Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem87 Structured version   Visualization version   GIF version

Theorem fourierdlem87 46149
Description: The integral of 𝐺 goes uniformly ( with respect to 𝑛) to zero if the measure of the domain of integration goes to zero. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem87.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem87.x (𝜑𝑋 ∈ ℝ)
fourierdlem87.y (𝜑𝑌 ∈ ℝ)
fourierdlem87.w (𝜑𝑊 ∈ ℝ)
fourierdlem87.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
fourierdlem87.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem87.u 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
fourierdlem87.s 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
fourierdlem87.g 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
fourierdlem87.10 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑥)
fourierdlem87.gibl ((𝜑𝑛 ∈ ℕ) → 𝐺 ∈ 𝐿1)
fourierdlem87.d 𝐷 = ((𝑒 / 3) / 𝑎)
fourierdlem87.ch (𝜒 ↔ (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ))
Assertion
Ref Expression
fourierdlem87 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
Distinct variable groups:   𝐷,𝑑,𝑛,𝑢   𝐺,𝑎,𝑑,𝑠,𝑢   𝐾,𝑎,𝑠   𝑈,𝑎,𝑛   𝑈,𝑘,𝑛   𝑥,𝑈,𝑎   𝑒,𝑎,𝑑,𝑛,𝑢   𝜑,𝑎,𝑑,𝑛,𝑠,𝑢   𝜒,𝑠   𝑒,𝑘,𝑢   𝑘,𝑠   𝜑,𝑥,𝑠
Allowed substitution hints:   𝜑(𝑒,𝑘)   𝜒(𝑥,𝑢,𝑒,𝑘,𝑛,𝑎,𝑑)   𝐷(𝑥,𝑒,𝑘,𝑠,𝑎)   𝑆(𝑥,𝑢,𝑒,𝑘,𝑛,𝑠,𝑎,𝑑)   𝑈(𝑢,𝑒,𝑠,𝑑)   𝐹(𝑥,𝑢,𝑒,𝑘,𝑛,𝑠,𝑎,𝑑)   𝐺(𝑥,𝑒,𝑘,𝑛)   𝐻(𝑥,𝑢,𝑒,𝑘,𝑛,𝑠,𝑎,𝑑)   𝐾(𝑥,𝑢,𝑒,𝑘,𝑛,𝑑)   𝑊(𝑥,𝑢,𝑒,𝑘,𝑛,𝑠,𝑎,𝑑)   𝑋(𝑥,𝑢,𝑒,𝑘,𝑛,𝑠,𝑎,𝑑)   𝑌(𝑥,𝑢,𝑒,𝑘,𝑛,𝑠,𝑎,𝑑)

Proof of Theorem fourierdlem87
StepHypRef Expression
1 fourierdlem87.f . . . . . 6 (𝜑𝐹:ℝ⟶ℝ)
2 fourierdlem87.x . . . . . 6 (𝜑𝑋 ∈ ℝ)
3 fourierdlem87.y . . . . . 6 (𝜑𝑌 ∈ ℝ)
4 fourierdlem87.w . . . . . 6 (𝜑𝑊 ∈ ℝ)
5 fourierdlem87.h . . . . . 6 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
6 fourierdlem87.k . . . . . 6 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
7 fourierdlem87.u . . . . . 6 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
8 fourierdlem87.10 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑥)
91, 2, 3, 4, 5, 6, 7, 8fourierdlem77 46139 . . . . 5 (𝜑 → ∃𝑎 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎)
10 nfv 1912 . . . . . . . . . . 11 𝑠(𝜑𝑎 ∈ ℝ+)
11 nfra1 3282 . . . . . . . . . . 11 𝑠𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎
1210, 11nfan 1897 . . . . . . . . . 10 𝑠((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎)
13 nfv 1912 . . . . . . . . . 10 𝑠 𝑛 ∈ ℕ
1412, 13nfan 1897 . . . . . . . . 9 𝑠(((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ)
15 simp-4l 783 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 𝜑)
16 simp-4r 784 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 𝑎 ∈ ℝ+)
17 simplr 769 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 𝑛 ∈ ℕ)
1815, 16, 17jca31 514 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ))
19 simpr 484 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (-π[,]π))
20 simpllr 776 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎)
21 rspa 3246 . . . . . . . . . . . 12 ((∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ≤ 𝑎)
2220, 19, 21syl2anc 584 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ≤ 𝑎)
23 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (-π[,]π))
