Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem87 Structured version   Visualization version   GIF version

Theorem fourierdlem87 42344
Description: The integral of 𝐺 goes uniformly ( with respect to 𝑛) to zero if the measure of the domain of integration goes to zero. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem87.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem87.x (𝜑𝑋 ∈ ℝ)
fourierdlem87.y (𝜑𝑌 ∈ ℝ)
fourierdlem87.w (𝜑𝑊 ∈ ℝ)
fourierdlem87.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
fourierdlem87.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem87.u 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
fourierdlem87.s 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
fourierdlem87.g 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
fourierdlem87.10 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑥)
fourierdlem87.gibl ((𝜑𝑛 ∈ ℕ) → 𝐺 ∈ 𝐿1)
fourierdlem87.d 𝐷 = ((𝑒 / 3) / 𝑎)
fourierdlem87.ch (𝜒 ↔ (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ))
Assertion
Ref Expression
fourierdlem87 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
Distinct variable groups:   𝐷,𝑑,𝑛,𝑢   𝐺,𝑎,𝑑,𝑠,𝑢   𝐾,𝑎,𝑠   𝑈,𝑎,𝑛   𝑈,𝑘,𝑛   𝑥,𝑈,𝑎   𝑒,𝑎,𝑑,𝑛,𝑢   𝜑,𝑎,𝑑,𝑛,𝑠,𝑢   𝜒,𝑠   𝑒,𝑘,𝑢   𝑘,𝑠   𝜑,𝑥,𝑠
Allowed substitution hints:   𝜑(𝑒,𝑘)   𝜒(𝑥,𝑢,𝑒,𝑘,𝑛,𝑎,𝑑)   𝐷(𝑥,𝑒,𝑘,𝑠,𝑎)   𝑆(𝑥,𝑢,𝑒,𝑘,𝑛,𝑠,𝑎,𝑑)   𝑈(𝑢,𝑒,𝑠,𝑑)   𝐹(𝑥,𝑢,𝑒,𝑘,𝑛,𝑠,𝑎,𝑑)   𝐺(𝑥,𝑒,𝑘,𝑛)   𝐻(𝑥,𝑢,𝑒,𝑘,𝑛,𝑠,𝑎,𝑑)   𝐾(𝑥,𝑢,𝑒,𝑘,𝑛,𝑑)   𝑊(𝑥,𝑢,𝑒,𝑘,𝑛,𝑠,𝑎,𝑑)   𝑋(𝑥,𝑢,𝑒,𝑘,𝑛,𝑠,𝑎,𝑑)   𝑌(𝑥,𝑢,𝑒,𝑘,𝑛,𝑠,𝑎,𝑑)

Proof of Theorem fourierdlem87
StepHypRef Expression
1 fourierdlem87.f . . . . . 6 (𝜑𝐹:ℝ⟶ℝ)
2 fourierdlem87.x . . . . . 6 (𝜑𝑋 ∈ ℝ)
3 fourierdlem87.y . . . . . 6 (𝜑𝑌 ∈ ℝ)
4 fourierdlem87.w . . . . . 6 (𝜑𝑊 ∈ ℝ)
5 fourierdlem87.h . . . . . 6 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
6 fourierdlem87.k . . . . . 6 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
7 fourierdlem87.u . . . . . 6 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
8 fourierdlem87.10 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑥)
91, 2, 3, 4, 5, 6, 7, 8fourierdlem77 42334 . . . . 5 (𝜑 → ∃𝑎 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎)
10 nfv 1908 . . . . . . . . . . 11 𝑠(𝜑𝑎 ∈ ℝ+)
11 nfra1 3224 . . . . . . . . . . 11 𝑠𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎
1210, 11nfan 1893 . . . . . . . . . 10 𝑠((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎)
13 nfv 1908 . . . . . . . . . 10 𝑠 𝑛 ∈ ℕ
1412, 13nfan 1893 . . . . . . . . 9 𝑠(((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ)
15 simp-4l 779 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 𝜑)
16 simp-4r 780 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 𝑎 ∈ ℝ+)
17 simplr 765 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 𝑛 ∈ ℕ)
1815, 16, 17jca31 515 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ))
19 simpr 485 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (-π[,]π))
20 simpllr 772 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎)
21 rspa 3211 . . . . . . . . . . . 12 ((∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ≤ 𝑎)
2220, 19, 21syl2anc 584 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ≤ 𝑎)
23 simpr 485 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (-π[,]π))
241, 2, 3, 4, 5, 6, 7fourierdlem55 42312 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑈:(-π[,]π)⟶ℝ)
2524ffvelrnda 6847 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℝ)
2625adantlr 711 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℝ)
