Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem87 Structured version   Visualization version   GIF version

Theorem fourierdlem87 42344
 Description: The integral of 𝐺 goes uniformly ( with respect to 𝑛) to zero if the measure of the domain of integration goes to zero. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem87.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem87.x (𝜑𝑋 ∈ ℝ)
fourierdlem87.y (𝜑𝑌 ∈ ℝ)
fourierdlem87.w (𝜑𝑊 ∈ ℝ)
fourierdlem87.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
fourierdlem87.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem87.u 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
fourierdlem87.s 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
fourierdlem87.g 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
fourierdlem87.10 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑥)
fourierdlem87.gibl ((𝜑𝑛 ∈ ℕ) → 𝐺 ∈ 𝐿1)
fourierdlem87.d 𝐷 = ((𝑒 / 3) / 𝑎)
fourierdlem87.ch (𝜒 ↔ (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ))
Assertion
Ref Expression
fourierdlem87 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
Distinct variable groups:   𝐷,𝑑,𝑛,𝑢   𝐺,𝑎,𝑑,𝑠,𝑢   𝐾,𝑎,𝑠   𝑈,𝑎,𝑛   𝑈,𝑘,𝑛   𝑥,𝑈,𝑎   𝑒,𝑎,𝑑,𝑛,𝑢   𝜑,𝑎,𝑑,𝑛,𝑠,𝑢   𝜒,𝑠   𝑒,𝑘,𝑢   𝑘,𝑠   𝜑,𝑥,𝑠
Allowed substitution hints:   𝜑(𝑒,𝑘)   𝜒(𝑥,𝑢,𝑒,𝑘,𝑛,𝑎,𝑑)   𝐷(𝑥,𝑒,𝑘,𝑠,𝑎)   𝑆(𝑥,𝑢,𝑒,𝑘,𝑛,𝑠,𝑎,𝑑)   𝑈(𝑢,𝑒,𝑠,𝑑)   𝐹(𝑥,𝑢,𝑒,𝑘,𝑛,𝑠,𝑎,𝑑)   𝐺(𝑥,𝑒,𝑘,𝑛)   𝐻(𝑥,𝑢,𝑒,𝑘,𝑛,𝑠,𝑎,𝑑)   𝐾(𝑥,𝑢,𝑒,𝑘,𝑛,𝑑)   𝑊(𝑥,𝑢,𝑒,𝑘,𝑛,𝑠,𝑎,𝑑)   𝑋(𝑥,𝑢,𝑒,𝑘,𝑛,𝑠,𝑎,𝑑)   𝑌(𝑥,𝑢,𝑒,𝑘,𝑛,𝑠,𝑎,𝑑)

Proof of Theorem fourierdlem87
StepHypRef Expression
1 fourierdlem87.f . . . . . 6 (𝜑𝐹:ℝ⟶ℝ)
2 fourierdlem87.x . . . . . 6 (𝜑𝑋 ∈ ℝ)
3 fourierdlem87.y . . . . . 6 (𝜑𝑌 ∈ ℝ)
4 fourierdlem87.w . . . . . 6 (𝜑𝑊 ∈ ℝ)
5 fourierdlem87.h . . . . . 6 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
6 fourierdlem87.k . . . . . 6 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
7 fourierdlem87.u . . . . . 6 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
8 fourierdlem87.10 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑥)
91, 2, 3, 4, 5, 6, 7, 8fourierdlem77 42334 . . . . 5 (𝜑 → ∃𝑎 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎)
10 nfv 1908 . . . . . . . . . . 11 𝑠(𝜑𝑎 ∈ ℝ+)
11 nfra1 3224 . . . . . . . . . . 11 𝑠𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎
1210, 11nfan 1893 . . . . . . . . . 10 𝑠((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎)
13 nfv 1908 . . . . . . . . . 10 𝑠 𝑛 ∈ ℕ
1412, 13nfan 1893 . . . . . . . . 9 𝑠(((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ)
15 simp-4l 779 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 𝜑)
16 simp-4r 780 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 𝑎 ∈ ℝ+)
17 simplr 765 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 𝑛 ∈ ℕ)
1815, 16, 17jca31 515 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ))
19 simpr 485 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (-π[,]π))
20 simpllr 772 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎)
21 rspa 3211 . . . . . . . . . . . 12 ((∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ≤ 𝑎)
2220, 19, 21syl2anc 584 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ≤ 𝑎)
23 simpr 485 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (-π[,]π))
241, 2, 3, 4, 5, 6, 7fourierdlem55 42312 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑈:(-π[,]π)⟶ℝ)
2524ffvelrnda 6847 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℝ)
2625adantlr 711 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℝ)
27 nnre 11634 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
