MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcflf Structured version   Visualization version   GIF version

Theorem limcflf 25901
Description: The limit operator can be expressed as a filter limit, from the filter of neighborhoods of 𝐵 restricted to 𝐴 ∖ {𝐵}, to the topology of the complex numbers. (If 𝐵 is not a limit point of 𝐴, then it is still formally a filter limit, but the neighborhood filter is not a proper filter in this case.) (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
limcflf.f (𝜑𝐹:𝐴⟶ℂ)
limcflf.a (𝜑𝐴 ⊆ ℂ)
limcflf.b (𝜑𝐵 ∈ ((limPt‘𝐾)‘𝐴))
limcflf.k 𝐾 = (TopOpen‘ℂfld)
limcflf.c 𝐶 = (𝐴 ∖ {𝐵})
limcflf.l 𝐿 = (((nei‘𝐾)‘{𝐵}) ↾t 𝐶)
Assertion
Ref Expression
limcflf (𝜑 → (𝐹 lim 𝐵) = ((𝐾 fLimf 𝐿)‘(𝐹𝐶)))

Proof of Theorem limcflf
Dummy variables 𝑡 𝑠 𝑢 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3466 . . . . . . . . . . 11 𝑡 ∈ V
21inex1 5322 . . . . . . . . . 10 (𝑡𝐶) ∈ V
32rgenw 3055 . . . . . . . . 9 𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝑡𝐶) ∈ V
4 eqid 2726 . . . . . . . . . 10 (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶)) = (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶))
5 imaeq2 6065 . . . . . . . . . . . 12 (𝑠 = (𝑡𝐶) → ((𝐹𝐶) “ 𝑠) = ((𝐹𝐶) “ (𝑡𝐶)))
6 inss2 4231 . . . . . . . . . . . . 13 (𝑡𝐶) ⊆ 𝐶
7 resima2 6025 . . . . . . . . . . . . 13 ((𝑡𝐶) ⊆ 𝐶 → ((𝐹𝐶) “ (𝑡𝐶)) = (𝐹 “ (𝑡𝐶)))
86, 7ax-mp 5 . . . . . . . . . . . 12 ((𝐹𝐶) “ (𝑡𝐶)) = (𝐹 “ (𝑡𝐶))
95, 8eqtrdi 2782 . . . . . . . . . . 11 (𝑠 = (𝑡𝐶) → ((𝐹𝐶) “ 𝑠) = (𝐹 “ (𝑡𝐶)))
109sseq1d 4011 . . . . . . . . . 10 (𝑠 = (𝑡𝐶) → (((𝐹𝐶) “ 𝑠) ⊆ 𝑢 ↔ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢))
114, 10rexrnmptw 7109 . . . . . . . . 9 (∀𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝑡𝐶) ∈ V → (∃𝑠 ∈ ran (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶))((𝐹𝐶) “ 𝑠) ⊆ 𝑢 ↔ ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢))
123, 11mp1i 13 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → (∃𝑠 ∈ ran (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶))((𝐹𝐶) “ 𝑠) ⊆ 𝑢 ↔ ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢))
13 limcflf.l . . . . . . . . . 10 𝐿 = (((nei‘𝐾)‘{𝐵}) ↾t 𝐶)
14 fvex 6914 . . . . . . . . . . 11 ((nei‘𝐾)‘{𝐵}) ∈ V
15 limcflf.c . . . . . . . . . . . . . . 15 𝐶 = (𝐴 ∖ {𝐵})
16 difss 4131 . . . . . . . . . . . . . . 15 (𝐴 ∖ {𝐵}) ⊆ 𝐴
1715, 16eqsstri 4014 . . . . . . . . . . . . . 14 𝐶𝐴
18 limcflf.a . . . . . . . . . . . . . 14 (𝜑𝐴 ⊆ ℂ)
1917, 18sstrid 3991 . . . . . . . . . . . . 13 (𝜑𝐶 ⊆ ℂ)
20 cnex 11239 . . . . . . . . . . . . . 14 ℂ ∈ V
2120ssex 5326 . . . . . . . . . . . . 13 (𝐶 ⊆ ℂ → 𝐶 ∈ V)
2219, 21syl 17 . . . . . . . . . . . 12 (𝜑𝐶 ∈ V)
2322ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → 𝐶 ∈ V)
24 restval 17441 . . . . . . . . . . 11 ((((nei‘𝐾)‘{𝐵}) ∈ V ∧ 𝐶 ∈ V) → (((nei‘𝐾)‘{𝐵}) ↾t 𝐶) = ran (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶)))
2514, 23, 24sylancr 585 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → (((nei‘𝐾)‘{𝐵}) ↾t 𝐶) = ran (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶)))