27 nnre 11634 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
28 fourierdlem87.s . . . . . . . . . . . . . . . . . . . . . . 23 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
2928fourierdlem5 42263 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℝ → 𝑆:(-π[,]π)⟶ℝ)
3027, 29syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 𝑆:(-π[,]π)⟶ℝ)
3130ad2antlr 723 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 𝑆:(-π[,]π)⟶ℝ)
3231, 23ffvelrnd 6848 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝑆𝑠) ∈ ℝ)
3326, 32remulcld 10660 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ)
34 fourierdlem87.g . . . . . . . . . . . . . . . . . . 19 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
3534fvmpt2 6775 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ (-π[,]π) ∧ ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
3623, 33, 35syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
37 simpr 485 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (-π[,]π))
38 halfre 11840 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1 / 2) ∈ ℝ
3938a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ℕ → (1 / 2) ∈ ℝ)
4027, 39readdcld 10659 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℕ → (𝑛 + (1 / 2)) ∈ ℝ)
4140adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (𝑛 + (1 / 2)) ∈ ℝ)
42 pire 24959 . . . . . . . . . . . . . . . . . . . . . . . . . 26 π ∈ ℝ
4342renegcli 10936 . . . . . . . . . . . . . . . . . . . . . . . . 25 -π ∈ ℝ
44 iccssre 12808 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
4543, 42, 44mp2an 688 . . . . . . . . . . . . . . . . . . . . . . . 24 (-π[,]π) ⊆ ℝ
4645sseli 3967 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ (-π[,]π) → 𝑠 ∈ ℝ)
4746adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
4841, 47remulcld 10660 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
4948resincld 15486 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
5028fvmpt2 6775 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ (-π[,]π) ∧ (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
5137, 49, 50syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
5251oveq2d 7164 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → ((𝑈𝑠) · (𝑆𝑠)) = ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))))
5352adantll 710 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝑈𝑠) · (𝑆𝑠)) = ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))))
5436, 53eqtrd 2861 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐺𝑠) = ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))))
5554fveq2d 6671 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐺𝑠)) = (abs‘((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))))
5626recnd 10658 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℂ)
5749adantll 710 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
5857recnd 10658 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℂ)
5956, 58absmuld 14804 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) = ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))))
6055, 59eqtrd 2861 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐺𝑠)) = ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))))
6160adantllr 715 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐺𝑠)) = ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))))
6261adantr 481 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → (abs‘(𝐺𝑠)) = ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))))
6356abscld 14786 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ∈ ℝ)
