Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem87 Structured version   Visualization version   GIF version

Theorem fourierdlem87 46178
Description: The integral of 𝐺 goes uniformly ( with respect to 𝑛) to zero if the measure of the domain of integration goes to zero. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem87.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem87.x (𝜑𝑋 ∈ ℝ)
fourierdlem87.y (𝜑𝑌 ∈ ℝ)
fourierdlem87.w (𝜑𝑊 ∈ ℝ)
fourierdlem87.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
fourierdlem87.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem87.u 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
fourierdlem87.s 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
fourierdlem87.g 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
fourierdlem87.10 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑥)
fourierdlem87.gibl ((𝜑𝑛 ∈ ℕ) → 𝐺 ∈ 𝐿1)
fourierdlem87.d 𝐷 = ((𝑒 / 3) / 𝑎)
fourierdlem87.ch (𝜒 ↔ (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ))
Assertion
Ref Expression
fourierdlem87 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
Distinct variable groups:   𝐷,𝑑,𝑛,𝑢   𝐺,𝑎,𝑑,𝑠,𝑢   𝐾,𝑎,𝑠   𝑈,𝑎,𝑛   𝑈,𝑘,𝑛   𝑥,𝑈,𝑎   𝑒,𝑎,𝑑,𝑛,𝑢   𝜑,𝑎,𝑑,𝑛,𝑠,𝑢   𝜒,𝑠   𝑒,𝑘,𝑢   𝑘,𝑠   𝜑,𝑥,𝑠
Allowed substitution hints:   𝜑(𝑒,𝑘)   𝜒(𝑥,𝑢,𝑒,𝑘,𝑛,𝑎,𝑑)   𝐷(𝑥,𝑒,𝑘,𝑠,𝑎)   𝑆(𝑥,𝑢,𝑒,𝑘,𝑛,𝑠,𝑎,𝑑)   𝑈(𝑢,𝑒,𝑠,𝑑)   𝐹(𝑥,𝑢,𝑒,𝑘,𝑛,𝑠,𝑎,𝑑)   𝐺(𝑥,𝑒,𝑘,𝑛)   𝐻(𝑥,𝑢,𝑒,𝑘,𝑛,𝑠,𝑎,𝑑)   𝐾(𝑥,𝑢,𝑒,𝑘,𝑛,𝑑)   𝑊(𝑥,𝑢,𝑒,𝑘,𝑛,𝑠,𝑎,𝑑)   𝑋(𝑥,𝑢,𝑒,𝑘,𝑛,𝑠,𝑎,𝑑)   𝑌(𝑥,𝑢,𝑒,𝑘,𝑛,𝑠,𝑎,𝑑)

Proof of Theorem fourierdlem87
StepHypRef Expression
1 fourierdlem87.f . . . . . 6 (𝜑𝐹:ℝ⟶ℝ)
2 fourierdlem87.x . . . . . 6 (𝜑𝑋 ∈ ℝ)
3 fourierdlem87.y . . . . . 6 (𝜑𝑌 ∈ ℝ)
4 fourierdlem87.w . . . . . 6 (𝜑𝑊 ∈ ℝ)
5 fourierdlem87.h . . . . . 6 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
6 fourierdlem87.k . . . . . 6 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
7 fourierdlem87.u . . . . . 6 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
8 fourierdlem87.10 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑥)
91, 2, 3, 4, 5, 6, 7, 8fourierdlem77 46168 . . . . 5 (𝜑 → ∃𝑎 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎)
10 nfv 1914 . . . . . . . . . . 11 𝑠(𝜑𝑎 ∈ ℝ+)
11 nfra1 3253 . . . . . . . . . . 11 𝑠𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎
1210, 11nfan 1899 . . . . . . . . . 10 𝑠((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎)
13 nfv 1914 . . . . . . . . . 10 𝑠 𝑛 ∈ ℕ
1412, 13nfan 1899 . . . . . . . . 9 𝑠(((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ)
15 simp-4l 782 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 𝜑)
16 simp-4r 783 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 𝑎 ∈ ℝ+)
17 simplr 768 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 𝑛 ∈ ℕ)
1815, 16, 17jca31 514 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ))
19 simpr 484 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (-π[,]π))
20 simpllr 775 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎)
21 rspa 3218 . . . . . . . . . . . 12 ((∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ≤ 𝑎)
2220, 19, 21syl2anc 584 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ≤ 𝑎)
23 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (-π[,]π))