28 fourierdlem87.s . . . . . . . . . . . . . . . . . . . . . . 23 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))
2928fourierdlem5 42263 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℝ → 𝑆:(-π[,]π)⟶ℝ)
3027, 29syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 𝑆:(-π[,]π)⟶ℝ)
3130ad2antlr 723 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 𝑆:(-π[,]π)⟶ℝ)
3231, 23ffvelrnd 6848 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝑆𝑠) ∈ ℝ)
3326, 32remulcld 10660 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ)
34 fourierdlem87.g . . . . . . . . . . . . . . . . . . 19 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
3534fvmpt2 6775 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ (-π[,]π) ∧ ((𝑈𝑠) · (𝑆𝑠)) ∈ ℝ) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
3623, 33, 35syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐺𝑠) = ((𝑈𝑠) · (𝑆𝑠)))
37 simpr 485 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (-π[,]π))
38 halfre 11840 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1 / 2) ∈ ℝ
3938a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ℕ → (1 / 2) ∈ ℝ)
4027, 39readdcld 10659 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℕ → (𝑛 + (1 / 2)) ∈ ℝ)
4140adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (𝑛 + (1 / 2)) ∈ ℝ)
42 pire 24959 . . . . . . . . . . . . . . . . . . . . . . . . . 26 π ∈ ℝ
4342renegcli 10936 . . . . . . . . . . . . . . . . . . . . . . . . 25 -π ∈ ℝ
44 iccssre 12808 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
4543, 42, 44mp2an 688 . . . . . . . . . . . . . . . . . . . . . . . 24 (-π[,]π) ⊆ ℝ
4645sseli 3967 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ (-π[,]π) → 𝑠 ∈ ℝ)
4746adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
4841, 47remulcld 10660 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
4948resincld 15486 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
5028fvmpt2 6775 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ (-π[,]π) ∧ (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
5137, 49, 50syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → (𝑆𝑠) = (sin‘((𝑛 + (1 / 2)) · 𝑠)))
5251oveq2d 7164 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ 𝑠 ∈ (-π[,]π)) → ((𝑈𝑠) · (𝑆𝑠)) = ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))))
5352adantll 710 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝑈𝑠) · (𝑆𝑠)) = ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))))
5436, 53eqtrd 2861 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝐺𝑠) = ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))))
5554fveq2d 6671 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐺𝑠)) = (abs‘((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))))
5626recnd 10658 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℂ)
5749adantll 710 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℝ)
5857recnd 10658 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (sin‘((𝑛 + (1 / 2)) · 𝑠)) ∈ ℂ)
5956, 58absmuld 14804 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠)))) = ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))))
6055, 59eqtrd 2861 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐺𝑠)) = ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))))
6160adantllr 715 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐺𝑠)) = ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))))
6261adantr 481 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → (abs‘(𝐺𝑠)) = ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))))
6356abscld 14786 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ∈ ℝ)