6458abscld 14786 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠))) ∈ ℝ)
6563, 64remulcld 10660 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ ℝ)
6665adantllr 715 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ ℝ)
6766adantr 481 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ ℝ)
6863adantllr 715 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ∈ ℝ)
6968adantr 481 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → (abs‘(𝑈𝑠)) ∈ ℝ)
70 rpre 12387 . . . . . . . . . . . . . 14 (𝑎 ∈ ℝ+𝑎 ∈ ℝ)
7170ad4antlr 729 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → 𝑎 ∈ ℝ)
72 1red 10631 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 1 ∈ ℝ)
7356absge0d 14794 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 0 ≤ (abs‘(𝑈𝑠)))
7448adantll 710 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
75 abssinbd 41427 . . . . . . . . . . . . . . . . . 18 (((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ → (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠))) ≤ 1)
7674, 75syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠))) ≤ 1)
7764, 72, 63, 73, 76lemul2ad 11569 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ≤ ((abs‘(𝑈𝑠)) · 1))
7863recnd 10658 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ∈ ℂ)
7978mulid1d 10647 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝑈𝑠)) · 1) = (abs‘(𝑈𝑠)))
8077, 79breqtrd 5089 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ≤ (abs‘(𝑈𝑠)))
8180adantllr 715 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ≤ (abs‘(𝑈𝑠)))
8281adantr 481 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ≤ (abs‘(𝑈𝑠)))
83 simpr 485 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → (abs‘(𝑈𝑠)) ≤ 𝑎)
8467, 69, 71, 82, 83letrd 10786 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ≤ 𝑎)
8562, 84eqbrtrd 5085 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → (abs‘(𝐺𝑠)) ≤ 𝑎)
8618, 19, 22, 85syl21anc 835 . . . . . . . . . 10 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐺𝑠)) ≤ 𝑎)
8786ex 413 . . . . . . . . 9 ((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) → (abs‘(𝐺𝑠)) ≤ 𝑎))
8814, 87ralrimi 3221 . . . . . . . 8 ((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) → ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
8988ralrimiva 3187 . . . . . . 7 (((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) → ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
9089ex 413 . . . . . 6 ((𝜑𝑎 ∈ ℝ+) → (∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎 → ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎))
9190reximdva 3279 . . . . 5 (𝜑 → (∃𝑎 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎 → ∃𝑎 ∈ ℝ+𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎))
929, 91mpd 15 . . . 4 (𝜑 → ∃𝑎 ∈ ℝ+𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
9392adantr 481 . . 3 ((𝜑𝑒 ∈ ℝ+) → ∃𝑎 ∈ ℝ+𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
94 fourierdlem87.d . . . . . . . 8 𝐷 = ((𝑒 / 3) / 𝑎)
95 id 22 . . . . . . . . . . 11 (𝑒 ∈ ℝ+𝑒 ∈ ℝ+)
96 3rp 12385 . . . . . . . . . . . 12 3 ∈ ℝ+
9796a1i 11 . . . . . . . . . . 11 (𝑒 ∈ ℝ+ → 3 ∈ ℝ+)
9895, 97rpdivcld 12438 . . . . . . . . . 10 (𝑒 ∈ ℝ+ → (𝑒 / 3) ∈ ℝ+)
9998adantr 481 . . . . . . . . 9 ((𝑒 ∈ ℝ+𝑎 ∈ ℝ+) → (𝑒 / 3) ∈ ℝ+)
100 simpr 485 . . . . . . . . 9 ((𝑒 ∈ ℝ+𝑎 ∈ ℝ+) → 𝑎 ∈ ℝ+)
10199, 100rpdivcld 12438 . . . . . . . 8 ((𝑒 ∈ ℝ+𝑎 ∈ ℝ+) → ((𝑒 / 3) / 𝑎) ∈ ℝ+)
10294, 101eqeltrid 2922 . . . . . . 7 ((𝑒 ∈ ℝ+𝑎 ∈ ℝ+) → 𝐷 ∈ ℝ+)