2613, 25eqtrid 2778 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → 𝐿 = ran (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶)))
2726rexeqdv 3316 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → (∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢 ↔ ∃𝑠 ∈ ran (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶))((𝐹𝐶) “ 𝑠) ⊆ 𝑢))
28 limcflf.k . . . . . . . . . . . . . 14 𝐾 = (TopOpen‘ℂfld)
2928cnfldtop 24791 . . . . . . . . . . . . 13 𝐾 ∈ Top
30 opnneip 23114 . . . . . . . . . . . . 13 ((𝐾 ∈ Top ∧ 𝑤𝐾𝐵𝑤) → 𝑤 ∈ ((nei‘𝐾)‘{𝐵}))
3129, 30mp3an1 1445 . . . . . . . . . . . 12 ((𝑤𝐾𝐵𝑤) → 𝑤 ∈ ((nei‘𝐾)‘{𝐵}))
32 id 22 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑤𝑡 = 𝑤)
3315a1i 11 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑤𝐶 = (𝐴 ∖ {𝐵}))
3432, 33ineq12d 4214 . . . . . . . . . . . . . . 15 (𝑡 = 𝑤 → (𝑡𝐶) = (𝑤 ∩ (𝐴 ∖ {𝐵})))
3534imaeq2d 6069 . . . . . . . . . . . . . 14 (𝑡 = 𝑤 → (𝐹 “ (𝑡𝐶)) = (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))))
3635sseq1d 4011 . . . . . . . . . . . . 13 (𝑡 = 𝑤 → ((𝐹 “ (𝑡𝐶)) ⊆ 𝑢 ↔ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))
3736rspcev 3608 . . . . . . . . . . . 12 ((𝑤 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) → ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢)
3831, 37sylan 578 . . . . . . . . . . 11 (((𝑤𝐾𝐵𝑤) ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) → ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢)
3938anasss 465 . . . . . . . . . 10 ((𝑤𝐾 ∧ (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) → ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢)
4039rexlimiva 3137 . . . . . . . . 9 (∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) → ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢)
41 simprl 769 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → 𝑡 ∈ ((nei‘𝐾)‘{𝐵}))
4228cnfldtopon 24790 . . . . . . . . . . . . . . 15 𝐾 ∈ (TopOn‘ℂ)
4342toponunii 22909 . . . . . . . . . . . . . 14 ℂ = 𝐾
4443neii1 23101 . . . . . . . . . . . . 13 ((𝐾 ∈ Top ∧ 𝑡 ∈ ((nei‘𝐾)‘{𝐵})) → 𝑡 ⊆ ℂ)
4529, 41, 44sylancr 585 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → 𝑡 ⊆ ℂ)
4643ntropn 23044 . . . . . . . . . . . 12 ((𝐾 ∈ Top ∧ 𝑡 ⊆ ℂ) → ((int‘𝐾)‘𝑡) ∈ 𝐾)
4729, 45, 46sylancr 585 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → ((int‘𝐾)‘𝑡) ∈ 𝐾)
4843lpss 23137 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Top ∧ 𝐴 ⊆ ℂ) → ((limPt‘𝐾)‘𝐴) ⊆ ℂ)
4929, 18, 48sylancr 585 . . . . . . . . . . . . . . . . 17 (𝜑 → ((limPt‘𝐾)‘𝐴) ⊆ ℂ)
50 limcflf.b . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ((limPt‘𝐾)‘𝐴))
5149, 50sseldd 3980 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ ℂ)
5251snssd 4818 . . . . . . . . . . . . . . 15 (𝜑 → {𝐵} ⊆ ℂ)
5352ad3antrrr 728 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → {𝐵} ⊆ ℂ)
5443neiint 23099 . . . . . . . . . . . . . 14 ((𝐾 ∈ Top ∧ {𝐵} ⊆ ℂ ∧ 𝑡 ⊆ ℂ) → (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↔ {𝐵} ⊆ ((int‘𝐾)‘𝑡)))
