MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcflf Structured version   Visualization version   GIF version

Theorem limcflf 25936
Description: The limit operator can be expressed as a filter limit, from the filter of neighborhoods of 𝐵 restricted to 𝐴 ∖ {𝐵}, to the topology of the complex numbers. (If 𝐵 is not a limit point of 𝐴, then it is still formally a filter limit, but the neighborhood filter is not a proper filter in this case.) (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
limcflf.f (𝜑𝐹:𝐴⟶ℂ)
limcflf.a (𝜑𝐴 ⊆ ℂ)
limcflf.b (𝜑𝐵 ∈ ((limPt‘𝐾)‘𝐴))
limcflf.k 𝐾 = (TopOpen‘ℂfld)
limcflf.c 𝐶 = (𝐴 ∖ {𝐵})
limcflf.l 𝐿 = (((nei‘𝐾)‘{𝐵}) ↾t 𝐶)
Assertion
Ref Expression
limcflf (𝜑 → (𝐹 lim 𝐵) = ((𝐾 fLimf 𝐿)‘(𝐹𝐶)))

Proof of Theorem limcflf
Dummy variables 𝑡 𝑠 𝑢 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3492 . . . . . . . . . . 11 𝑡 ∈ V
21inex1 5335 . . . . . . . . . 10 (𝑡𝐶) ∈ V
32rgenw 3071 . . . . . . . . 9 𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝑡𝐶) ∈ V
4 eqid 2740 . . . . . . . . . 10 (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶)) = (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶))
5 imaeq2 6085 . . . . . . . . . . . 12 (𝑠 = (𝑡𝐶) → ((𝐹𝐶) “ 𝑠) = ((𝐹𝐶) “ (𝑡𝐶)))
6 inss2 4259 . . . . . . . . . . . . 13 (𝑡𝐶) ⊆ 𝐶
7 resima2 6045 . . . . . . . . . . . . 13 ((𝑡𝐶) ⊆ 𝐶 → ((𝐹𝐶) “ (𝑡𝐶)) = (𝐹 “ (𝑡𝐶)))
86, 7ax-mp 5 . . . . . . . . . . . 12 ((𝐹𝐶) “ (𝑡𝐶)) = (𝐹 “ (𝑡𝐶))
95, 8eqtrdi 2796 . . . . . . . . . . 11 (𝑠 = (𝑡𝐶) → ((𝐹𝐶) “ 𝑠) = (𝐹 “ (𝑡𝐶)))
109sseq1d 4040 . . . . . . . . . 10 (𝑠 = (𝑡𝐶) → (((𝐹𝐶) “ 𝑠) ⊆ 𝑢 ↔ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢))
114, 10rexrnmptw 7129 . . . . . . . . 9 (∀𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝑡𝐶) ∈ V → (∃𝑠 ∈ ran (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶))((𝐹𝐶) “ 𝑠) ⊆ 𝑢 ↔ ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢))
123, 11mp1i 13 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → (∃𝑠 ∈ ran (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶))((𝐹𝐶) “ 𝑠) ⊆ 𝑢 ↔ ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢))
13 limcflf.l . . . . . . . . . 10 𝐿 = (((nei‘𝐾)‘{𝐵}) ↾t 𝐶)
14 fvex 6933 . . . . . . . . . . 11 ((nei‘𝐾)‘{𝐵}) ∈ V
15 limcflf.c . . . . . . . . . . . . . . 15 𝐶 = (𝐴 ∖ {𝐵})
16 difss 4159 . . . . . . . . . . . . . . 15 (𝐴 ∖ {𝐵}) ⊆ 𝐴
1715, 16eqsstri 4043 . . . . . . . . . . . . . 14 𝐶𝐴
18 limcflf.a . . . . . . . . . . . . . 14 (𝜑𝐴 ⊆ ℂ)
1917, 18sstrid 4020 . . . . . . . . . . . . 13 (𝜑𝐶 ⊆ ℂ)
20 cnex 11265 . . . . . . . . . . . . . 14 ℂ ∈ V
2120ssex 5339 . . . . . . . . . . . . 13 (𝐶 ⊆ ℂ → 𝐶 ∈ V)
2219, 21syl 17 . . . . . . . . . . . 12 (𝜑𝐶 ∈ V)
2322ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → 𝐶 ∈ V)
24 restval 17486 . . . . . . . . . . 11 ((((nei‘𝐾)‘{𝐵}) ∈ V ∧ 𝐶 ∈ V) → (((nei‘𝐾)‘{𝐵}) ↾t 𝐶) = ran (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶)))
2514, 23, 24sylancr 586 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → (((nei‘𝐾)‘{𝐵}) ↾t 𝐶) = ran (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶)))
2613, 25eqtrid 2792 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → 𝐿 = ran (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶)))
2726rexeqdv 3335 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → (∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢 ↔ ∃𝑠 ∈ ran (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶))((𝐹𝐶) “ 𝑠) ⊆ 𝑢))
28 limcflf.k . . . . . . . . . . . . . 14 𝐾 = (TopOpen‘ℂfld)
2928cnfldtop 24825 . . . . . . . . . . . . 13 𝐾 ∈ Top
30 opnneip 23148 . . . . . . . . . . . . 13 ((𝐾 ∈ Top ∧ 𝑤𝐾𝐵𝑤) → 𝑤 ∈ ((nei‘𝐾)‘{𝐵}))
3129, 30mp3an1 1448 . . . . . . . . . . . 12 ((𝑤𝐾𝐵𝑤) → 𝑤 ∈ ((nei‘𝐾)‘{𝐵}))
32 id 22 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑤𝑡 = 𝑤)