103102adantll 710 . . . . . 6 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) → 𝐷 ∈ ℝ+)
1041033adant3 1126 . . . . 5 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) → 𝐷 ∈ ℝ+)
105 nfv 1908 . . . . . . . . . . 11 𝑛(𝜑𝑒 ∈ ℝ+)
106 nfv 1908 . . . . . . . . . . 11 𝑛 𝑎 ∈ ℝ+
107 nfra1 3224 . . . . . . . . . . 11 𝑛𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎
108105, 106, 107nf3an 1895 . . . . . . . . . 10 𝑛((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
109 nfv 1908 . . . . . . . . . 10 𝑛 𝑢 ∈ dom vol
110108, 109nfan 1893 . . . . . . . . 9 𝑛(((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol)
111 nfv 1908 . . . . . . . . 9 𝑛(𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)
112110, 111nfan 1893 . . . . . . . 8 𝑛((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷))
113 fourierdlem87.ch . . . . . . . . . 10 (𝜒 ↔ (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ))
114 simpl1l 1218 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) → 𝜑)
115114ad2antrr 722 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → 𝜑)
116113, 115sylbi 218 . . . . . . . . . . . . . . . . 17 (𝜒𝜑)
117116, 1syl 17 . . . . . . . . . . . . . . . 16 (𝜒𝐹:ℝ⟶ℝ)
118116, 2syl 17 . . . . . . . . . . . . . . . 16 (𝜒𝑋 ∈ ℝ)
119116, 3syl 17 . . . . . . . . . . . . . . . 16 (𝜒𝑌 ∈ ℝ)
120116, 4syl 17 . . . . . . . . . . . . . . . 16 (𝜒𝑊 ∈ ℝ)
12127adantl 482 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
122113, 121sylbi 218 . . . . . . . . . . . . . . . 16 (𝜒𝑛 ∈ ℝ)
123117, 118, 119, 120, 5, 6, 7, 122, 28, 34fourierdlem67 42324 . . . . . . . . . . . . . . 15 (𝜒𝐺:(-π[,]π)⟶ℝ)
124123adantr 481 . . . . . . . . . . . . . 14 ((𝜒𝑠𝑢) → 𝐺:(-π[,]π)⟶ℝ)
125 simplrl 773 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → 𝑢 ⊆ (-π[,]π))
126113, 125sylbi 218 . . . . . . . . . . . . . . 15 (𝜒𝑢 ⊆ (-π[,]π))
127126sselda 3971 . . . . . . . . . . . . . 14 ((𝜒𝑠𝑢) → 𝑠 ∈ (-π[,]π))
128124, 127ffvelrnd 6848 . . . . . . . . . . . . 13 ((𝜒𝑠𝑢) → (𝐺𝑠) ∈ ℝ)
129 simpllr 772 . . . . . . . . . . . . . . 15 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → 𝑢 ∈ dom vol)
130113, 129sylbi 218 . . . . . . . . . . . . . 14 (𝜒𝑢 ∈ dom vol)
131123ffvelrnda 6847 . . . . . . . . . . . . . 14 ((𝜒𝑠 ∈ (-π[,]π)) → (𝐺𝑠) ∈ ℝ)
132123feqmptd 6730 . . . . . . . . . . . . . . 15 (𝜒𝐺 = (𝑠 ∈ (-π[,]π) ↦ (𝐺𝑠)))
133113simprbi 497 . . . . . . . . . . . . . . . 16 (𝜒𝑛 ∈ ℕ)
134 fourierdlem87.gibl . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → 𝐺 ∈ 𝐿1)
135116, 133, 134syl2anc 584 . . . . . . . . . . . . . . 15 (𝜒𝐺 ∈ 𝐿1)
136132, 135eqeltrrd 2919 . . . . . . . . . . . . . 14 (𝜒 → (𝑠 ∈ (-π[,]π) ↦ (𝐺𝑠)) ∈ 𝐿1)
137126, 130, 131, 136iblss 24320 . . . . . . . . . . . . 13 (𝜒 → (𝑠𝑢 ↦ (𝐺𝑠)) ∈ 𝐿1)
138128, 137itgcl 24299 . . . . . . . . . . . 12 (𝜒 → ∫𝑢(𝐺𝑠) d𝑠 ∈ ℂ)
139138abscld 14786 . . . . . . . . . . 11 (𝜒 → (abs‘∫𝑢(𝐺𝑠) d𝑠) ∈ ℝ)
140128recnd 10658 . . . . . . . . . . . . 13 ((𝜒𝑠𝑢) → (𝐺𝑠) ∈ ℂ)
141140abscld 14786 . . . . . . . . . . . 12 ((𝜒𝑠𝑢) → (abs‘(𝐺𝑠)) ∈ ℝ)
142128, 137iblabs 24344 . . . . . . . . . . . 12 (𝜒 → (𝑠𝑢 ↦ (abs‘(𝐺𝑠))) ∈ 𝐿1)
143141, 142itgrecl 24313 . . . . . . . . . . 11 (𝜒 → ∫𝑢(abs‘(𝐺𝑠)) d𝑠 ∈ ℝ)
144 simpl1r 1219 . . . . . . . . . . . . . . 15 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) → 𝑒 ∈ ℝ+)
145144ad2antrr 722 . . . . . . . . . . . . . 14 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → 𝑒 ∈ ℝ+)
146113, 145sylbi 218 . . . . . . . . . . . . 13 (𝜒𝑒 ∈ ℝ+)
147146rpred 12421 . . . . . . . . . . . 12 (𝜒𝑒 ∈ ℝ)
148147rehalfcld 11873 . . . . . . . . . . 11 (𝜒 → (𝑒 / 2) ∈ ℝ)