241, 2, 3, 4, 5, 6, 7fourierdlem55 46117 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑈:(-π[,]π)⟶ℝ)
2524ffvelcdmda 7104 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℝ)
2625adantlr 715 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℝ)
27 nnre 12271 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
28 fourierdlem87.s . . . . . . . . . . . . . . . . . . . . . . 23 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
2928fourierdlem5 46068 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℝ → 𝑆:(-π[,]π)⟶ℝ)
3027, 29syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 𝑆:(-π[,]π)⟶ℝ)
3130ad2antlr 727 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 𝑆:(-π[,]π)⟶ℝ)
3231, 23ffvelcdmd 7105 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝑆𝑠) ∈ ℝ)
3326, 32remulcld 11289 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ)
34 fourierdlem87.g . . . . . . . . . . . . . . . . . . 19 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
3534fvmpt2 7027 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ (-π[,]π) ∧ ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
3623, 33, 35syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
37 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (-π[,]π))
38 halfre 12478 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1 / 2) ∈ ℝ
3938a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ℕ → (1 / 2) ∈ ℝ)
4027, 39readdcld 11288 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℕ → (𝑛 + (1 / 2)) ∈ ℝ)
4140adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (𝑛 + (1 / 2)) ∈ ℝ)
42 pire 26515 . . . . . . . . . . . . . . . . . . . . . . . . . 26 π ∈ ℝ
4342renegcli 11568 . . . . . . . . . . . . . . . . . . . . . . . . 25 -π ∈ ℝ
44 iccssre 13466 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
4543, 42, 44mp2an 692 . . . . . . . . . . . . . . . . . . . . . . . 24 (-π[,]π) ⊆ ℝ
4645sseli 3991 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ (-π[,]π) → 𝑠 ∈ ℝ)
4746adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
4841, 47remulcld 11289 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
4948resincld 16176 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
5028fvmpt2 7027 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ (-π[,]π) ∧ (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
5137, 49, 50syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
5251oveq2d 7447 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → ((𝑈𝑠) · (𝑆𝑠)) = ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))))
5352adantll 714 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝑈𝑠) · (𝑆𝑠)) = ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))))
5436, 53eqtrd 2775 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐺𝑠) = ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))))
5554fveq2d 6911 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐺𝑠)) = (abs‘((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))))
5626recnd 11287 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℂ)
5749adantll 714 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
5857recnd 11287 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℂ)
5956, 58absmuld 15490 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) = ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))))
