐴 Xrm (2 · 𝑁)) + 1)) = (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) + ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · 1)))
8950zcnd 11811 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) ∈ ℂ)
9089, 84subnegd 10720 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) = (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) + (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))))
9186, 88, 903eqtr4d 2871 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · ((𝐴 Xrm (2 · 𝑁)) + 1)) = (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))))
9283, 91breqtrd 4899 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))))
938fovcl 7025 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
9429, 30, 93syl2anc 581 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm 𝑁) ∈ ℤ)
9537, 94zmulcld 11816 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (2 · (𝐴 Yrm 𝑁)) ∈ ℤ)
96 dvdsmul2 15381 . . . . . . . . . . . . 13 (((2 · (𝐴 Yrm 𝑁)) ∈ ℤ ∧ (𝐴 Xrm 𝑁) ∈ ℤ) → (𝐴 Xrm 𝑁) ∥ ((2 · (𝐴 Yrm 𝑁)) · (𝐴 Xrm 𝑁)))
9795, 31, 96syl2anc 581 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ ((2 · (𝐴 Yrm 𝑁)) · (𝐴 Xrm 𝑁)))
98 rmydbl 38348 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (2 · 𝑁)) = ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Yrm 𝑁)))
9929, 30, 98syl2anc 581 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm (2 · 𝑁)) = ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Yrm 𝑁)))
10094zcnd 11811 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm 𝑁) ∈ ℂ)
10165, 67, 100mul32d 10565 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((2 · (𝐴 Xrm 𝑁)) · (𝐴 Yrm 𝑁)) = ((2 · (𝐴 Yrm 𝑁)) · (𝐴 Xrm 𝑁)))
10299, 101eqtrd 2861 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm (2 · 𝑁)) = ((2 · (𝐴 Yrm 𝑁)) · (𝐴 Xrm 𝑁)))
10397, 102breqtrrd 4901 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ (𝐴 Yrm (2 · 𝑁)))
104 dvdsmultr2 15398 . . . . . . . . . . . 12 (((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℤ ∧ (𝐴 Yrm (2 · 𝑁)) ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ (𝐴 Yrm (2 · 𝑁)) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))))
10531, 55, 57, 104syl3anc 1496 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm 𝑁) ∥ (𝐴 Yrm (2 · 𝑁)) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))))
106103, 105mpd 15 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁))))
107 dvds2add 15392 . . . . . . . . . . 11 (((𝐴 Xrm 𝑁) ∈ ℤ ∧ (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) ∈ ℤ ∧ ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁))) ∈ ℤ) → (((𝐴 Xrm 𝑁) ∥ (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) ∧ (𝐴 Xrm 𝑁) ∥ ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))) → (𝐴 Xrm 𝑁) ∥ ((((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) + ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁))))))
108107imp 397 . . . . . . . . . 10 ((((𝐴 Xrm 𝑁) ∈ ℤ ∧ (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) ∈ ℤ ∧ ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁))) ∈ ℤ) ∧ ((𝐴 Xrm 𝑁) ∥ (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) ∧ (𝐴 Xrm 𝑁) ∥ ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁))))) → (𝐴 Xrm 𝑁) ∥ ((((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) + ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))))
10931, 52, 58, 92, 106, 108syl32anc 1503 . . . . . . . . 9 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ ((((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) + ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))))
11034zcnd 11811 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑏 ∈ ℂ)
11138zcnd 11811 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (2 · 𝑁) ∈ ℂ)
112110, 70, 111adddird 10382 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑏 + 1) · (2 · 𝑁)) = ((𝑏 · (2 · 𝑁)) + (1 · (2 · 𝑁))))
113112oveq2d 6921 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑀 + ((𝑏 + 1) · (2 · 𝑁))) = (𝑀 + ((𝑏 · (2 · 𝑁)) + (1 · (2 · 𝑁)))))
11432zcnd 11811 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 𝑀 ∈ ℂ)
11543zcnd 11811 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑏 · (2 · 𝑁)) ∈ ℂ)
116 1zzd 11736 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → 1 ∈ ℤ)
117116, 38zmulcld 11816 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (1 · (2 · 𝑁)) ∈ ℤ)
118117zcnd 11811 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (1 · (2 · 𝑁)) ∈ ℂ)
119114, 115, 118addassd 10379 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑀 + (𝑏 · (2 · 𝑁))) + (1 · (2 · 𝑁))) = (𝑀 + ((𝑏 · (2 · 𝑁)) + (1 · (2 · 𝑁)))))
120111mulid2d 10375 . . . . . . . . . . . . . . 15 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (1 · (2 · 𝑁)) = (2 · 𝑁))
121120oveq2d 6921 . . . . . . . . . . . . . 14 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝑀 + (𝑏 · (2 · 𝑁))) + (1 · (2 · 𝑁))) = ((𝑀 + (𝑏 · (2 · 𝑁))) + (2 · 𝑁)))
122113, 119, 1213eqtr2d 2867 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝑀 + ((𝑏 + 1) · (2 · 𝑁))) = ((𝑀 + (𝑏 · (2 · 𝑁))) + (2 · 𝑁)))
123122oveq2d 6921 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) = (𝐴 Yrm ((𝑀 + (𝑏 · (2 · 𝑁))) + (2 · 𝑁))))
124 rmyadd 38339 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 + (𝑏 · (2 · 𝑁))) ∈ ℤ ∧ (2 · 𝑁) ∈ ℤ) → (𝐴 Yrm ((𝑀 + (𝑏 · (2 · 𝑁))) + (2 · 𝑁))) = (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) + ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))))