6458abscld 14786 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠))) ∈ ℝ)
6563, 64remulcld 10660 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ ℝ)
6665adantllr 715 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ ℝ)
6766adantr 481 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ∈ ℝ)
6863adantllr 715 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ∈ ℝ)
6968adantr 481 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → (abs‘(𝑈𝑠)) ∈ ℝ)
70 rpre 12387 . . . . . . . . . . . . . 14 (𝑎 ∈ ℝ+𝑎 ∈ ℝ)
7170ad4antlr 729 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → 𝑎 ∈ ℝ)
72 1red 10631 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 1 ∈ ℝ)
7356absge0d 14794 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → 0 ≤ (abs‘(𝑈𝑠)))
7448adantll 710 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ)
75 abssinbd 41427 . . . . . . . . . . . . . . . . . 18 (((𝑛 + (1 / 2)) · 𝑠) ∈ ℝ → (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠))) ≤ 1)
7674, 75syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠))) ≤ 1)
7764, 72, 63, 73, 76lemul2ad 11569 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ≤ ((abs‘(𝑈𝑠)) · 1))
7863recnd 10658 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ∈ ℂ)
7978mulid1d 10647 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝑈𝑠)) · 1) = (abs‘(𝑈𝑠)))
8077, 79breqtrd 5089 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ≤ (abs‘(𝑈𝑠)))
8180adantllr 715 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ≤ (abs‘(𝑈𝑠)))
8281adantr 481 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ≤ (abs‘(𝑈𝑠)))
83 simpr 485 . . . . . . . . . . . . 13 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → (abs‘(𝑈𝑠)) ≤ 𝑎)
8467, 69, 71, 82, 83letrd 10786 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → ((abs‘(𝑈𝑠)) · (abs‘(sin‘((𝑛 + (1 / 2)) · 𝑠)))) ≤ 𝑎)
8562, 84eqbrtrd 5085 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) ∧ (abs‘(𝑈𝑠)) ≤ 𝑎) → (abs‘(𝐺𝑠)) ≤ 𝑎)
8618, 19, 22, 85syl21anc 835 . . . . . . . . . 10 (((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐺𝑠)) ≤ 𝑎)
8786ex 413 . . . . . . . . 9 ((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) → (𝑠 ∈ (-π[,]π) → (abs‘(𝐺𝑠)) ≤ 𝑎))
8814, 87ralrimi 3221 . . . . . . . 8 ((((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) ∧ 𝑛 ∈ ℕ) → ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
8988ralrimiva 3187 . . . . . . 7 (((𝜑𝑎 ∈ ℝ+) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎) → ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
9089ex 413 . . . . . 6 ((𝜑𝑎 ∈ ℝ+) → (∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎 → ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎))
9190reximdva 3279 . . . . 5 (𝜑 → (∃𝑎 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑎 → ∃𝑎 ∈ ℝ+𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎))
929, 91mpd 15 . . . 4 (𝜑 → ∃𝑎 ∈ ℝ+𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
9392adantr 481 . . 3 ((𝜑𝑒 ∈ ℝ+) → ∃𝑎 ∈ ℝ+𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
94 fourierdlem87.d . . . . . . . 8 𝐷 = ((𝑒 / 3) / 𝑎)
95 id 22 . . . . . . . . . . 11 (𝑒 ∈ ℝ+𝑒 ∈ ℝ+)
96 3rp 12385 . . . . . . . . . . . 12 3 ∈ ℝ+
9796a1i 11 . . . . . . . . . . 11 (𝑒 ∈ ℝ+ → 3 ∈ ℝ+)
9895, 97rpdivcld 12438 . . . . . . . . . 10 (𝑒 ∈ ℝ+ → (𝑒 / 3) ∈ ℝ+)
9998adantr 481 . . . . . . . . 9 ((𝑒 ∈ ℝ+𝑎 ∈ ℝ+) → (𝑒 / 3) ∈ ℝ+)
100 simpr 485 . . . . . . . . 9 ((𝑒 ∈ ℝ+𝑎 ∈ ℝ+) → 𝑎 ∈ ℝ+)
10199, 100rpdivcld 12438 . . . . . . . 8 ((𝑒 ∈ ℝ+𝑎 ∈ ℝ+) → ((𝑒 / 3) / 𝑎) ∈ ℝ+)
10294, 101eqeltrid 2922 . . . . . . 7 ((𝑒 ∈ ℝ+𝑎 ∈ ℝ+) → 𝐷 ∈ ℝ+)