241, 2, 3, 4, 5, 6, 7fourierdlem55 46146 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑈:(-π[,]π)⟶ℝ)
2524ffvelcdmda 7018 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℝ)
2625adantlr 715 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℝ)
27 nnre 12135 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
28 fourierdlem87.s . . . . . . . . . . . . . . . . . . . . . . 23 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
2928fourierdlem5 46097 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℝ → 𝑆:(-π[,]π)⟶ℝ)
3027, 29syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 𝑆:(-π[,]π)⟶ℝ)
3130ad2antlr 727 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 𝑆:(-π[,]π)⟶ℝ)
3231, 23ffvelcdmd 7019 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝑆𝑠) ∈ ℝ)
3326, 32remulcld 11145 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ)
34 fourierdlem87.g . . . . . . . . . . . . . . . . . . 19 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
3534fvmpt2 6941 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ (-π[,]π) ∧ ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
3623, 33, 35syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
37 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (-π[,]π))
38 halfre 12337 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1 / 2) ∈ ℝ
3938a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ℕ → (1 / 2) ∈ ℝ)
4027, 39readdcld 11144 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℕ → (𝑛 + (1 / 2)) ∈ ℝ)
4140adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (𝑛 + (1 / 2)) ∈ ℝ)
42 pire 26364 . . . . . . . . . . . . . . . . . . . . . . . . . 26 π ∈ ℝ
4342renegcli 11425 . . . . . . . . . . . . . . . . . . . . . . . . 25 -π ∈ ℝ
44 iccssre 13332 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
4543, 42, 44mp2an 692 . . . . . . . . . . . . . . . . . . . . . . . 24 (-π[,]π) ⊆ ℝ
4645sseli 3931 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ (-π[,]π) → 𝑠 ∈ ℝ)
4746adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
4841, 47remulcld 11145 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
4948resincld 16052 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
5028fvmpt2 6941 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ (-π[,]π) ∧ (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
5137, 49, 50syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
5251oveq2d 7365 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → ((𝑈𝑠) · (𝑆𝑠)) = ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))))
5352adantll 714 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝑈𝑠) · (𝑆𝑠)) = ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))))
5436, 53eqtrd 2764 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐺𝑠) = ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))))
5554fveq2d 6826 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐺𝑠)) = (abs‘((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))))
5626recnd 11143 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℂ)
5749adantll 714 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
5857recnd 11143 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℂ)
5956, 58absmuld 15364 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) = ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))))