12529, 44, 38, 124syl3anc 1496 . . . . . . . . . . . 12 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm ((𝑀 + (𝑏 · (2 · 𝑁))) + (2 · 𝑁))) = (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) + ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))))
126123, 125eqtrd 2861 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) = (((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) + ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))))
127126oveq1d 6920 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) = ((((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) + ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))))
12858zcnd 11811 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁))) ∈ ℂ)
12951zcnd 11811 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℂ)
13089, 128, 129addsubd 10734 . . . . . . . . . 10 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) + ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) = ((((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) + ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))))
131127, 130eqtrd 2861 . . . . . . . . 9 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) = ((((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Xrm (2 · 𝑁))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) + ((𝐴 Xrm (𝑀 + (𝑏 · (2 · 𝑁)))) · (𝐴 Yrm (2 · 𝑁)))))
132109, 131breqtrrd 4901 . . . . . . . 8 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))))
133132olcd 907 . . . . . . 7 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))))))
134 jm2.25lem1 38408 . . . . . . 7 ((((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ) ∧ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) ∈ ℤ ∧ (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) ∈ ℤ) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁))))))) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))) ↔ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))))
13531, 33, 42, 46, 133, 134syl221anc 1506 . . . . . 6 ((𝑏 ∈ ℤ ∧ (𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))) ↔ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))))
136135pm5.74da 840 . . . . 5 (𝑏 ∈ ℤ → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))))
137 oveq1 6912 . . . . . . . . . . 11 (𝑎 = 𝑏 → (𝑎 · (2 · 𝑁)) = (𝑏 · (2 · 𝑁)))
138137oveq2d 6921 . . . . . . . . . 10 (𝑎 = 𝑏 → (𝑀 + (𝑎 · (2 · 𝑁))) = (𝑀 + (𝑏 · (2 · 𝑁))))
139138oveq2d 6921 . . . . . . . . 9 (𝑎 = 𝑏 → (𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) = (𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))))
140139oveq1d 6920 . . . . . . . 8 (𝑎 = 𝑏 → ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) = ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)))
141140breq2d 4885 . . . . . . 7 (𝑎 = 𝑏 → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ↔ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀))))
142139oveq1d 6920 . . . . . . . 8 (𝑎 = 𝑏 → ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)) = ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))
143142breq2d 4885 . . . . . . 7 (𝑎 = 𝑏 → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)) ↔ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
144141, 143orbi12d 949 . . . . . 6 (𝑎 = 𝑏 → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))) ↔ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))))
145144imbi2d 332 . . . . 5 (𝑎 = 𝑏 → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑏 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))))
146 oveq1 6912 . . . . . . . . . . 11 (𝑎 = (𝑏 + 1) → (𝑎 · (2 · 𝑁)) = ((𝑏 + 1) · (2 · 𝑁)))
147146oveq2d 6921 . . . . . . . . . 10 (𝑎 = (𝑏 + 1) → (𝑀 + (𝑎 · (2 · 𝑁))) = (𝑀 + ((𝑏 + 1) · (2 · 𝑁))))
148147oveq2d 6921 . . . . . . . . 9 (𝑎 = (𝑏 + 1) → (𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) = (𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))))
149148oveq1d 6920 . . . . . . . 8 (𝑎 = (𝑏 + 1) → ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) = ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)))
150149breq2d 4885 . . . . . . 7 (𝑎 = (𝑏 + 1) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ↔ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − (𝐴 Yrm 𝑀))))
151148oveq1d 6920 . . . . . . . 8 (𝑎 = (𝑏 + 1) → ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)) = ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))
152151breq2d 4885 . . . . . . 7 (𝑎 = (𝑏 + 1) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)) ↔ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
153150, 152orbi12d 949 . . . . . 6 (𝑎 = (𝑏 + 1) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))) ↔ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))))
154153imbi2d 332 . . . . 5 (𝑎 = (𝑏 + 1) → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + ((𝑏 + 1) · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))))
155 oveq1 6912 . . . . . . . . . . 11 (𝑎 = 0 → (𝑎 · (2 · 𝑁)) = (0 · (2 · 𝑁)))
156155oveq2d 6921 . . . . . . . . . 10 (𝑎 = 0 → (𝑀 + (𝑎 · (2 · 𝑁))) = (𝑀 + (0 · (2 · 𝑁))))
157156oveq2d 6921 . . . . . . . . 9 (𝑎 = 0 → (𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) = (𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))))