6055, 59eqtrd 2775 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐺𝑠)) = ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))))
6160adantllr 719 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐺𝑠)) = ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))))
6261adantr 480 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → (abs‘(𝐺𝑠)) = ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))))
6356abscld 15472 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ∈ ℝ)
6458abscld 15472 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠))) ∈ ℝ)
6563, 64remulcld 11289 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ ℝ)
6665adantllr 719 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ ℝ)
6766adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ ℝ)
6863adantllr 719 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ∈ ℝ)
6968adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → (abs‘(𝑈𝑠)) ∈ ℝ)
70 rpre 13041 . . . . . . . . . . . . . 14 (𝑎 ∈ ℝ+𝑎 ∈ ℝ)
7170ad4antlr 733 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → 𝑎 ∈ ℝ)
72 1red 11260 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 1 ∈ ℝ)
7356absge0d 15480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 0 ≤ (abs‘(𝑈𝑠)))
7448adantll 714 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
75 abssinbd 45246 . . . . . . . . . . . . . . . . . 18 (((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ → (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠))) ≤ 1)
7674, 75syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠))) ≤ 1)
7764, 72, 63, 73, 76lemul2ad 12206 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ≤ ((abs‘(𝑈𝑠)) · 1))
7863recnd 11287 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ∈ ℂ)
7978mulridd 11276 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝑈𝑠)) · 1) = (abs‘(𝑈𝑠)))
8077, 79breqtrd 5174 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ≤ (abs‘(𝑈𝑠)))
8180adantllr 719 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ≤ (abs‘(𝑈𝑠)))
8281adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ≤ (abs‘(𝑈𝑠)))
83 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → (abs‘(𝑈𝑠)) ≤ 𝑎)
8467, 69, 71, 82, 83letrd 11416 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ≤ 𝑎)
8562, 84eqbrtrd 5170 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → (abs‘(𝐺𝑠)) ≤ 𝑎)
8618, 19, 22, 85syl21anc 838 . . . . . . . . . 10 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐺𝑠)) ≤ 𝑎)
8786ex 412 . . . . . . . . 9 ((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) → (abs‘(𝐺𝑠)) ≤ 𝑎))
8814, 87ralrimi 3255 . . . . . . . 8 ((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) → ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
8988ralrimiva 3144 . . . . . . 7 (((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) → ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
9089ex 412 . . . . . 6 ((𝜑𝑎 ∈ ℝ+) → (∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎 → ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎))
9190reximdva 3166 . . . . 5 (𝜑 → (∃𝑎 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎 → ∃𝑎 ∈ ℝ+𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎))
929, 91mpd 15 . . . 4 (𝜑 → ∃𝑎 ∈ ℝ+𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