149128, 137itgabs 24350 . . . . . . . . . . 11 (𝜒 → (abs‘∫𝑢(𝐺𝑠) d𝑠) ≤ ∫𝑢(abs‘(𝐺𝑠)) d𝑠)
150 simpl2 1186 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) → 𝑎 ∈ ℝ+)
151150ad2antrr 722 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → 𝑎 ∈ ℝ+)
152113, 151sylbi 218 . . . . . . . . . . . . . . 15 (𝜒𝑎 ∈ ℝ+)
153152rpred 12421 . . . . . . . . . . . . . 14 (𝜒𝑎 ∈ ℝ)
154153adantr 481 . . . . . . . . . . . . 13 ((𝜒𝑠𝑢) → 𝑎 ∈ ℝ)
155 iccssxr 12809 . . . . . . . . . . . . . . . 16 (0[,]+∞) ⊆ ℝ*
156 volf 24045 . . . . . . . . . . . . . . . . . 18 vol:dom vol⟶(0[,]+∞)
157156a1i 11 . . . . . . . . . . . . . . . . 17 (𝜒 → vol:dom vol⟶(0[,]+∞))
158157, 130ffvelrnd 6848 . . . . . . . . . . . . . . . 16 (𝜒 → (vol‘𝑢) ∈ (0[,]+∞))
159155, 158sseldi 3969 . . . . . . . . . . . . . . 15 (𝜒 → (vol‘𝑢) ∈ ℝ*)
160 iccvolcl 24083 . . . . . . . . . . . . . . . . 17 ((-π ∈ ℝ ∧ π ∈ ℝ) → (vol‘(-π[,]π)) ∈ ℝ)
16143, 42, 160mp2an 688 . . . . . . . . . . . . . . . 16 (vol‘(-π[,]π)) ∈ ℝ
162161a1i 11 . . . . . . . . . . . . . . 15 (𝜒 → (vol‘(-π[,]π)) ∈ ℝ)
163 mnfxr 10687 . . . . . . . . . . . . . . . . 17 -∞ ∈ ℝ*
164163a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → -∞ ∈ ℝ*)
165 0xr 10677 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ*
166165a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → 0 ∈ ℝ*)
167 mnflt0 12510 . . . . . . . . . . . . . . . . 17 -∞ < 0
168167a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → -∞ < 0)
169 volge0 42111 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ dom vol → 0 ≤ (vol‘𝑢))
170130, 169syl 17 . . . . . . . . . . . . . . . 16 (𝜒 → 0 ≤ (vol‘𝑢))
171164, 166, 159, 168, 170xrltletrd 12544 . . . . . . . . . . . . . . 15 (𝜒 → -∞ < (vol‘𝑢))
172 iccmbl 24082 . . . . . . . . . . . . . . . . . 18 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ∈ dom vol)
17343, 42, 172mp2an 688 . . . . . . . . . . . . . . . . 17 (-π[,]π) ∈ dom vol
174173a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → (-π[,]π) ∈ dom vol)
175 volss 24049 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ dom vol ∧ (-π[,]π) ∈ dom vol ∧ 𝑢 ⊆ (-π[,]π)) → (vol‘𝑢) ≤ (vol‘(-π[,]π)))
176130, 174, 126, 175syl3anc 1365 . . . . . . . . . . . . . . 15 (𝜒 → (vol‘𝑢) ≤ (vol‘(-π[,]π)))
177 xrre 12552 . . . . . . . . . . . . . . 15 ((((vol‘𝑢) ∈ ℝ* ∧ (vol‘(-π[,]π)) ∈ ℝ) ∧ (-∞ < (vol‘𝑢) ∧ (vol‘𝑢) ≤ (vol‘(-π[,]π)))) → (vol‘𝑢) ∈ ℝ)
178159, 162, 171, 176, 177syl22anc 836 . . . . . . . . . . . . . 14 (𝜒 → (vol‘𝑢) ∈ ℝ)
179152rpcnd 12423 . . . . . . . . . . . . . 14 (𝜒𝑎 ∈ ℂ)
180 iblconstmpt 42106 . . . . . . . . . . . . . 14 ((𝑢 ∈ dom vol ∧ (vol‘𝑢) ∈ ℝ ∧ 𝑎 ∈ ℂ) → (𝑠𝑢𝑎) ∈ 𝐿1)
181130, 178, 179, 180syl3anc 1365 . . . . . . . . . . . . 13 (𝜒 → (𝑠𝑢𝑎) ∈ 𝐿1)
182154, 181itgrecl 24313 . . . . . . . . . . . 12 (𝜒 → ∫𝑢𝑎 d𝑠 ∈ ℝ)
183 simpl3 1187 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) → ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
184183ad2antrr 722 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
185113, 184sylbi 218 . . . . . . . . . . . . . . . 16 (𝜒 → ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
186 rspa 3211 . . . . . . . . . . . . . . . 16 ((∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎𝑛 ∈ ℕ) → ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
187185, 133, 186syl2anc 584 . . . . . . . . . . . . . . 15 (𝜒 → ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
188187adantr 481 . . . . . . . . . . . . . 14 ((𝜒𝑠𝑢) → ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