5529, 53, 45, 54mp3an2i 1463 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↔ {𝐵} ⊆ ((int‘𝐾)‘𝑡)))
5641, 55mpbid 231 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → {𝐵} ⊆ ((int‘𝐾)‘𝑡))
5751ad3antrrr 728 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → 𝐵 ∈ ℂ)
58 snssg 4792 . . . . . . . . . . . . 13 (𝐵 ∈ ℂ → (𝐵 ∈ ((int‘𝐾)‘𝑡) ↔ {𝐵} ⊆ ((int‘𝐾)‘𝑡)))
5957, 58syl 17 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → (𝐵 ∈ ((int‘𝐾)‘𝑡) ↔ {𝐵} ⊆ ((int‘𝐾)‘𝑡)))
6056, 59mpbird 256 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → 𝐵 ∈ ((int‘𝐾)‘𝑡))
6143ntrss2 23052 . . . . . . . . . . . . . 14 ((𝐾 ∈ Top ∧ 𝑡 ⊆ ℂ) → ((int‘𝐾)‘𝑡) ⊆ 𝑡)
6229, 45, 61sylancr 585 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → ((int‘𝐾)‘𝑡) ⊆ 𝑡)
63 ssrin 4235 . . . . . . . . . . . . 13 (((int‘𝐾)‘𝑡) ⊆ 𝑡 → (((int‘𝐾)‘𝑡) ∩ 𝐶) ⊆ (𝑡𝐶))
64 imass2 6112 . . . . . . . . . . . . 13 ((((int‘𝐾)‘𝑡) ∩ 𝐶) ⊆ (𝑡𝐶) → (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)) ⊆ (𝐹 “ (𝑡𝐶)))
6562, 63, 643syl 18 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)) ⊆ (𝐹 “ (𝑡𝐶)))
66 simprr 771 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)
6765, 66sstrd 3990 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)) ⊆ 𝑢)
68 eleq2 2815 . . . . . . . . . . . . 13 (𝑤 = ((int‘𝐾)‘𝑡) → (𝐵𝑤𝐵 ∈ ((int‘𝐾)‘𝑡)))
6915ineq2i 4210 . . . . . . . . . . . . . . . 16 (𝑤𝐶) = (𝑤 ∩ (𝐴 ∖ {𝐵}))
70 ineq1 4206 . . . . . . . . . . . . . . . 16 (𝑤 = ((int‘𝐾)‘𝑡) → (𝑤𝐶) = (((int‘𝐾)‘𝑡) ∩ 𝐶))
7169, 70eqtr3id 2780 . . . . . . . . . . . . . . 15 (𝑤 = ((int‘𝐾)‘𝑡) → (𝑤 ∩ (𝐴 ∖ {𝐵})) = (((int‘𝐾)‘𝑡) ∩ 𝐶))
7271imaeq2d 6069 . . . . . . . . . . . . . 14 (𝑤 = ((int‘𝐾)‘𝑡) → (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) = (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)))
7372sseq1d 4011 . . . . . . . . . . . . 13 (𝑤 = ((int‘𝐾)‘𝑡) → ((𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢 ↔ (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)) ⊆ 𝑢))
7468, 73anbi12d 630 . . . . . . . . . . . 12 (𝑤 = ((int‘𝐾)‘𝑡) → ((𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) ↔ (𝐵 ∈ ((int‘𝐾)‘𝑡) ∧ (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)) ⊆ 𝑢)))
7574rspcev 3608 . . . . . . . . . . 11 ((((int‘𝐾)‘𝑡) ∈ 𝐾 ∧ (𝐵 ∈ ((int‘𝐾)‘𝑡) ∧ (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)) ⊆ 𝑢)) → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))
7647, 60, 67, 75syl12anc 835 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))
7776rexlimdvaa 3146 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → (∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
7840, 77impbid2 225 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → (∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) ↔ ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢))
7912, 27, 783bitr4rd 311 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → (∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) ↔ ∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢))