9392adantr 480 . . 3 ((𝜑𝑒 ∈ ℝ+) → ∃𝑎 ∈ ℝ+𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
94 fourierdlem87.d . . . . . . . 8 𝐷 = ((𝑒 / 3) / 𝑎)
95 id 22 . . . . . . . . . . 11 (𝑒 ∈ ℝ+𝑒 ∈ ℝ+)
96 3rp 13038 . . . . . . . . . . . 12 3 ∈ ℝ+
9796a1i 11 . . . . . . . . . . 11 (𝑒 ∈ ℝ+ → 3 ∈ ℝ+)
9895, 97rpdivcld 13092 . . . . . . . . . 10 (𝑒 ∈ ℝ+ → (𝑒 / 3) ∈ ℝ+)
9998adantr 480 . . . . . . . . 9 ((𝑒 ∈ ℝ+𝑎 ∈ ℝ+) → (𝑒 / 3) ∈ ℝ+)
100 simpr 484 . . . . . . . . 9 ((𝑒 ∈ ℝ+𝑎 ∈ ℝ+) → 𝑎 ∈ ℝ+)
10199, 100rpdivcld 13092 . . . . . . . 8 ((𝑒 ∈ ℝ+𝑎 ∈ ℝ+) → ((𝑒 / 3) / 𝑎) ∈ ℝ+)
10294, 101eqeltrid 2843 . . . . . . 7 ((𝑒 ∈ ℝ+𝑎 ∈ ℝ+) → 𝐷 ∈ ℝ+)
103102adantll 714 . . . . . 6 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) → 𝐷 ∈ ℝ+)
1041033adant3 1131 . . . . 5 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) → 𝐷 ∈ ℝ+)
105 nfv 1912 . . . . . . . . . . 11 𝑛(𝜑𝑒 ∈ ℝ+)
106 nfv 1912 . . . . . . . . . . 11 𝑛 𝑎 ∈ ℝ+
107 nfra1 3282 . . . . . . . . . . 11 𝑛𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎
108105, 106, 107nf3an 1899 . . . . . . . . . 10 𝑛((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
109 nfv 1912 . . . . . . . . . 10 𝑛 𝑢 ∈ dom vol
110108, 109nfan 1897 . . . . . . . . 9 𝑛(((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol)
111 nfv 1912 . . . . . . . . 9 𝑛(𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)
112110, 111nfan 1897 . . . . . . . 8 𝑛((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷))
113 fourierdlem87.ch . . . . . . . . . 10 (𝜒 ↔ (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ))
114 simpl1l 1223 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) → 𝜑)
115114ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → 𝜑)
116113, 115sylbi 217 . . . . . . . . . . . . . . . . 17 (𝜒𝜑)
117116, 1syl 17 . . . . . . . . . . . . . . . 16 (𝜒𝐹:ℝ⟶ℝ)
118116, 2syl 17 . . . . . . . . . . . . . . . 16 (𝜒𝑋 ∈ ℝ)
119116, 3syl 17 . . . . . . . . . . . . . . . 16 (𝜒𝑌 ∈ ℝ)
120116, 4syl 17 . . . . . . . . . . . . . . . 16 (𝜒𝑊 ∈ ℝ)
12127adantl 481 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
122113, 121sylbi 217 . . . . . . . . . . . . . . . 16 (𝜒𝑛 ∈ ℝ)
123117, 118, 119, 120, 5, 6, 7, 122, 28, 34fourierdlem67 46129 . . . . . . . . . . . . . . 15 (𝜒𝐺:(-π[,]π)⟶ℝ)
124123adantr 480 . . . . . . . . . . . . . 14 ((𝜒𝑠𝑢) → 𝐺:(-π[,]π)⟶ℝ)
125 simplrl 777 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → 𝑢 ⊆ (-π[,]π))
126113, 125sylbi 217 . . . . . . . . . . . . . . 15 (𝜒𝑢 ⊆ (-π[,]π))
127126sselda 3995 . . . . . . . . . . . . . 14 ((𝜒𝑠𝑢) → 𝑠 ∈ (-π[,]π))
128124, 127ffvelcdmd 7105 . . . . . . . . . . . . 13 ((𝜒𝑠𝑢) → (𝐺𝑠) ∈ ℝ)
129 simpllr 776 . . . . . . . . . . . . . . 15 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → 𝑢 ∈ dom vol)
130113, 129sylbi 217 . . . . . . . . . . . . . 14 (𝜒𝑢 ∈ dom vol)
131123ffvelcdmda 7104 . . . . . . . . . . . . . 14 ((𝜒𝑠 ∈ (-π[,]π)) → (𝐺𝑠) ∈ ℝ)
132123feqmptd 6977 . . . . . . . . . . . . . . 15 (𝜒𝐺 = (𝑠 ∈ (-π[,]π) ↦ (𝐺𝑠)))
133113simprbi 496 . . . . . . . . . . . . . . . 16 (𝜒𝑛 ∈ ℕ)
134 fourierdlem87.gibl . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → 𝐺 ∈ 𝐿1)
135116, 133, 134syl2anc 584 . . . . . . . . . . . . . . 15 (𝜒𝐺 ∈ 𝐿1)
136132, 135eqeltrrd 2840 . . . . . . . . . . . . . 14 (𝜒 → (𝑠 ∈ (-π[,]π) ↦ (𝐺𝑠)) ∈ 𝐿1)