6055, 59eqtrd 2764 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐺𝑠)) = ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))))
6160adantllr 719 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐺𝑠)) = ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))))
6261adantr 480 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → (abs‘(𝐺𝑠)) = ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))))
6356abscld 15346 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ∈ ℝ)
6458abscld 15346 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠))) ∈ ℝ)
6563, 64remulcld 11145 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ ℝ)
6665adantllr 719 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ ℝ)
6766adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ ℝ)
6863adantllr 719 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ∈ ℝ)
6968adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → (abs‘(𝑈𝑠)) ∈ ℝ)
70 rpre 12902 . . . . . . . . . . . . . 14 (𝑎 ∈ ℝ+𝑎 ∈ ℝ)
7170ad4antlr 733 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → 𝑎 ∈ ℝ)
72 1red 11116 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 1 ∈ ℝ)
7356absge0d 15354 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 0 ≤ (abs‘(𝑈𝑠)))
7448adantll 714 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
75 abssinbd 45281 . . . . . . . . . . . . . . . . . 18 (((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ → (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠))) ≤ 1)
7674, 75syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠))) ≤ 1)
7764, 72, 63, 73, 76lemul2ad 12065 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ≤ ((abs‘(𝑈𝑠)) · 1))
7863recnd 11143 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ∈ ℂ)
7978mulridd 11132 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝑈𝑠)) · 1) = (abs‘(𝑈𝑠)))
8077, 79breqtrd 5118 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ≤ (abs‘(𝑈𝑠)))
8180adantllr 719 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ≤ (abs‘(𝑈𝑠)))
8281adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ≤ (abs‘(𝑈𝑠)))
83 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → (abs‘(𝑈𝑠)) ≤ 𝑎)
8467, 69, 71, 82, 83letrd 11273 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ≤ 𝑎)
8562, 84eqbrtrd 5114 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → (abs‘(𝐺𝑠)) ≤ 𝑎)
8618, 19, 22, 85syl21anc 837 . . . . . . . . . 10 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐺𝑠)) ≤ 𝑎)
8786ex 412 . . . . . . . . 9 ((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) → (abs‘(𝐺𝑠)) ≤ 𝑎))
8814, 87ralrimi 3227 . . . . . . . 8 ((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) → ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
8988ralrimiva 3121 . . . . . . 7 (((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) → ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
9089ex 412 . . . . . 6 ((𝜑𝑎 ∈ ℝ+) → (∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎 → ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎))
9190reximdva 3142 . . . . 5 (𝜑 → (∃𝑎 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎 → ∃𝑎 ∈ ℝ+𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎))