3315a1i 11 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑤𝐶 = (𝐴 ∖ {𝐵}))
3432, 33ineq12d 4242 . . . . . . . . . . . . . . 15 (𝑡 = 𝑤 → (𝑡𝐶) = (𝑤 ∩ (𝐴 ∖ {𝐵})))
3534imaeq2d 6089 . . . . . . . . . . . . . 14 (𝑡 = 𝑤 → (𝐹 “ (𝑡𝐶)) = (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))))
3635sseq1d 4040 . . . . . . . . . . . . 13 (𝑡 = 𝑤 → ((𝐹 “ (𝑡𝐶)) ⊆ 𝑢 ↔ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))
3736rspcev 3635 . . . . . . . . . . . 12 ((𝑤 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) → ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢)
3831, 37sylan 579 . . . . . . . . . . 11 (((𝑤𝐾𝐵𝑤) ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) → ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢)
3938anasss 466 . . . . . . . . . 10 ((𝑤𝐾 ∧ (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) → ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢)
4039rexlimiva 3153 . . . . . . . . 9 (∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) → ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢)
41 simprl 770 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → 𝑡 ∈ ((nei‘𝐾)‘{𝐵}))
4228cnfldtopon 24824 . . . . . . . . . . . . . . 15 𝐾 ∈ (TopOn‘ℂ)
4342toponunii 22943 . . . . . . . . . . . . . 14 ℂ = 𝐾
4443neii1 23135 . . . . . . . . . . . . 13 ((𝐾 ∈ Top ∧ 𝑡 ∈ ((nei‘𝐾)‘{𝐵})) → 𝑡 ⊆ ℂ)
4529, 41, 44sylancr 586 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → 𝑡 ⊆ ℂ)
4643ntropn 23078 . . . . . . . . . . . 12 ((𝐾 ∈ Top ∧ 𝑡 ⊆ ℂ) → ((int‘𝐾)‘𝑡) ∈ 𝐾)
4729, 45, 46sylancr 586 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → ((int‘𝐾)‘𝑡) ∈ 𝐾)
4843lpss 23171 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Top ∧ 𝐴 ⊆ ℂ) → ((limPt‘𝐾)‘𝐴) ⊆ ℂ)
4929, 18, 48sylancr 586 . . . . . . . . . . . . . . . . 17 (𝜑 → ((limPt‘𝐾)‘𝐴) ⊆ ℂ)
50 limcflf.b . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ((limPt‘𝐾)‘𝐴))
5149, 50sseldd 4009 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ ℂ)
5251snssd 4834 . . . . . . . . . . . . . . 15 (𝜑 → {𝐵} ⊆ ℂ)
5352ad3antrrr 729 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → {𝐵} ⊆ ℂ)
5443neiint 23133 . . . . . . . . . . . . . 14 ((𝐾 ∈ Top ∧ {𝐵} ⊆ ℂ ∧ 𝑡 ⊆ ℂ) → (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↔ {𝐵} ⊆ ((int‘𝐾)‘𝑡)))
5529, 53, 45, 54mp3an2i 1466 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↔ {𝐵} ⊆ ((int‘𝐾)‘𝑡)))
5641, 55mpbid 232 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → {𝐵} ⊆ ((int‘𝐾)‘𝑡))
5751ad3antrrr 729 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → 𝐵 ∈ ℂ)
58 snssg 4808 . . . . . . . . . . . . 13 (𝐵 ∈ ℂ → (𝐵 ∈ ((int‘𝐾)‘𝑡) ↔ {𝐵} ⊆ ((int‘𝐾)‘𝑡)))
5957, 58syl 17 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → (𝐵 ∈ ((int‘𝐾)‘𝑡) ↔ {𝐵} ⊆ ((int‘𝐾)‘𝑡)))
6056, 59mpbird 257 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → 𝐵 ∈ ((int‘𝐾)‘𝑡))
6143ntrss2 23086 . . . . . . . . . . . . . 14 ((𝐾 ∈ Top ∧ 𝑡 ⊆ ℂ) → ((int‘𝐾)‘𝑡) ⊆ 𝑡)
6229, 45, 61sylancr 586 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → ((int‘𝐾)‘𝑡) ⊆ 𝑡)
63 ssrin 4263 . . . . . . . . . . . . 13 (((int‘𝐾)‘𝑡) ⊆ 𝑡 → (((int‘𝐾)‘𝑡) ∩ 𝐶) ⊆ (𝑡𝐶))
64 imass2 6132 . . . . . . . . . . . . 13 ((((int‘𝐾)‘𝑡) ∩ 𝐶) ⊆ (𝑡𝐶) → (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)) ⊆ (𝐹 “ (𝑡𝐶)))
6562, 63, 643syl 18 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)) ⊆ (𝐹 “ (𝑡𝐶)))
66 simprr 772 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)
6765, 66sstrd 4019 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)) ⊆ 𝑢)
68 eleq2 2833 . . . . . . . . . . . . 13 (𝑤 = ((int‘𝐾)‘𝑡) → (𝐵𝑤𝐵 ∈ ((int‘𝐾)‘𝑡)))
6915ineq2i 4238 . . . . . . . . . . . . . . . 16 (𝑤𝐶) = (𝑤 ∩ (𝐴 ∖ {𝐵}))
70 ineq1 4234 . . . . . . . . . . . . . . . 16 (𝑤 = ((int‘𝐾)‘𝑡) → (𝑤𝐶) = (((int‘𝐾)‘𝑡) ∩ 𝐶))