137126, 130, 131, 136iblss 25855 . . . . . . . . . . . . 13 (𝜒 → (𝑠𝑢 ↦ (𝐺𝑠)) ∈ 𝐿1)
138128, 137itgcl 25834 . . . . . . . . . . . 12 (𝜒 → ∫𝑢(𝐺𝑠) d𝑠 ∈ ℂ)
139138abscld 15472 . . . . . . . . . . 11 (𝜒 → (abs‘∫𝑢(𝐺𝑠) d𝑠) ∈ ℝ)
140128recnd 11287 . . . . . . . . . . . . 13 ((𝜒𝑠𝑢) → (𝐺𝑠) ∈ ℂ)
141140abscld 15472 . . . . . . . . . . . 12 ((𝜒𝑠𝑢) → (abs‘(𝐺𝑠)) ∈ ℝ)
142128, 137iblabs 25879 . . . . . . . . . . . 12 (𝜒 → (𝑠𝑢 ↦ (abs‘(𝐺𝑠))) ∈ 𝐿1)
143141, 142itgrecl 25848 . . . . . . . . . . 11 (𝜒 → ∫𝑢(abs‘(𝐺𝑠)) d𝑠 ∈ ℝ)
144 simpl1r 1224 . . . . . . . . . . . . . . 15 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) → 𝑒 ∈ ℝ+)
145144ad2antrr 726 . . . . . . . . . . . . . 14 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → 𝑒 ∈ ℝ+)
146113, 145sylbi 217 . . . . . . . . . . . . 13 (𝜒𝑒 ∈ ℝ+)
147146rpred 13075 . . . . . . . . . . . 12 (𝜒𝑒 ∈ ℝ)
148147rehalfcld 12511 . . . . . . . . . . 11 (𝜒 → (𝑒 / 2) ∈ ℝ)
149128, 137itgabs 25885 . . . . . . . . . . 11 (𝜒 → (abs‘∫𝑢(𝐺𝑠) d𝑠) ≤ ∫𝑢(abs‘(𝐺𝑠)) d𝑠)
150 simpl2 1191 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) → 𝑎 ∈ ℝ+)
151150ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → 𝑎 ∈ ℝ+)
152113, 151sylbi 217 . . . . . . . . . . . . . . 15 (𝜒𝑎 ∈ ℝ+)
153152rpred 13075 . . . . . . . . . . . . . 14 (𝜒𝑎 ∈ ℝ)
154153adantr 480 . . . . . . . . . . . . 13 ((𝜒𝑠𝑢) → 𝑎 ∈ ℝ)
155 iccssxr 13467 . . . . . . . . . . . . . . . 16 (0[,]+∞) ⊆ ℝ*
156 volf 25578 . . . . . . . . . . . . . . . . . 18 vol:dom vol⟶(0[,]+∞)
157156a1i 11 . . . . . . . . . . . . . . . . 17 (𝜒 → vol:dom vol⟶(0[,]+∞))
158157, 130ffvelcdmd 7105 . . . . . . . . . . . . . . . 16 (𝜒 → (vol‘𝑢) ∈ (0[,]+∞))
159155, 158sselid 3993 . . . . . . . . . . . . . . 15 (𝜒 → (vol‘𝑢) ∈ ℝ*)
160 iccvolcl 25616 . . . . . . . . . . . . . . . . 17 ((-π ∈ ℝ ∧ π ∈ ℝ) → (vol‘(-π[,]π)) ∈ ℝ)
16143, 42, 160mp2an 692 . . . . . . . . . . . . . . . 16 (vol‘(-π[,]π)) ∈ ℝ
162161a1i 11 . . . . . . . . . . . . . . 15 (𝜒 → (vol‘(-π[,]π)) ∈ ℝ)
163 mnfxr 11316 . . . . . . . . . . . . . . . . 17 -∞ ∈ ℝ*
164163a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → -∞ ∈ ℝ*)
165 0xr 11306 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ*
166165a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → 0 ∈ ℝ*)
167 mnflt0 13165 . . . . . . . . . . . . . . . . 17 -∞ < 0
168167a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → -∞ < 0)
169 volge0 45917 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ dom vol → 0 ≤ (vol‘𝑢))
170130, 169syl 17 . . . . . . . . . . . . . . . 16 (𝜒 → 0 ≤ (vol‘𝑢))
171164, 166, 159, 168, 170xrltletrd 13200 . . . . . . . . . . . . . . 15 (𝜒 → -∞ < (vol‘𝑢))
172 iccmbl 25615 . . . . . . . . . . . . . . . . . 18 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ∈ dom vol)
17343, 42, 172mp2an 692 . . . . . . . . . . . . . . . . 17 (-π[,]π) ∈ dom vol
174173a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → (-π[,]π) ∈ dom vol)
175 volss 25582 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ dom vol ∧ (-π[,]π) ∈ dom vol ∧ 𝑢 ⊆ (-π[,]π)) → (vol‘𝑢) ≤ (vol‘(-π[,]π)))
176130, 174, 126, 175syl3anc 1370 . . . . . . . . . . . . . . 15 (𝜒 → (vol‘𝑢) ≤ (vol‘(-π[,]π)))
177 xrre 13208 . . . . . . . . . . . . . . 15 ((((vol‘𝑢) ∈ ℝ* ∧ (vol‘(-π[,]π)) ∈ ℝ) ∧ (-∞ < (vol‘𝑢) ∧ (vol‘𝑢) ≤ (vol‘(-π[,]π)))) → (vol‘𝑢) ∈ ℝ)