929, 91mpd 15 . . . 4 (𝜑 → ∃𝑎 ∈ ℝ+𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
9392adantr 480 . . 3 ((𝜑𝑒 ∈ ℝ+) → ∃𝑎 ∈ ℝ+𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
94 fourierdlem87.d . . . . . . . 8 𝐷 = ((𝑒 / 3) / 𝑎)
95 id 22 . . . . . . . . . . 11 (𝑒 ∈ ℝ+𝑒 ∈ ℝ+)
96 3rp 12899 . . . . . . . . . . . 12 3 ∈ ℝ+
9796a1i 11 . . . . . . . . . . 11 (𝑒 ∈ ℝ+ → 3 ∈ ℝ+)
9895, 97rpdivcld 12954 . . . . . . . . . 10 (𝑒 ∈ ℝ+ → (𝑒 / 3) ∈ ℝ+)
9998adantr 480 . . . . . . . . 9 ((𝑒 ∈ ℝ+𝑎 ∈ ℝ+) → (𝑒 / 3) ∈ ℝ+)
100 simpr 484 . . . . . . . . 9 ((𝑒 ∈ ℝ+𝑎 ∈ ℝ+) → 𝑎 ∈ ℝ+)
10199, 100rpdivcld 12954 . . . . . . . 8 ((𝑒 ∈ ℝ+𝑎 ∈ ℝ+) → ((𝑒 / 3) / 𝑎) ∈ ℝ+)
10294, 101eqeltrid 2832 . . . . . . 7 ((𝑒 ∈ ℝ+𝑎 ∈ ℝ+) → 𝐷 ∈ ℝ+)
103102adantll 714 . . . . . 6 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) → 𝐷 ∈ ℝ+)
1041033adant3 1132 . . . . 5 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) → 𝐷 ∈ ℝ+)
105 nfv 1914 . . . . . . . . . . 11 𝑛(𝜑𝑒 ∈ ℝ+)
106 nfv 1914 . . . . . . . . . . 11 𝑛 𝑎 ∈ ℝ+
107 nfra1 3253 . . . . . . . . . . 11 𝑛𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎
108105, 106, 107nf3an 1901 . . . . . . . . . 10 𝑛((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
109 nfv 1914 . . . . . . . . . 10 𝑛 𝑢 ∈ dom vol
110108, 109nfan 1899 . . . . . . . . 9 𝑛(((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol)
111 nfv 1914 . . . . . . . . 9 𝑛(𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)
112110, 111nfan 1899 . . . . . . . 8 𝑛((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷))
113 fourierdlem87.ch . . . . . . . . . 10 (𝜒 ↔ (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ))
114 simpl1l 1225 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) → 𝜑)
115114ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → 𝜑)
116113, 115sylbi 217 . . . . . . . . . . . . . . . . 17 (𝜒𝜑)
117116, 1syl 17 . . . . . . . . . . . . . . . 16 (𝜒𝐹:ℝ⟶ℝ)
118116, 2syl 17 . . . . . . . . . . . . . . . 16 (𝜒𝑋 ∈ ℝ)
119116, 3syl 17 . . . . . . . . . . . . . . . 16 (𝜒𝑌 ∈ ℝ)
120116, 4syl 17 . . . . . . . . . . . . . . . 16 (𝜒𝑊 ∈ ℝ)
12127adantl 481 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
122113, 121sylbi 217 . . . . . . . . . . . . . . . 16 (𝜒𝑛 ∈ ℝ)
123117, 118, 119, 120, 5, 6, 7, 122, 28, 34fourierdlem67 46158 . . . . . . . . . . . . . . 15 (𝜒𝐺:(-π[,]π)⟶ℝ)
124123adantr 480 . . . . . . . . . . . . . 14 ((𝜒𝑠𝑢) → 𝐺:(-π[,]π)⟶ℝ)
125 simplrl 776 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → 𝑢 ⊆ (-π[,]π))
126113, 125sylbi 217 . . . . . . . . . . . . . . 15 (𝜒𝑢 ⊆ (-π[,]π))
127126sselda 3935 . . . . . . . . . . . . . 14 ((𝜒𝑠𝑢) → 𝑠 ∈ (-π[,]π))
128124, 127ffvelcdmd 7019 . . . . . . . . . . . . 13 ((𝜒𝑠𝑢) → (𝐺𝑠) ∈ ℝ)
129 simpllr 775 . . . . . . . . . . . . . . 15 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → 𝑢 ∈ dom vol)
130113, 129sylbi 217 . . . . . . . . . . . . . 14 (𝜒𝑢 ∈ dom vol)
131123ffvelcdmda 7018 . . . . . . . . . . . . . 14 ((𝜒𝑠 ∈ (-π[,]π)) → (𝐺𝑠) ∈ ℝ)
132123feqmptd 6891 . . . . . . . . . . . . . . 15 (𝜒𝐺 = (𝑠 ∈ (-π[,]π) ↦ (𝐺𝑠)))
133113simprbi 496 . . . . . . . . . . . . . . . 16 (𝜒𝑛 ∈ ℕ)
134 fourierdlem87.gibl . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → 𝐺 ∈ 𝐿1)
135116, 133, 134syl2anc 584 . . . . . . . . . . . . . . 15 (𝜒𝐺 ∈ 𝐿1)