189 rspa 3211 . . . . . . . . . . . . . 14 ((∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎𝑠 ∈ (-π[,]π)) → (abs‘(𝐺𝑠)) ≤ 𝑎)
190188, 127, 189syl2anc 584 . . . . . . . . . . . . 13 ((𝜒𝑠𝑢) → (abs‘(𝐺𝑠)) ≤ 𝑎)
191142, 181, 141, 154, 190itgle 24325 . . . . . . . . . . . 12 (𝜒 → ∫𝑢(abs‘(𝐺𝑠)) d𝑠 ≤ ∫𝑢𝑎 d𝑠)
192 itgconst 24334 . . . . . . . . . . . . . 14 ((𝑢 ∈ dom vol ∧ (vol‘𝑢) ∈ ℝ ∧ 𝑎 ∈ ℂ) → ∫𝑢𝑎 d𝑠 = (𝑎 · (vol‘𝑢)))
193130, 178, 179, 192syl3anc 1365 . . . . . . . . . . . . 13 (𝜒 → ∫𝑢𝑎 d𝑠 = (𝑎 · (vol‘𝑢)))
194153, 178remulcld 10660 . . . . . . . . . . . . . 14 (𝜒 → (𝑎 · (vol‘𝑢)) ∈ ℝ)
195 3re 11706 . . . . . . . . . . . . . . . . . . 19 3 ∈ ℝ
196195a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜒 → 3 ∈ ℝ)
197 3ne0 11732 . . . . . . . . . . . . . . . . . . 19 3 ≠ 0
198197a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜒 → 3 ≠ 0)
199147, 196, 198redivcld 11457 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑒 / 3) ∈ ℝ)
200152rpne0d 12426 . . . . . . . . . . . . . . . . 17 (𝜒𝑎 ≠ 0)
201199, 153, 200redivcld 11457 . . . . . . . . . . . . . . . 16 (𝜒 → ((𝑒 / 3) / 𝑎) ∈ ℝ)
20294, 201eqeltrid 2922 . . . . . . . . . . . . . . 15 (𝜒𝐷 ∈ ℝ)
203153, 202remulcld 10660 . . . . . . . . . . . . . 14 (𝜒 → (𝑎 · 𝐷) ∈ ℝ)
204152rpge0d 12425 . . . . . . . . . . . . . . 15 (𝜒 → 0 ≤ 𝑎)
205 simplrr 774 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → (vol‘𝑢) ≤ 𝐷)
206113, 205sylbi 218 . . . . . . . . . . . . . . 15 (𝜒 → (vol‘𝑢) ≤ 𝐷)
207178, 202, 153, 204, 206lemul2ad 11569 . . . . . . . . . . . . . 14 (𝜒 → (𝑎 · (vol‘𝑢)) ≤ (𝑎 · 𝐷))
20894oveq2i 7159 . . . . . . . . . . . . . . . 16 (𝑎 · 𝐷) = (𝑎 · ((𝑒 / 3) / 𝑎))
209199recnd 10658 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑒 / 3) ∈ ℂ)
210209, 179, 200divcan2d 11407 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑎 · ((𝑒 / 3) / 𝑎)) = (𝑒 / 3))
211208, 210syl5eq 2873 . . . . . . . . . . . . . . 15 (𝜒 → (𝑎 · 𝐷) = (𝑒 / 3))
212 2rp 12384 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ+
213212a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → 2 ∈ ℝ+)
21496a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → 3 ∈ ℝ+)
215 2lt3 11798 . . . . . . . . . . . . . . . . 17 2 < 3
216215a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → 2 < 3)
217213, 214, 146, 216ltdiv2dd 41426 . . . . . . . . . . . . . . 15 (𝜒 → (𝑒 / 3) < (𝑒 / 2))
218211, 217eqbrtrd 5085 . . . . . . . . . . . . . 14 (𝜒 → (𝑎 · 𝐷) < (𝑒 / 2))
219194, 203, 148, 207, 218lelttrd 10787 . . . . . . . . . . . . 13 (𝜒 → (𝑎 · (vol‘𝑢)) < (𝑒 / 2))
220193, 219eqbrtrd 5085 . . . . . . . . . . . 12 (𝜒 → ∫𝑢𝑎 d𝑠 < (𝑒 / 2))
221143, 182, 148, 191, 220lelttrd 10787 . . . . . . . . . . 11 (𝜒 → ∫𝑢(abs‘(𝐺𝑠)) d𝑠 < (𝑒 / 2))
222139, 143, 148, 149, 221lelttrd 10787 . . . . . . . . . 10 (𝜒 → (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2))
223113, 222sylbir 236 . . . . . . . . 9 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2))
224223ex 413 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) → (𝑛 ∈ ℕ → (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)))
225112, 224ralrimi 3221 . . . . . . 7 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2))
226225ex 413 . . . . . 6 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) → ((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)))
227226ralrimiva 3187 . . . . 5 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) → ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)))
228 breq2 5067 . . . . . . 7 (𝑑 = 𝐷 → ((vol‘𝑢) ≤ 𝑑 ↔ (vol‘𝑢) ≤ 𝐷))