178159, 162, 171, 176, 177syl22anc 839 . . . . . . . . . . . . . 14 (𝜒 → (vol‘𝑢) ∈ ℝ)
179152rpcnd 13077 . . . . . . . . . . . . . 14 (𝜒𝑎 ∈ ℂ)
180 iblconstmpt 45912 . . . . . . . . . . . . . 14 ((𝑢 ∈ dom vol ∧ (vol‘𝑢) ∈ ℝ ∧ 𝑎 ∈ ℂ) → (𝑠𝑢𝑎) ∈ 𝐿1)
181130, 178, 179, 180syl3anc 1370 . . . . . . . . . . . . 13 (𝜒 → (𝑠𝑢𝑎) ∈ 𝐿1)
182154, 181itgrecl 25848 . . . . . . . . . . . 12 (𝜒 → ∫𝑢𝑎 d𝑠 ∈ ℝ)
183 simpl3 1192 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) → ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
184183ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
185113, 184sylbi 217 . . . . . . . . . . . . . . . 16 (𝜒 → ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
186 rspa 3246 . . . . . . . . . . . . . . . 16 ((∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎𝑛 ∈ ℕ) → ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
187185, 133, 186syl2anc 584 . . . . . . . . . . . . . . 15 (𝜒 → ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
188187adantr 480 . . . . . . . . . . . . . 14 ((𝜒𝑠𝑢) → ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
189 rspa 3246 . . . . . . . . . . . . . 14 ((∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎𝑠 ∈ (-π[,]π)) → (abs‘(𝐺𝑠)) ≤ 𝑎)
190188, 127, 189syl2anc 584 . . . . . . . . . . . . 13 ((𝜒𝑠𝑢) → (abs‘(𝐺𝑠)) ≤ 𝑎)
191142, 181, 141, 154, 190itgle 25860 . . . . . . . . . . . 12 (𝜒 → ∫𝑢(abs‘(𝐺𝑠)) d𝑠 ≤ ∫𝑢𝑎 d𝑠)
192 itgconst 25869 . . . . . . . . . . . . . 14 ((𝑢 ∈ dom vol ∧ (vol‘𝑢) ∈ ℝ ∧ 𝑎 ∈ ℂ) → ∫𝑢𝑎 d𝑠 = (𝑎 · (vol‘𝑢)))
193130, 178, 179, 192syl3anc 1370 . . . . . . . . . . . . 13 (𝜒 → ∫𝑢𝑎 d𝑠 = (𝑎 · (vol‘𝑢)))
194153, 178remulcld 11289 . . . . . . . . . . . . . 14 (𝜒 → (𝑎 · (vol‘𝑢)) ∈ ℝ)
195 3re 12344 . . . . . . . . . . . . . . . . . . 19 3 ∈ ℝ
196195a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜒 → 3 ∈ ℝ)
197 3ne0 12370 . . . . . . . . . . . . . . . . . . 19 3 ≠ 0
198197a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜒 → 3 ≠ 0)
199147, 196, 198redivcld 12093 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑒 / 3) ∈ ℝ)
200152rpne0d 13080 . . . . . . . . . . . . . . . . 17 (𝜒𝑎 ≠ 0)
201199, 153, 200redivcld 12093 . . . . . . . . . . . . . . . 16 (𝜒 → ((𝑒 / 3) / 𝑎) ∈ ℝ)
20294, 201eqeltrid 2843 . . . . . . . . . . . . . . 15 (𝜒𝐷 ∈ ℝ)
203153, 202remulcld 11289 . . . . . . . . . . . . . 14 (𝜒 → (𝑎 · 𝐷) ∈ ℝ)
204152rpge0d 13079 . . . . . . . . . . . . . . 15 (𝜒 → 0 ≤ 𝑎)
205 simplrr 778 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → (vol‘𝑢) ≤ 𝐷)
206113, 205sylbi 217 . . . . . . . . . . . . . . 15 (𝜒 → (vol‘𝑢) ≤ 𝐷)
207178, 202, 153, 204, 206lemul2ad 12206 . . . . . . . . . . . . . 14 (𝜒 → (𝑎 · (vol‘𝑢)) ≤ (𝑎 · 𝐷))
20894oveq2i 7442 . . . . . . . . . . . . . . . 16 (𝑎 · 𝐷) = (𝑎 · ((𝑒 / 3) / 𝑎))
209199recnd 11287 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑒 / 3) ∈ ℂ)
210209, 179, 200divcan2d 12043 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑎 · ((𝑒 / 3) / 𝑎)) = (𝑒 / 3))
211208, 210eqtrid 2787 . . . . . . . . . . . . . . 15 (𝜒 → (𝑎 · 𝐷) = (𝑒 / 3))
212 2rp 13037 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ+
213212a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → 2 ∈ ℝ+)
21496a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → 3 ∈ ℝ+)
215 2lt3 12436 . . . . . . . . . . . . . . . . 17 2 < 3