136132, 135eqeltrrd 2829 . . . . . . . . . . . . . 14 (𝜒 → (𝑠 ∈ (-π[,]π) ↦ (𝐺𝑠)) ∈ 𝐿1)
137126, 130, 131, 136iblss 25704 . . . . . . . . . . . . 13 (𝜒 → (𝑠𝑢 ↦ (𝐺𝑠)) ∈ 𝐿1)
138128, 137itgcl 25683 . . . . . . . . . . . 12 (𝜒 → ∫𝑢(𝐺𝑠) d𝑠 ∈ ℂ)
139138abscld 15346 . . . . . . . . . . 11 (𝜒 → (abs‘∫𝑢(𝐺𝑠) d𝑠) ∈ ℝ)
140128recnd 11143 . . . . . . . . . . . . 13 ((𝜒𝑠𝑢) → (𝐺𝑠) ∈ ℂ)
141140abscld 15346 . . . . . . . . . . . 12 ((𝜒𝑠𝑢) → (abs‘(𝐺𝑠)) ∈ ℝ)
142128, 137iblabs 25728 . . . . . . . . . . . 12 (𝜒 → (𝑠𝑢 ↦ (abs‘(𝐺𝑠))) ∈ 𝐿1)
143141, 142itgrecl 25697 . . . . . . . . . . 11 (𝜒 → ∫𝑢(abs‘(𝐺𝑠)) d𝑠 ∈ ℝ)
144 simpl1r 1226 . . . . . . . . . . . . . . 15 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) → 𝑒 ∈ ℝ+)
145144ad2antrr 726 . . . . . . . . . . . . . 14 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → 𝑒 ∈ ℝ+)
146113, 145sylbi 217 . . . . . . . . . . . . 13 (𝜒𝑒 ∈ ℝ+)
147146rpred 12937 . . . . . . . . . . . 12 (𝜒𝑒 ∈ ℝ)
148147rehalfcld 12371 . . . . . . . . . . 11 (𝜒 → (𝑒 / 2) ∈ ℝ)
149128, 137itgabs 25734 . . . . . . . . . . 11 (𝜒 → (abs‘∫𝑢(𝐺𝑠) d𝑠) ≤ ∫𝑢(abs‘(𝐺𝑠)) d𝑠)
150 simpl2 1193 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) → 𝑎 ∈ ℝ+)
151150ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → 𝑎 ∈ ℝ+)
152113, 151sylbi 217 . . . . . . . . . . . . . . 15 (𝜒𝑎 ∈ ℝ+)
153152rpred 12937 . . . . . . . . . . . . . 14 (𝜒𝑎 ∈ ℝ)
154153adantr 480 . . . . . . . . . . . . 13 ((𝜒𝑠𝑢) → 𝑎 ∈ ℝ)
155 iccssxr 13333 . . . . . . . . . . . . . . . 16 (0[,]+∞) ⊆ ℝ*
156 volf 25428 . . . . . . . . . . . . . . . . . 18 vol:dom vol⟶(0[,]+∞)
157156a1i 11 . . . . . . . . . . . . . . . . 17 (𝜒 → vol:dom vol⟶(0[,]+∞))
158157, 130ffvelcdmd 7019 . . . . . . . . . . . . . . . 16 (𝜒 → (vol‘𝑢) ∈ (0[,]+∞))
159155, 158sselid 3933 . . . . . . . . . . . . . . 15 (𝜒 → (vol‘𝑢) ∈ ℝ*)
160 iccvolcl 25466 . . . . . . . . . . . . . . . . 17 ((-π ∈ ℝ ∧ π ∈ ℝ) → (vol‘(-π[,]π)) ∈ ℝ)
16143, 42, 160mp2an 692 . . . . . . . . . . . . . . . 16 (vol‘(-π[,]π)) ∈ ℝ
162161a1i 11 . . . . . . . . . . . . . . 15 (𝜒 → (vol‘(-π[,]π)) ∈ ℝ)
163 mnfxr 11172 . . . . . . . . . . . . . . . . 17 -∞ ∈ ℝ*
164163a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → -∞ ∈ ℝ*)
165 0xr 11162 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ*
166165a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → 0 ∈ ℝ*)
167 mnflt0 13027 . . . . . . . . . . . . . . . . 17 -∞ < 0
168167a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → -∞ < 0)
169 volge0 45946 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ dom vol → 0 ≤ (vol‘𝑢))
170130, 169syl 17 . . . . . . . . . . . . . . . 16 (𝜒 → 0 ≤ (vol‘𝑢))
171164, 166, 159, 168, 170xrltletrd 13063 . . . . . . . . . . . . . . 15 (𝜒 → -∞ < (vol‘𝑢))
172 iccmbl 25465 . . . . . . . . . . . . . . . . . 18 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ∈ dom vol)
17343, 42, 172mp2an 692 . . . . . . . . . . . . . . . . 17 (-π[,]π) ∈ dom vol
174173a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → (-π[,]π) ∈ dom vol)
175 volss 25432 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ dom vol ∧ (-π[,]π) ∈ dom vol ∧ 𝑢 ⊆ (-π[,]π)) → (vol‘𝑢) ≤ (vol‘(-π[,]π)))
176130, 174, 126, 175syl3anc 1373 . . . . . . . . . . . . . . 15 (𝜒 → (vol‘𝑢) ≤ (vol‘(-π[,]π)))