8079anassrs 466 . . . . . 6 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑢𝐾) ∧ 𝑥𝑢) → (∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) ↔ ∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢))
8180pm5.74da 802 . . . . 5 (((𝜑𝑥 ∈ ℂ) ∧ 𝑢𝐾) → ((𝑥𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) ↔ (𝑥𝑢 → ∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢)))
8281ralbidva 3166 . . . 4 ((𝜑𝑥 ∈ ℂ) → (∀𝑢𝐾 (𝑥𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) ↔ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢)))
8382pm5.32da 577 . . 3 (𝜑 → ((𝑥 ∈ ℂ ∧ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))) ↔ (𝑥 ∈ ℂ ∧ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢))))
84 limcflf.f . . . 4 (𝜑𝐹:𝐴⟶ℂ)
8584, 18, 51, 28ellimc2 25897 . . 3 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))))
8684, 18, 50, 28, 15, 13limcflflem 25900 . . . 4 (𝜑𝐿 ∈ (Fil‘𝐶))
87 fssres 6768 . . . . 5 ((𝐹:𝐴⟶ℂ ∧ 𝐶𝐴) → (𝐹𝐶):𝐶⟶ℂ)
8884, 17, 87sylancl 584 . . . 4 (𝜑 → (𝐹𝐶):𝐶⟶ℂ)
89 isflf 23988 . . . 4 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐿 ∈ (Fil‘𝐶) ∧ (𝐹𝐶):𝐶⟶ℂ) → (𝑥 ∈ ((𝐾 fLimf 𝐿)‘(𝐹𝐶)) ↔ (𝑥 ∈ ℂ ∧ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢))))
9042, 86, 88, 89mp3an2i 1463 . . 3 (𝜑 → (𝑥 ∈ ((𝐾 fLimf 𝐿)‘(𝐹𝐶)) ↔ (𝑥 ∈ ℂ ∧ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢))))
9183, 85, 903bitr4d 310 . 2 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐵) ↔ 𝑥 ∈ ((𝐾 fLimf 𝐿)‘(𝐹𝐶))))
9291eqrdv 2724 1 (𝜑 → (𝐹 lim 𝐵) = ((𝐾 fLimf 𝐿)‘(𝐹𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wral 3051  wrex 3060  Vcvv 3462  cdif 3944  cin 3946  wss 3947  {csn 4633  cmpt 5236  ran crn 5683  cres 5684  cima 5685  wf 6550  cfv 6554  (class class class)co 7424  cc 11156  t crest 17435  TopOpenctopn 17436  fldccnfld 21343  Topctop 22886  TopOnctopon 22903  intcnt 23012  neicnei 23092  limPtclp 23129  Filcfil 23840   fLimf cflf 23930   lim climc 25882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-er 8734  df-map 8857  df-pm 8858  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fi 9454  df-sup 9485  df-inf 9486  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12611  df-dec 12730  df-uz 12875  df-q 12985  df-rp 13029  df-xneg 13146  df-xadd 13147  df-xmul 13148  df-fz 13539  df-seq 14022  df-exp 14082  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-struct 17149  df-slot 17184  df-ndx 17196  df-base 17214  df-plusg 17279  df-mulr 17280  df-starv 17281  df-tset 17285  df-ple 17286  df-ds 17288  df-unif 17289  df-rest 17437  df-topn 17438  df-topgen 17458  df-psmet 21335  df-xmet 21336  df-met 21337  df-bl 21338  df-mopn 21339  df-fbas 21340  df-fg 21341  df-cnfld 21344  df-top 22887  df-topon 22904  df-topsp 22926  df-bases 22940  df-cld 23014  df-ntr 23015  df-cls 23016  df-nei 23093  df-lp 23131  df-cnp 23223  df-fil 23841  df-fm 23933  df-flim 23934  df-flf 23935  df-xms 24317  df-ms 24318  df-limc 25886
This theorem is referenced by:  limcmo  25902
  Copyright terms: Public domain W3C validator