216215a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → 2 < 3)
217213, 214, 146, 216ltdiv2dd 45245 . . . . . . . . . . . . . . 15 (𝜒 → (𝑒 / 3) < (𝑒 / 2))
218211, 217eqbrtrd 5170 . . . . . . . . . . . . . 14 (𝜒 → (𝑎 · 𝐷) < (𝑒 / 2))
219194, 203, 148, 207, 218lelttrd 11417 . . . . . . . . . . . . 13 (𝜒 → (𝑎 · (vol‘𝑢)) < (𝑒 / 2))
220193, 219eqbrtrd 5170 . . . . . . . . . . . 12 (𝜒 → ∫𝑢𝑎 d𝑠 < (𝑒 / 2))
221143, 182, 148, 191, 220lelttrd 11417 . . . . . . . . . . 11 (𝜒 → ∫𝑢(abs‘(𝐺𝑠)) d𝑠 < (𝑒 / 2))
222139, 143, 148, 149, 221lelttrd 11417 . . . . . . . . . 10 (𝜒 → (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2))
223113, 222sylbir 235 . . . . . . . . 9 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2))
224223ex 412 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) → (𝑛 ∈ ℕ → (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)))
225112, 224ralrimi 3255 . . . . . . 7 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2))
226225ex 412 . . . . . 6 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) → ((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)))
227226ralrimiva 3144 . . . . 5 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) → ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)))
228 breq2 5152 . . . . . . 7 (𝑑 = 𝐷 → ((vol‘𝑢) ≤ 𝑑 ↔ (vol‘𝑢) ≤ 𝐷))
229228anbi2d 630 . . . . . 6 (𝑑 = 𝐷 → ((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) ↔ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)))
230229rspceaimv 3628 . . . . 5 ((𝐷 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2))) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)))
231104, 227, 230syl2anc 584 . . . 4 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)))
232231rexlimdv3a 3157 . . 3 ((𝜑𝑒 ∈ ℝ+) → (∃𝑎 ∈ ℝ+𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎 → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2))))
23393, 232mpd 15 . 2 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)))
234 simplll 775 . . . . . . . . . . . 12 ((((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) ∧ 𝑠𝑢) → 𝜑)
235 simplr 769 . . . . . . . . . . . 12 ((((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) ∧ 𝑠𝑢) → 𝑛 ∈ ℕ)
236 simpllr 776 . . . . . . . . . . . . 13 ((((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) ∧ 𝑠𝑢) → 𝑢 ⊆ (-π[,]π))
237 simpr 484 . . . . . . . . . . . . 13 ((((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) ∧ 𝑠𝑢) → 𝑠𝑢)
238236, 237sseldd 3996 . . . . . . . . . . . 12 ((((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) ∧ 𝑠𝑢) → 𝑠 ∈ (-π[,]π))
239234, 235, 238, 54syl21anc 838 . . . . . . . . . . 11 ((((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) ∧ 𝑠𝑢) → (𝐺𝑠) = ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))))
240239itgeq2dv 25832 . . . . . . . . . 10 (((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) → ∫𝑢(𝐺𝑠) d𝑠 = ∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠)
241240fveq2d 6911 . . . . . . . . 9 (((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) → (abs‘∫𝑢(𝐺𝑠) d𝑠) = (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠))
242241breq1d 5158 . . . . . . . 8 (((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) → ((abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2) ↔ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