177 xrre 13071 . . . . . . . . . . . . . . 15 ((((vol‘𝑢) ∈ ℝ* ∧ (vol‘(-π[,]π)) ∈ ℝ) ∧ (-∞ < (vol‘𝑢) ∧ (vol‘𝑢) ≤ (vol‘(-π[,]π)))) → (vol‘𝑢) ∈ ℝ)
178159, 162, 171, 176, 177syl22anc 838 . . . . . . . . . . . . . 14 (𝜒 → (vol‘𝑢) ∈ ℝ)
179152rpcnd 12939 . . . . . . . . . . . . . 14 (𝜒𝑎 ∈ ℂ)
180 iblconstmpt 45941 . . . . . . . . . . . . . 14 ((𝑢 ∈ dom vol ∧ (vol‘𝑢) ∈ ℝ ∧ 𝑎 ∈ ℂ) → (𝑠𝑢𝑎) ∈ 𝐿1)
181130, 178, 179, 180syl3anc 1373 . . . . . . . . . . . . 13 (𝜒 → (𝑠𝑢𝑎) ∈ 𝐿1)
182154, 181itgrecl 25697 . . . . . . . . . . . 12 (𝜒 → ∫𝑢𝑎 d𝑠 ∈ ℝ)
183 simpl3 1194 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) → ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
184183ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
185113, 184sylbi 217 . . . . . . . . . . . . . . . 16 (𝜒 → ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
186 rspa 3218 . . . . . . . . . . . . . . . 16 ((∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎𝑛 ∈ ℕ) → ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
187185, 133, 186syl2anc 584 . . . . . . . . . . . . . . 15 (𝜒 → ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
188187adantr 480 . . . . . . . . . . . . . 14 ((𝜒𝑠𝑢) → ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
189 rspa 3218 . . . . . . . . . . . . . 14 ((∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎𝑠 ∈ (-π[,]π)) → (abs‘(𝐺𝑠)) ≤ 𝑎)
190188, 127, 189syl2anc 584 . . . . . . . . . . . . 13 ((𝜒𝑠𝑢) → (abs‘(𝐺𝑠)) ≤ 𝑎)
191142, 181, 141, 154, 190itgle 25709 . . . . . . . . . . . 12 (𝜒 → ∫𝑢(abs‘(𝐺𝑠)) d𝑠 ≤ ∫𝑢𝑎 d𝑠)
192 itgconst 25718 . . . . . . . . . . . . . 14 ((𝑢 ∈ dom vol ∧ (vol‘𝑢) ∈ ℝ ∧ 𝑎 ∈ ℂ) → ∫𝑢𝑎 d𝑠 = (𝑎 · (vol‘𝑢)))
193130, 178, 179, 192syl3anc 1373 . . . . . . . . . . . . 13 (𝜒 → ∫𝑢𝑎 d𝑠 = (𝑎 · (vol‘𝑢)))
194153, 178remulcld 11145 . . . . . . . . . . . . . 14 (𝜒 → (𝑎 · (vol‘𝑢)) ∈ ℝ)
195 3re 12208 . . . . . . . . . . . . . . . . . . 19 3 ∈ ℝ
196195a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜒 → 3 ∈ ℝ)
197 3ne0 12234 . . . . . . . . . . . . . . . . . . 19 3 ≠ 0
198197a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜒 → 3 ≠ 0)
199147, 196, 198redivcld 11952 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑒 / 3) ∈ ℝ)
200152rpne0d 12942 . . . . . . . . . . . . . . . . 17 (𝜒𝑎 ≠ 0)
201199, 153, 200redivcld 11952 . . . . . . . . . . . . . . . 16 (𝜒 → ((𝑒 / 3) / 𝑎) ∈ ℝ)
20294, 201eqeltrid 2832 . . . . . . . . . . . . . . 15 (𝜒𝐷 ∈ ℝ)
203153, 202remulcld 11145 . . . . . . . . . . . . . 14 (𝜒 → (𝑎 · 𝐷) ∈ ℝ)
204152rpge0d 12941 . . . . . . . . . . . . . . 15 (𝜒 → 0 ≤ 𝑎)
205 simplrr 777 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → (vol‘𝑢) ≤ 𝐷)
206113, 205sylbi 217 . . . . . . . . . . . . . . 15 (𝜒 → (vol‘𝑢) ≤ 𝐷)
207178, 202, 153, 204, 206lemul2ad 12065 . . . . . . . . . . . . . 14 (𝜒 → (𝑎 · (vol‘𝑢)) ≤ (𝑎 · 𝐷))
20894oveq2i 7360 . . . . . . . . . . . . . . . 16 (𝑎 · 𝐷) = (𝑎 · ((𝑒 / 3) / 𝑎))
209199recnd 11143 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑒 / 3) ∈ ℂ)
210209, 179, 200divcan2d 11902 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑎 · ((𝑒 / 3) / 𝑎)) = (𝑒 / 3))
211208, 210eqtrid 2776 . . . . . . . . . . . . . . 15 (𝜒 → (𝑎 · 𝐷) = (𝑒 / 3))
212 2rp 12898 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ+
213212a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → 2 ∈ ℝ+)