103102adantll 710 . . . . . 6 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+) → 𝐷 ∈ ℝ+)
1041033adant3 1126 . . . . 5 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) → 𝐷 ∈ ℝ+)
105 nfv 1908 . . . . . . . . . . 11 𝑛(𝜑𝑒 ∈ ℝ+)
106 nfv 1908 . . . . . . . . . . 11 𝑛 𝑎 ∈ ℝ+
107 nfra1 3224 . . . . . . . . . . 11 𝑛𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎
108105, 106, 107nf3an 1895 . . . . . . . . . 10 𝑛((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
109 nfv 1908 . . . . . . . . . 10 𝑛 𝑢 ∈ dom vol
110108, 109nfan 1893 . . . . . . . . 9 𝑛(((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol)
111 nfv 1908 . . . . . . . . 9 𝑛(𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)
112110, 111nfan 1893 . . . . . . . 8 𝑛((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷))
113 fourierdlem87.ch . . . . . . . . . 10 (𝜒 ↔ (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ))
114 simpl1l 1218 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) → 𝜑)
115114ad2antrr 722 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → 𝜑)
116113, 115sylbi 218 . . . . . . . . . . . . . . . . 17 (𝜒𝜑)
117116, 1syl 17 . . . . . . . . . . . . . . . 16 (𝜒𝐹:ℝ⟶ℝ)
118116, 2syl 17 . . . . . . . . . . . . . . . 16 (𝜒𝑋 ∈ ℝ)
119116, 3syl 17 . . . . . . . . . . . . . . . 16 (𝜒𝑌 ∈ ℝ)
120116, 4syl 17 . . . . . . . . . . . . . . . 16 (𝜒𝑊 ∈ ℝ)
12127adantl 482 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
122113, 121sylbi 218 . . . . . . . . . . . . . . . 16 (𝜒𝑛 ∈ ℝ)
123117, 118, 119, 120, 5, 6, 7, 122, 28, 34fourierdlem67 42324 . . . . . . . . . . . . . . 15 (𝜒𝐺:(-π[,]π)⟶ℝ)
124123adantr 481 . . . . . . . . . . . . . 14 ((𝜒𝑠𝑢) → 𝐺:(-π[,]π)⟶ℝ)
125 simplrl 773 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → 𝑢 ⊆ (-π[,]π))
126113, 125sylbi 218 . . . . . . . . . . . . . . 15 (𝜒𝑢 ⊆ (-π[,]π))
127126sselda 3971 . . . . . . . . . . . . . 14 ((𝜒𝑠𝑢) → 𝑠 ∈ (-π[,]π))
128124, 127ffvelrnd 6848 . . . . . . . . . . . . 13 ((𝜒𝑠𝑢) → (𝐺𝑠) ∈ ℝ)
129 simpllr 772 . . . . . . . . . . . . . . 15 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → 𝑢 ∈ dom vol)
130113, 129sylbi 218 . . . . . . . . . . . . . 14 (𝜒𝑢 ∈ dom vol)
131123ffvelrnda 6847 . . . . . . . . . . . . . 14 ((𝜒𝑠 ∈ (-π[,]π)) → (𝐺𝑠) ∈ ℝ)
132123feqmptd 6730 . . . . . . . . . . . . . . 15 (𝜒𝐺 = (𝑠 ∈ (-π[,]π) ↦ (𝐺𝑠)))
133113simprbi 497 . . . . . . . . . . . . . . . 16 (𝜒𝑛 ∈ ℕ)
134 fourierdlem87.gibl . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → 𝐺 ∈ 𝐿1)
135116, 133, 134syl2anc 584 . . . . . . . . . . . . . . 15 (𝜒𝐺 ∈ 𝐿1)
136132, 135eqeltrrd 2919 . . . . . . . . . . . . . 14 (𝜒 → (𝑠 ∈ (-π[,]π) ↦ (𝐺𝑠)) ∈ 𝐿1)
137126, 130, 131, 136iblss 24320 . . . . . . . . . . . . 13 (𝜒 → (𝑠𝑢 ↦ (𝐺𝑠)) ∈ 𝐿1)
138128, 137itgcl 24299 . . . . . . . . . . . 12 (𝜒 → ∫𝑢(𝐺𝑠) d𝑠 ∈ ℂ)
139138abscld 14786 . . . . . . . . . . 11 (𝜒 → (abs‘∫𝑢(𝐺𝑠) d𝑠) ∈ ℝ)
140128recnd 10658 . . . . . . . . . . . . 13 ((𝜒𝑠𝑢) → (𝐺𝑠) ∈ ℂ)
141140abscld 14786 . . . . . . . . . . . 12 ((𝜒𝑠𝑢) → (abs‘(𝐺𝑠)) ∈ ℝ)
142128, 137iblabs 24344 . . . . . . . . . . . 12 (𝜒 → (𝑠𝑢 ↦ (abs‘(𝐺𝑠))) ∈ 𝐿1)
143141, 142itgrecl 24313 . . . . . . . . . . 11 (𝜒 → ∫𝑢(abs‘(𝐺𝑠)) d𝑠 ∈ ℝ)
144 simpl1r 1219 . . . . . . . . . . . . . . 15 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) → 𝑒 ∈ ℝ+)
145144ad2antrr 722 . . . . . . . . . . . . . 14 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → 𝑒 ∈ ℝ+)
146113, 145sylbi 218 . . . . . . . . . . . . 13 (𝜒𝑒 ∈ ℝ+)
147146rpred 12421 . . . . . . . . . . . 12 (𝜒𝑒 ∈ ℝ)
148147rehalfcld 11873 . . . . . . . . . . 11 (𝜒 → (𝑒 / 2) ∈ ℝ)