7169, 70eqtr3id 2794 . . . . . . . . . . . . . . 15 (𝑤 = ((int‘𝐾)‘𝑡) → (𝑤 ∩ (𝐴 ∖ {𝐵})) = (((int‘𝐾)‘𝑡) ∩ 𝐶))
7271imaeq2d 6089 . . . . . . . . . . . . . 14 (𝑤 = ((int‘𝐾)‘𝑡) → (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) = (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)))
7372sseq1d 4040 . . . . . . . . . . . . 13 (𝑤 = ((int‘𝐾)‘𝑡) → ((𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢 ↔ (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)) ⊆ 𝑢))
7468, 73anbi12d 631 . . . . . . . . . . . 12 (𝑤 = ((int‘𝐾)‘𝑡) → ((𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) ↔ (𝐵 ∈ ((int‘𝐾)‘𝑡) ∧ (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)) ⊆ 𝑢)))
7574rspcev 3635 . . . . . . . . . . 11 ((((int‘𝐾)‘𝑡) ∈ 𝐾 ∧ (𝐵 ∈ ((int‘𝐾)‘𝑡) ∧ (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)) ⊆ 𝑢)) → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))
7647, 60, 67, 75syl12anc 836 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))
7776rexlimdvaa 3162 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → (∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
7840, 77impbid2 226 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → (∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) ↔ ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢))
7912, 27, 783bitr4rd 312 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → (∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) ↔ ∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢))
8079anassrs 467 . . . . . 6 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑢𝐾) ∧ 𝑥𝑢) → (∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) ↔ ∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢))
8180pm5.74da 803 . . . . 5 (((𝜑𝑥 ∈ ℂ) ∧ 𝑢𝐾) → ((𝑥𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) ↔ (𝑥𝑢 → ∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢)))
8281ralbidva 3182 . . . 4 ((𝜑𝑥 ∈ ℂ) → (∀𝑢𝐾 (𝑥𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) ↔ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢)))
8382pm5.32da 578 . . 3 (𝜑 → ((𝑥 ∈ ℂ ∧ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))) ↔ (𝑥 ∈ ℂ ∧ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢))))
84 limcflf.f . . . 4 (𝜑𝐹:𝐴⟶ℂ)
8584, 18, 51, 28ellimc2 25932 . . 3 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))))
8684, 18, 50, 28, 15, 13limcflflem 25935 . . . 4 (𝜑𝐿 ∈ (Fil‘𝐶))
87 fssres 6787 . . . . 5 ((𝐹:𝐴⟶ℂ ∧ 𝐶𝐴) → (𝐹𝐶):𝐶⟶ℂ)
8884, 17, 87sylancl 585 . . . 4 (𝜑 → (𝐹𝐶):𝐶⟶ℂ)
89 isflf 24022 . . . 4 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐿 ∈ (Fil‘𝐶) ∧ (𝐹𝐶):𝐶⟶ℂ) → (𝑥 ∈ ((𝐾 fLimf 𝐿)‘(𝐹𝐶)) ↔ (𝑥 ∈ ℂ ∧ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢))))
9042, 86, 88, 89mp3an2i 1466 . . 3 (𝜑 → (𝑥 ∈ ((𝐾 fLimf 𝐿)‘(𝐹𝐶)) ↔ (𝑥 ∈ ℂ ∧ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢))))
9183, 85, 903bitr4d 311 . 2 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐵) ↔ 𝑥 ∈ ((𝐾 fLimf 𝐿)‘(𝐹𝐶))))
9291eqrdv 2738 1 (𝜑 → (𝐹 lim 𝐵) = ((𝐾 fLimf 𝐿)‘(𝐹𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  cdif 3973  cin 3975  wss 3976  {csn 4648  cmpt 5249  ran crn 5701  cres 5702  cima 5703  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  t crest 17480  TopOpenctopn 17481  fldccnfld 21387  Topctop 22920  TopOnctopon 22937  intcnt 23046  neicnei 23126  limPtclp 23163  Filcfil 23874   fLimf cflf 23964   lim climc 25917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-rest 17482  df-topn 17483  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-cnp 23257  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-limc 25921
This theorem is referenced by:  limcmo  25937
  Copyright terms: Public domain W3C validator