229228anbi2d 628 . . . . . 6 (𝑑 = 𝐷 → ((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) ↔ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)))
230229rspceaimv 3632 . . . . 5 ((𝐷 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2))) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)))
231104, 227, 230syl2anc 584 . . . 4 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)))
232231rexlimdv3a 3291 . . 3 ((𝜑𝑒 ∈ ℝ+) → (∃𝑎 ∈ ℝ+𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎 → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2))))
23393, 232mpd 15 . 2 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)))
234 simplll 771 . . . . . . . . . . . 12 ((((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) ∧ 𝑠𝑢) → 𝜑)
235 simplr 765 . . . . . . . . . . . 12 ((((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) ∧ 𝑠𝑢) → 𝑛 ∈ ℕ)
236 simpllr 772 . . . . . . . . . . . . 13 ((((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) ∧ 𝑠𝑢) → 𝑢 ⊆ (-π[,]π))
237 simpr 485 . . . . . . . . . . . . 13 ((((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) ∧ 𝑠𝑢) → 𝑠𝑢)
238236, 237sseldd 3972 . . . . . . . . . . . 12 ((((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) ∧ 𝑠𝑢) → 𝑠 ∈ (-π[,]π))
239234, 235, 238, 54syl21anc 835 . . . . . . . . . . 11 ((((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) ∧ 𝑠𝑢) → (𝐺𝑠) = ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))))
240239itgeq2dv 24297 . . . . . . . . . 10 (((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) → ∫𝑢(𝐺𝑠) d𝑠 = ∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠)
241240fveq2d 6671 . . . . . . . . 9 (((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) → (abs‘∫𝑢(𝐺𝑠) d𝑠) = (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠))
242241breq1d 5073 . . . . . . . 8 (((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) → ((abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2) ↔ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
243242ralbidva 3201 . . . . . . 7 ((𝜑𝑢 ⊆ (-π[,]π)) → (∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2) ↔ ∀𝑛 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
244 oveq1 7155 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝑛 + (1 / 2)) = (𝑘 + (1 / 2)))
245244oveq1d 7163 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → ((𝑛 + (1 / 2)) · 𝑠) = ((𝑘 + (1 / 2)) · 𝑠))
246245fveq2d 6671 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (sin‘((𝑛 + (1 / 2)) · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
247246oveq2d 7164 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
248247adantr 481 . . . . . . . . . . 11 ((𝑛 = 𝑘𝑠𝑢) → ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
249248itgeq2dv 24297 . . . . . . . . . 10 (𝑛 = 𝑘 → ∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 = ∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
250249fveq2d 6671 . . . . . . . . 9 (𝑛 = 𝑘 → (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠) = (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
251250breq1d 5073 . . . . . . . 8 (𝑛 = 𝑘 → ((abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
252251cbvralv 3458 . . . . . . 7 (∀𝑛 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
253243, 252syl6bb 288 . . . . . 6 ((𝜑𝑢 ⊆ (-π[,]π)) → (∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2) ↔ ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
254253adantrr 713 . . . . 5 ((𝜑 ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑)) → (∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2) ↔ ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