149128, 137itgabs 24350 . . . . . . . . . . 11 (𝜒 → (abs‘∫𝑢(𝐺𝑠) d𝑠) ≤ ∫𝑢(abs‘(𝐺𝑠)) d𝑠)
150 simpl2 1186 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) → 𝑎 ∈ ℝ+)
151150ad2antrr 722 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → 𝑎 ∈ ℝ+)
152113, 151sylbi 218 . . . . . . . . . . . . . . 15 (𝜒𝑎 ∈ ℝ+)
153152rpred 12421 . . . . . . . . . . . . . 14 (𝜒𝑎 ∈ ℝ)
154153adantr 481 . . . . . . . . . . . . 13 ((𝜒𝑠𝑢) → 𝑎 ∈ ℝ)
155 iccssxr 12809 . . . . . . . . . . . . . . . 16 (0[,]+∞) ⊆ ℝ*
156 volf 24045 . . . . . . . . . . . . . . . . . 18 vol:dom vol⟶(0[,]+∞)
157156a1i 11 . . . . . . . . . . . . . . . . 17 (𝜒 → vol:dom vol⟶(0[,]+∞))
158157, 130ffvelrnd 6848 . . . . . . . . . . . . . . . 16 (𝜒 → (vol‘𝑢) ∈ (0[,]+∞))
159155, 158sseldi 3969 . . . . . . . . . . . . . . 15 (𝜒 → (vol‘𝑢) ∈ ℝ*)
160 iccvolcl 24083 . . . . . . . . . . . . . . . . 17 ((-π ∈ ℝ ∧ π ∈ ℝ) → (vol‘(-π[,]π)) ∈ ℝ)
16143, 42, 160mp2an 688 . . . . . . . . . . . . . . . 16 (vol‘(-π[,]π)) ∈ ℝ
162161a1i 11 . . . . . . . . . . . . . . 15 (𝜒 → (vol‘(-π[,]π)) ∈ ℝ)
163 mnfxr 10687 . . . . . . . . . . . . . . . . 17 -∞ ∈ ℝ*
164163a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → -∞ ∈ ℝ*)
165 0xr 10677 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ*
166165a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → 0 ∈ ℝ*)
167 mnflt0 12510 . . . . . . . . . . . . . . . . 17 -∞ < 0
168167a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → -∞ < 0)
169 volge0 42111 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ dom vol → 0 ≤ (vol‘𝑢))
170130, 169syl 17 . . . . . . . . . . . . . . . 16 (𝜒 → 0 ≤ (vol‘𝑢))
171164, 166, 159, 168, 170xrltletrd 12544 . . . . . . . . . . . . . . 15 (𝜒 → -∞ < (vol‘𝑢))
172 iccmbl 24082 . . . . . . . . . . . . . . . . . 18 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ∈ dom vol)
17343, 42, 172mp2an 688 . . . . . . . . . . . . . . . . 17 (-π[,]π) ∈ dom vol
174173a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → (-π[,]π) ∈ dom vol)
175 volss 24049 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ dom vol ∧ (-π[,]π) ∈ dom vol ∧ 𝑢 ⊆ (-π[,]π)) → (vol‘𝑢) ≤ (vol‘(-π[,]π)))
176130, 174, 126, 175syl3anc 1365 . . . . . . . . . . . . . . 15 (𝜒 → (vol‘𝑢) ≤ (vol‘(-π[,]π)))
177 xrre 12552 . . . . . . . . . . . . . . 15 ((((vol‘𝑢) ∈ ℝ* ∧ (vol‘(-π[,]π)) ∈ ℝ) ∧ (-∞ < (vol‘𝑢) ∧ (vol‘𝑢) ≤ (vol‘(-π[,]π)))) → (vol‘𝑢) ∈ ℝ)
178159, 162, 171, 176, 177syl22anc 836 . . . . . . . . . . . . . 14 (𝜒 → (vol‘𝑢) ∈ ℝ)
179152rpcnd 12423 . . . . . . . . . . . . . 14 (𝜒𝑎 ∈ ℂ)
180 iblconstmpt 42106 . . . . . . . . . . . . . 14 ((𝑢 ∈ dom vol ∧ (vol‘𝑢) ∈ ℝ ∧ 𝑎 ∈ ℂ) → (𝑠𝑢𝑎) ∈ 𝐿1)
181130, 178, 179, 180syl3anc 1365 . . . . . . . . . . . . 13 (𝜒 → (𝑠𝑢𝑎) ∈ 𝐿1)
182154, 181itgrecl 24313 . . . . . . . . . . . 12 (𝜒 → ∫𝑢𝑎 d𝑠 ∈ ℝ)
183 simpl3 1187 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) → ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
184183ad2antrr 722 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
185113, 184sylbi 218 . . . . . . . . . . . . . . . 16 (𝜒 → ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
186 rspa 3211 . . . . . . . . . . . . . . . 16 ((∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎𝑛 ∈ ℕ) → ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
187185, 133, 186syl2anc 584 . . . . . . . . . . . . . . 15 (𝜒 → ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
188187adantr 481 . . . . . . . . . . . . . 14 ((𝜒𝑠𝑢) → ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎)
189 rspa 3211 . . . . . . . . . . . . . 14 ((∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎𝑠 ∈ (-π[,]π)) → (abs‘(𝐺𝑠)) ≤ 𝑎)