21496a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → 3 ∈ ℝ+)
215 2lt3 12295 . . . . . . . . . . . . . . . . 17 2 < 3
216215a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → 2 < 3)
217213, 214, 146, 216ltdiv2dd 45280 . . . . . . . . . . . . . . 15 (𝜒 → (𝑒 / 3) < (𝑒 / 2))
218211, 217eqbrtrd 5114 . . . . . . . . . . . . . 14 (𝜒 → (𝑎 · 𝐷) < (𝑒 / 2))
219194, 203, 148, 207, 218lelttrd 11274 . . . . . . . . . . . . 13 (𝜒 → (𝑎 · (vol‘𝑢)) < (𝑒 / 2))
220193, 219eqbrtrd 5114 . . . . . . . . . . . 12 (𝜒 → ∫𝑢𝑎 d𝑠 < (𝑒 / 2))
221143, 182, 148, 191, 220lelttrd 11274 . . . . . . . . . . 11 (𝜒 → ∫𝑢(abs‘(𝐺𝑠)) d𝑠 < (𝑒 / 2))
222139, 143, 148, 149, 221lelttrd 11274 . . . . . . . . . 10 (𝜒 → (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2))
223113, 222sylbir 235 . . . . . . . . 9 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2))
224223ex 412 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) → (𝑛 ∈ ℕ → (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)))
225112, 224ralrimi 3227 . . . . . . 7 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2))
226225ex 412 . . . . . 6 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) → ((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)))
227226ralrimiva 3121 . . . . 5 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) → ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)))
228 breq2 5096 . . . . . . 7 (𝑑 = 𝐷 → ((vol‘𝑢) ≤ 𝑑 ↔ (vol‘𝑢) ≤ 𝐷))
229228anbi2d 630 . . . . . 6 (𝑑 = 𝐷 → ((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) ↔ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)))
230229rspceaimv 3583 . . . . 5 ((𝐷 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2))) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)))
231104, 227, 230syl2anc 584 . . . 4 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)))
232231rexlimdv3a 3134 . . 3 ((𝜑𝑒 ∈ ℝ+) → (∃𝑎 ∈ ℝ+𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎 → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2))))
23393, 232mpd 15 . 2 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)))
234 simplll 774 . . . . . . . . . . . 12 ((((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) ∧ 𝑠𝑢) → 𝜑)
235 simplr 768 . . . . . . . . . . . 12 ((((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) ∧ 𝑠𝑢) → 𝑛 ∈ ℕ)
236 simpllr 775 . . . . . . . . . . . . 13 ((((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) ∧ 𝑠𝑢) → 𝑢 ⊆ (-π[,]π))
237 simpr 484 . . . . . . . . . . . . 13 ((((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) ∧ 𝑠𝑢) → 𝑠𝑢)
238236, 237sseldd 3936 . . . . . . . . . . . 12 ((((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) ∧ 𝑠𝑢) → 𝑠 ∈ (-π[,]π))
239234, 235, 238, 54syl21anc 837 . . . . . . . . . . 11 ((((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) ∧ 𝑠𝑢) → (𝐺𝑠) = ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))))
240239itgeq2dv 25681 . . . . . . . . . 10 (((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) → ∫𝑢(𝐺𝑠) d𝑠 = ∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠)
241240fveq2d 6826 . . . . . . . . 9 (((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) → (abs‘∫𝑢(𝐺𝑠) d𝑠) = (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠))