255254pm5.74da 800 . . . 4 (𝜑 → (((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)) ↔ ((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))))
256255rexralbidv 3306 . . 3 (𝜑 → (∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)) ↔ ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))))
257256adantr 481 . 2 ((𝜑𝑒 ∈ ℝ+) → (∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)) ↔ ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))))
258233, 257mpbid 233 1 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wne 3021  wral 3143  wrex 3144  wss 3940  ifcif 4470   class class class wbr 5063  cmpt 5143  dom cdm 5554  wf 6348  cfv 6352  (class class class)co 7148  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  +∞cpnf 10661  -∞cmnf 10662  *cxr 10663   < clt 10664  cle 10665  cmin 10859  -cneg 10860   / cdiv 11286  cn 11627  2c2 11681  3c3 11682  +crp 12379  [,]cicc 12731  abscabs 14583  sincsin 15407  πcpi 15410  volcvol 23979  𝐿1cibl 24133  citg 24134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-inf2 9093  ax-cc 9846  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-iin 4920  df-disj 5029  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-isom 6361  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7399  df-ofr 7400  df-om 7569  df-1st 7680  df-2nd 7681  df-supp 7822  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-2o 8094  df-oadd 8097  df-omul 8098  df-er 8279  df-map 8398  df-pm 8399  df-ixp 8451  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-fsupp 8823  df-fi 8864  df-sup 8895  df-inf 8896  df-oi 8963  df-dju 9319  df-card 9357  df-acn 9360  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-9 11696  df-n0 11887  df-z 11971  df-dec 12088  df-uz 12233  df-q 12338  df-rp 12380  df-xneg 12497  df-xadd 12498  df-xmul 12499  df-ioo 12732  df-ioc 12733  df-ico 12734  df-icc 12735  df-fz 12883  df-fzo 13024  df-fl 13152  df-mod 13228  df-seq 13360  df-exp 13420  df-fac 13624  df-bc 13653  df-hash 13681  df-shft 14416  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-limsup 14818  df-clim 14835  df-rlim 14836  df-sum 15033  df-ef 15411  df-sin 15413  df-cos 15414  df-pi 15416  df-struct 16475  df-ndx 16476  df-slot 16477  df-base 16479  df-sets 16480  df-ress 16481  df-plusg 16568  df-mulr 16569  df-starv 16570  df-sca 16571  df-vsca 16572  df-ip 16573  df-tset 16574  df-ple 16575  df-ds 16577  df-unif 16578  df-hom 16579  df-cco 16580  df-rest 16686  df-topn 16687  df-0g 16705  df-gsum 16706  df-topgen 16707  df-pt 16708  df-prds 16711  df-xrs 16765  df-qtop 16770  df-imas 16771  df-xps 16773  df-mre 16847  df-mrc 16848  df-acs 16850  df-mgm 17842  df-sgrp 17890  df-mnd 17901  df-submnd 17945  df-mulg 18155  df-cntz 18377  df-cmn 18828  df-psmet 20453  df-xmet 20454  df-met 20455  df-bl 20456  df-mopn 20457  df-fbas 20458  df-fg 20459  df-cnfld 20462  df-top 21418  df-topon 21435  df-topsp 21457  df-bases 21470  df-cld 21543  df-ntr 21544  df-cls 21545  df-nei 21622  df-lp 21660  df-perf 21661  df-cn 21751  df-cnp 21752  df-t1 21838  df-haus 21839  df-cmp 21911  df-tx 22086  df-hmeo 22279  df-fil 22370  df-fm 22462  df-flim 22463  df-flf 22464  df-xms 22845  df-ms 22846  df-tms 22847  df-cncf 23401  df-ovol 23980  df-vol 23981  df-mbf 24135  df-itg1 24136  df-itg2 24137  df-ibl 24138  df-itg 24139  df-0p 24186  df-limc 24379  df-dv 24380
This theorem is referenced by:  fourierdlem103  42360  fourierdlem104  42361
  Copyright terms: Public domain W3C validator