190188, 127, 189syl2anc 584 . . . . . . . . . . . . 13 ((𝜒𝑠𝑢) → (abs‘(𝐺𝑠)) ≤ 𝑎)
191142, 181, 141, 154, 190itgle 24325 . . . . . . . . . . . 12 (𝜒 → ∫𝑢(abs‘(𝐺𝑠)) d𝑠 ≤ ∫𝑢𝑎 d𝑠)
192 itgconst 24334 . . . . . . . . . . . . . 14 ((𝑢 ∈ dom vol ∧ (vol‘𝑢) ∈ ℝ ∧ 𝑎 ∈ ℂ) → ∫𝑢𝑎 d𝑠 = (𝑎 · (vol‘𝑢)))
193130, 178, 179, 192syl3anc 1365 . . . . . . . . . . . . 13 (𝜒 → ∫𝑢𝑎 d𝑠 = (𝑎 · (vol‘𝑢)))
194153, 178remulcld 10660 . . . . . . . . . . . . . 14 (𝜒 → (𝑎 · (vol‘𝑢)) ∈ ℝ)
195 3re 11706 . . . . . . . . . . . . . . . . . . 19 3 ∈ ℝ
196195a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜒 → 3 ∈ ℝ)
197 3ne0 11732 . . . . . . . . . . . . . . . . . . 19 3 ≠ 0
198197a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜒 → 3 ≠ 0)
199147, 196, 198redivcld 11457 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑒 / 3) ∈ ℝ)
200152rpne0d 12426 . . . . . . . . . . . . . . . . 17 (𝜒𝑎 ≠ 0)
201199, 153, 200redivcld 11457 . . . . . . . . . . . . . . . 16 (𝜒 → ((𝑒 / 3) / 𝑎) ∈ ℝ)
20294, 201eqeltrid 2922 . . . . . . . . . . . . . . 15 (𝜒𝐷 ∈ ℝ)
203153, 202remulcld 10660 . . . . . . . . . . . . . 14 (𝜒 → (𝑎 · 𝐷) ∈ ℝ)
204152rpge0d 12425 . . . . . . . . . . . . . . 15 (𝜒 → 0 ≤ 𝑎)
205 simplrr 774 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → (vol‘𝑢) ≤ 𝐷)
206113, 205sylbi 218 . . . . . . . . . . . . . . 15 (𝜒 → (vol‘𝑢) ≤ 𝐷)
207178, 202, 153, 204, 206lemul2ad 11569 . . . . . . . . . . . . . 14 (𝜒 → (𝑎 · (vol‘𝑢)) ≤ (𝑎 · 𝐷))
20894oveq2i 7159 . . . . . . . . . . . . . . . 16 (𝑎 · 𝐷) = (𝑎 · ((𝑒 / 3) / 𝑎))
209199recnd 10658 . . . . . . . . . . . . . . . . 17 (𝜒 → (𝑒 / 3) ∈ ℂ)
210209, 179, 200divcan2d 11407 . . . . . . . . . . . . . . . 16 (𝜒 → (𝑎 · ((𝑒 / 3) / 𝑎)) = (𝑒 / 3))
211208, 210syl5eq 2873 . . . . . . . . . . . . . . 15 (𝜒 → (𝑎 · 𝐷) = (𝑒 / 3))
212 2rp 12384 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ+
213212a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → 2 ∈ ℝ+)
21496a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → 3 ∈ ℝ+)
215 2lt3 11798 . . . . . . . . . . . . . . . . 17 2 < 3
216215a1i 11 . . . . . . . . . . . . . . . 16 (𝜒 → 2 < 3)
217213, 214, 146, 216ltdiv2dd 41426 . . . . . . . . . . . . . . 15 (𝜒 → (𝑒 / 3) < (𝑒 / 2))
218211, 217eqbrtrd 5085 . . . . . . . . . . . . . 14 (𝜒 → (𝑎 · 𝐷) < (𝑒 / 2))
219194, 203, 148, 207, 218lelttrd 10787 . . . . . . . . . . . . 13 (𝜒 → (𝑎 · (vol‘𝑢)) < (𝑒 / 2))
220193, 219eqbrtrd 5085 . . . . . . . . . . . 12 (𝜒 → ∫𝑢𝑎 d𝑠 < (𝑒 / 2))
221143, 182, 148, 191, 220lelttrd 10787 . . . . . . . . . . 11 (𝜒 → ∫𝑢(abs‘(𝐺𝑠)) d𝑠 < (𝑒 / 2))
222139, 143, 148, 149, 221lelttrd 10787 . . . . . . . . . 10 (𝜒 → (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2))
223113, 222sylbir 236 . . . . . . . . 9 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ) → (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2))
224223ex 413 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) → (𝑛 ∈ ℕ → (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)))
225112, 224ralrimi 3221 . . . . . . 7 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2))
226225ex 413 . . . . . 6 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) → ((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)))
227226ralrimiva 3187 . . . . 5 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) → ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)))
228 breq2 5067 . . . . . . 7 (𝑑 = 𝐷 → ((vol‘𝑢) ≤ 𝑑 ↔ (vol‘𝑢) ≤ 𝐷))
229228anbi2d 628 . . . . . 6 (𝑑 = 𝐷 → ((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) ↔ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)))