243242ralbidva 3174 . . . . . . 7 ((𝜑𝑢 ⊆ (-π[,]π)) → (∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2) ↔ ∀𝑛 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
244 oveq1 7438 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝑛 + (1 / 2)) = (𝑘 + (1 / 2)))
245244oveq1d 7446 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → ((𝑛 + (1 / 2)) · 𝑠) = ((𝑘 + (1 / 2)) · 𝑠))
246245fveq2d 6911 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (sin‘((𝑛 + (1 / 2)) · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
247246oveq2d 7447 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
248247adantr 480 . . . . . . . . . . 11 ((𝑛 = 𝑘𝑠𝑢) → ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
249248itgeq2dv 25832 . . . . . . . . . 10 (𝑛 = 𝑘 → ∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 = ∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
250249fveq2d 6911 . . . . . . . . 9 (𝑛 = 𝑘 → (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠) = (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
251250breq1d 5158 . . . . . . . 8 (𝑛 = 𝑘 → ((abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
252251cbvralvw 3235 . . . . . . 7 (∀𝑛 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
253243, 252bitrdi 287 . . . . . 6 ((𝜑𝑢 ⊆ (-π[,]π)) → (∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2) ↔ ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
254253adantrr 717 . . . . 5 ((𝜑 ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑)) → (∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2) ↔ ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
255254pm5.74da 804 . . . 4 (𝜑 → (((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)) ↔ ((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))))
256255rexralbidv 3221 . . 3 (𝜑 → (∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)) ↔ ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))))
257256adantr 480 . 2 ((𝜑𝑒 ∈ ℝ+) → (∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)) ↔ ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))))
258233, 257mpbid 232 1 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  wss 3963  ifcif 4531   class class class wbr 5148  cmpt 5231  dom cdm 5689  wf 6559  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  +∞cpnf 11290  -∞cmnf 11291  *cxr 11292   < clt 11293  cle 11294  cmin 11490  -cneg 11491   / cdiv 11918  cn 12264  2c2 12319  3c3 12320  +crp 13032  [,]cicc 13387  abscabs 15270  sincsin 16096  πcpi 16099  volcvol 25512  𝐿1cibl 25666  citg 25667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cc 10473  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-omul 8510  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-acn 9980  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-ef 16100  df-sin 16102  df-cos 16103  df-pi 16105  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-t1 23338  df-haus 23339  df-cmp 23411  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-ovol 25513  df-vol 25514  df-mbf 25668  df-itg1 25669  df-itg2 25670  df-ibl 25671  df-itg 25672  df-0p 25719  df-limc 25916  df-dv 25917
This theorem is referenced by:  fourierdlem103  46165  fourierdlem104  46166
  Copyright terms: Public domain W3C validator