242241breq1d 5102 . . . . . . . 8 (((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) → ((abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2) ↔ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
243242ralbidva 3150 . . . . . . 7 ((𝜑𝑢 ⊆ (-π[,]π)) → (∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2) ↔ ∀𝑛 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
244 oveq1 7356 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝑛 + (1 / 2)) = (𝑘 + (1 / 2)))
245244oveq1d 7364 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → ((𝑛 + (1 / 2)) · 𝑠) = ((𝑘 + (1 / 2)) · 𝑠))
246245fveq2d 6826 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (sin‘((𝑛 + (1 / 2)) · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
247246oveq2d 7365 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
248247adantr 480 . . . . . . . . . . 11 ((𝑛 = 𝑘𝑠𝑢) → ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
249248itgeq2dv 25681 . . . . . . . . . 10 (𝑛 = 𝑘 → ∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 = ∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
250249fveq2d 6826 . . . . . . . . 9 (𝑛 = 𝑘 → (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠) = (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
251250breq1d 5102 . . . . . . . 8 (𝑛 = 𝑘 → ((abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
252251cbvralvw 3207 . . . . . . 7 (∀𝑛 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
253243, 252bitrdi 287 . . . . . 6 ((𝜑𝑢 ⊆ (-π[,]π)) → (∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2) ↔ ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
254253adantrr 717 . . . . 5 ((𝜑 ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑)) → (∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2) ↔ ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
255254pm5.74da 803 . . . 4 (𝜑 → (((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)) ↔ ((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))))
256255rexralbidv 3195 . . 3 (𝜑 → (∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)) ↔ ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))))
257256adantr 480 . 2 ((𝜑𝑒 ∈ ℝ+) → (∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)) ↔ ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))))
258233, 257mpbid 232 1 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3903  ifcif 4476   class class class wbr 5092  cmpt 5173  dom cdm 5619  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  +∞cpnf 11146  -∞cmnf 11147  *cxr 11148   < clt 11149  cle 11150  cmin 11347  -cneg 11348   / cdiv 11777  cn 12128  2c2 12183  3c3 12184  +crp 12893  [,]cicc 13251  abscabs 15141  sincsin 15970  πcpi 15973  volcvol 25362  𝐿1cibl 25516  citg 25517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cc 10329  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-acn 9838  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-t1 23199  df-haus 23200  df-cmp 23272  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-ovol 25363  df-vol 25364  df-mbf 25518  df-itg1 25519  df-itg2 25520  df-ibl 25521  df-itg 25522  df-0p 25569  df-limc 25765  df-dv 25766
This theorem is referenced by:  fourierdlem103  46194  fourierdlem104  46195
  Copyright terms: Public domain W3C validator