158157oveq1d 6920 . . . . . . . 8 (𝑎 = 0 → ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) = ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)))
159158breq2d 4885 . . . . . . 7 (𝑎 = 0 → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ↔ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀))))
160157oveq1d 6920 . . . . . . . 8 (𝑎 = 0 → ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)) = ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))
161160breq2d 4885 . . . . . . 7 (𝑎 = 0 → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)) ↔ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
162159, 161orbi12d 949 . . . . . 6 (𝑎 = 0 → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))) ↔ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))))
163162imbi2d 332 . . . . 5 (𝑎 = 0 → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))))
164 oveq1 6912 . . . . . . . . . . 11 (𝑎 = 𝐼 → (𝑎 · (2 · 𝑁)) = (𝐼 · (2 · 𝑁)))
165164oveq2d 6921 . . . . . . . . . 10 (𝑎 = 𝐼 → (𝑀 + (𝑎 · (2 · 𝑁))) = (𝑀 + (𝐼 · (2 · 𝑁))))
166165oveq2d 6921 . . . . . . . . 9 (𝑎 = 𝐼 → (𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) = (𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))))
167166oveq1d 6920 . . . . . . . 8 (𝑎 = 𝐼 → ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) = ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)))
168167breq2d 4885 . . . . . . 7 (𝑎 = 𝐼 → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ↔ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀))))
169166oveq1d 6920 . . . . . . . 8 (𝑎 = 𝐼 → ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)) = ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))
170169breq2d 4885 . . . . . . 7 (𝑎 = 𝐼 → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)) ↔ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
171168, 170orbi12d 949 . . . . . 6 (𝑎 = 𝐼 → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))) ↔ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))))
172171imbi2d 332 . . . . 5 (𝑎 = 𝐼 → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))))
173136, 145, 154, 163, 172zindbi 38354 . . . 4 (𝐼 ∈ ℤ → (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (0 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))))
17428, 173mpbid 224 . . 3 (𝐼 ∈ ℤ → ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀)))))
175174impcom 398 . 2 (((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ 𝐼 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
1761753impa 1142 1 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐼 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝐼 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wo 880  w3a 1113   = wceq 1658  wcel 2166   class class class wbr 4873  cfv 6123  (class class class)co 6905  cc 10250  0cc0 10252  1c1 10253   + caddc 10255   · cmul 10257  cmin 10585  -cneg 10586  2c2 11406  0cn0 11618  cz 11704  cuz 11968  cexp 13154  cdvds 15357   Xrm crmx 38308   Yrm crmy 38309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330  ax-addf 10331  ax-mulf 10332
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-iin 4743  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-of 7157  df-om 7327  df-1st 7428  df-2nd 7429  df-supp 7560  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-2o 7827  df-oadd 7830  df-omul 7831  df-er 8009  df-map 8124  df-pm 8125  df-ixp 8176  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-fsupp 8545  df-fi 8586  df-sup 8617  df-inf 8618  df-oi 8684  df-card 9078  df-acn 9081  df-cda 9305  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-xnn0 11691  df-z 11705  df-dec 11822  df-uz 11969  df-q 12072  df-rp 12113  df-xneg 12232  df-xadd 12233  df-xmul 12234  df-ioo 12467  df-ioc 12468  df-ico 12469  df-icc 12470  df-fz 12620  df-fzo 12761  df-fl 12888  df-mod 12964  df-seq 13096  df-exp 13155  df-fac 13354  df-bc 13383  df-hash 13411  df-shft 14184  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-limsup 14579  df-clim 14596  df-rlim 14597  df-sum 14794  df-ef 15170  df-sin 15172  df-cos 15173  df-pi 15175  df-dvds 15358  df-gcd 15590  df-numer 15814  df-denom 15815  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-mulr 16319  df-starv 16320  df-sca 16321  df-vsca 16322  df-ip 16323  df-tset 16324  df-ple 16325  df-ds 16327  df-unif 16328  df-hom 16329  df-cco 16330  df-rest 16436  df-topn 16437  df-0g 16455  df-gsum 16456  df-topgen 16457  df-pt 16458  df-prds 16461  df-xrs 16515  df-qtop 16520  df-imas 16521  df-xps 16523  df-mre 16599  df-mrc 16600  df-acs 16602  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-submnd 17689  df-mulg 17895  df-cntz 18100  df-cmn 18548  df-psmet 20098  df-xmet 20099  df-met 20100  df-bl 20101  df-mopn 20102  df-fbas 20103  df-fg 20104  df-cnfld 20107  df-top 21069  df-topon 21086  df-topsp 21108  df-bases 21121  df-cld 21194  df-ntr 21195  df-cls 21196  df-nei 21273  df-lp 21311  df-perf 21312  df-cn 21402  df-cnp 21403  df-haus 21490  df-tx 21736  df-hmeo 21929  df-fil 22020  df-fm 22112  df-flim 22113  df-flf 22114  df-xms 22495  df-ms 22496  df-tms 22497  df-cncf 23051  df-limc 24029  df-dv 24030  df-log 24702  df-squarenn 38249  df-pell1qr 38250  df-pell14qr 38251  df-pell1234qr 38252  df-pellfund 38253  df-rmx 38310  df-rmy 38311
This theorem is referenced by:  jm2.26a  38410
  Copyright terms: Public domain W3C validator