230229rspceaimv 3632 . . . . 5 ((𝐷 ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2))) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)))
231104, 227, 230syl2anc 584 . . . 4 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)))
232231rexlimdv3a 3291 . . 3 ((𝜑𝑒 ∈ ℝ+) → (∃𝑎 ∈ ℝ+𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺𝑠)) ≤ 𝑎 → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2))))
23393, 232mpd 15 . 2 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)))
234 simplll 771 . . . . . . . . . . . 12 ((((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) ∧ 𝑠𝑢) → 𝜑)
235 simplr 765 . . . . . . . . . . . 12 ((((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) ∧ 𝑠𝑢) → 𝑛 ∈ ℕ)
236 simpllr 772 . . . . . . . . . . . . 13 ((((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) ∧ 𝑠𝑢) → 𝑢 ⊆ (-π[,]π))
237 simpr 485 . . . . . . . . . . . . 13 ((((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) ∧ 𝑠𝑢) → 𝑠𝑢)
238236, 237sseldd 3972 . . . . . . . . . . . 12 ((((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) ∧ 𝑠𝑢) → 𝑠 ∈ (-π[,]π))
239234, 235, 238, 54syl21anc 835 . . . . . . . . . . 11 ((((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) ∧ 𝑠𝑢) → (𝐺𝑠) = ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))))
240239itgeq2dv 24297 . . . . . . . . . 10 (((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) → ∫𝑢(𝐺𝑠) d𝑠 = ∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠)
241240fveq2d 6671 . . . . . . . . 9 (((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) → (abs‘∫𝑢(𝐺𝑠) d𝑠) = (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠))
242241breq1d 5073 . . . . . . . 8 (((𝜑𝑢 ⊆ (-π[,]π)) ∧ 𝑛 ∈ ℕ) → ((abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2) ↔ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
243242ralbidva 3201 . . . . . . 7 ((𝜑𝑢 ⊆ (-π[,]π)) → (∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2) ↔ ∀𝑛 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
244 oveq1 7155 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝑛 + (1 / 2)) = (𝑘 + (1 / 2)))
245244oveq1d 7163 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → ((𝑛 + (1 / 2)) · 𝑠) = ((𝑘 + (1 / 2)) · 𝑠))
246245fveq2d 6671 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (sin‘((𝑛 + (1 / 2)) · 𝑠)) = (sin‘((𝑘 + (1 / 2)) · 𝑠)))
247246oveq2d 7164 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
248247adantr 481 . . . . . . . . . . 11 ((𝑛 = 𝑘𝑠𝑢) → ((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) = ((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))))
249248itgeq2dv 24297 . . . . . . . . . 10 (𝑛 = 𝑘 → ∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠 = ∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠)
250249fveq2d 6671 . . . . . . . . 9 (𝑛 = 𝑘 → (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠) = (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠))
251250breq1d 5073 . . . . . . . 8 (𝑛 = 𝑘 → ((abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
252251cbvralv 3458 . . . . . . 7 (∀𝑛 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑛 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2) ↔ ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))
253243, 252syl6bb 288 . . . . . 6 ((𝜑𝑢 ⊆ (-π[,]π)) → (∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2) ↔ ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
254253adantrr 713 . . . . 5 ((𝜑 ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑)) → (∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2) ↔ ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
255254pm5.74da 800 . . . 4 (𝜑 → (((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)) ↔ ((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))))
256255rexralbidv 3306 . . 3 (𝜑 → (∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)) ↔ ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))))
257256adantr 481 . 2 ((𝜑𝑒 ∈ ℝ+) → (∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑛 ∈ ℕ (abs‘∫𝑢(𝐺𝑠) d𝑠) < (𝑒 / 2)) ↔ ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))))
258233, 257mpbid 233 1 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 207   ∧ wa 396   ∧ w3a 1081   = wceq 1530   ∈ wcel 2107   ≠ wne 3021  ∀wral 3143  ∃wrex 3144   ⊆ wss 3940  ifcif 4470   class class class wbr 5063   ↦ cmpt 5143  dom cdm 5554  ⟶wf 6348  ‘cfv 6352  (class class class)co 7148  ℂcc 10524  ℝcr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  +∞cpnf 10661  -∞cmnf 10662  ℝ*cxr 10663   < clt 10664   ≤ cle 10665   − cmin 10859  -cneg 10860   / cdiv 11286  ℕcn 11627  2c2 11681  3c3 11682  ℝ+crp 12379  [,]cicc 12731  abscabs 14583  sincsin 15407  πcpi 15410  volcvol 23979  𝐿1cibl 24133  ∫citg 24134 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-inf2 9093  ax-cc 9846  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-iin 4920  df-disj 5029  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-isom 6361  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7399  df-ofr 7400  df-om 7569  df-1st 7680  df-2nd 7681  df-supp 7822  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-2o 8094  df-oadd 8097  df-omul 8098  df-er 8279  df-map 8398  df-pm 8399  df-ixp 8451  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-fsupp 8823  df-fi 8864  df-sup 8895  df-inf 8896  df-oi 8963  df-dju 9319  df-card 9357  df-acn 9360  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-9 11696  df-n0 11887  df-z 11971  df-dec 12088  df-uz 12233  df-q 12338  df-rp 12380  df-xneg 12497  df-xadd 12498  df-xmul 12499  df-ioo 12732  df-ioc 12733  df-ico 12734  df-icc 12735  df-fz 12883  df-fzo 13024  df-fl 13152  df-mod 13228  df-seq 13360  df-exp 13420  df-fac 13624  df-bc 13653  df-hash 13681  df-shft 14416  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-limsup 14818  df-clim 14835  df-rlim 14836  df-sum 15033  df-ef 15411  df-sin 15413  df-cos 15414  df-pi 15416  df-struct 16475  df-ndx 16476  df-slot 16477  df-base 16479  df-sets 16480  df-ress 16481  df-plusg 16568  df-mulr 16569  df-starv 16570  df-sca 16571  df-vsca 16572  df-ip 16573  df-tset 16574  df-ple 16575  df-ds 16577  df-unif 16578  df-hom 16579  df-cco 16580  df-rest 16686  df-topn 16687  df-0g 16705  df-gsum 16706  df-topgen 16707  df-pt 16708  df-prds 16711  df-xrs 16765  df-qtop 16770  df-imas 16771  df-xps 16773  df-mre 16847  df-mrc 16848  df-acs 16850  df-mgm 17842  df-sgrp 17890  df-mnd 17901  df-submnd 17945  df-mulg 18155  df-cntz 18377  df-cmn 18828  df-psmet 20453  df-xmet 20454  df-met 20455  df-bl 20456  df-mopn 20457  df-fbas 20458  df-fg 20459  df-cnfld 20462  df-top 21418  df-topon 21435  df-topsp 21457  df-bases 21470  df-cld 21543  df-ntr 21544  df-cls 21545  df-nei 21622  df-lp 21660  df-perf 21661  df-cn 21751  df-cnp 21752  df-t1 21838  df-haus 21839  df-cmp 21911  df-tx 22086  df-hmeo 22279  df-fil 22370  df-fm 22462  df-flim 22463  df-flf 22464  df-xms 22845  df-ms 22846  df-tms 22847  df-cncf 23401  df-ovol 23980  df-vol 23981  df-mbf 24135  df-itg1 24136  df-itg2 24137  df-ibl 24138  df-itg 24139  df-0p 24186  df-limc 24379  df-dv 24380 This theorem is referenced by:  fourierdlem103  42360  fourierdlem104  42361
 Copyright terms: Public domain W3C validator