MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcflf Structured version   Visualization version   GIF version

Theorem limcflf 25931
Description: The limit operator can be expressed as a filter limit, from the filter of neighborhoods of 𝐵 restricted to 𝐴 ∖ {𝐵}, to the topology of the complex numbers. (If 𝐵 is not a limit point of 𝐴, then it is still formally a filter limit, but the neighborhood filter is not a proper filter in this case.) (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
limcflf.f (𝜑𝐹:𝐴⟶ℂ)
limcflf.a (𝜑𝐴 ⊆ ℂ)
limcflf.b (𝜑𝐵 ∈ ((limPt‘𝐾)‘𝐴))
limcflf.k 𝐾 = (TopOpen‘ℂfld)
limcflf.c 𝐶 = (𝐴 ∖ {𝐵})
limcflf.l 𝐿 = (((nei‘𝐾)‘{𝐵}) ↾t 𝐶)
Assertion
Ref Expression
limcflf (𝜑 → (𝐹 lim 𝐵) = ((𝐾 fLimf 𝐿)‘(𝐹𝐶)))

Proof of Theorem limcflf
Dummy variables 𝑡 𝑠 𝑢 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3482 . . . . . . . . . . 11 𝑡 ∈ V
21inex1 5323 . . . . . . . . . 10 (𝑡𝐶) ∈ V
32rgenw 3063 . . . . . . . . 9 𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝑡𝐶) ∈ V
4 eqid 2735 . . . . . . . . . 10 (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶)) = (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶))
5 imaeq2 6076 . . . . . . . . . . . 12 (𝑠 = (𝑡𝐶) → ((𝐹𝐶) “ 𝑠) = ((𝐹𝐶) “ (𝑡𝐶)))
6 inss2 4246 . . . . . . . . . . . . 13 (𝑡𝐶) ⊆ 𝐶
7 resima2 6036 . . . . . . . . . . . . 13 ((𝑡𝐶) ⊆ 𝐶 → ((𝐹𝐶) “ (𝑡𝐶)) = (𝐹 “ (𝑡𝐶)))
86, 7ax-mp 5 . . . . . . . . . . . 12 ((𝐹𝐶) “ (𝑡𝐶)) = (𝐹 “ (𝑡𝐶))
95, 8eqtrdi 2791 . . . . . . . . . . 11 (𝑠 = (𝑡𝐶) → ((𝐹𝐶) “ 𝑠) = (𝐹 “ (𝑡𝐶)))
109sseq1d 4027 . . . . . . . . . 10 (𝑠 = (𝑡𝐶) → (((𝐹𝐶) “ 𝑠) ⊆ 𝑢 ↔ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢))
114, 10rexrnmptw 7115 . . . . . . . . 9 (∀𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝑡𝐶) ∈ V → (∃𝑠 ∈ ran (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶))((𝐹𝐶) “ 𝑠) ⊆ 𝑢 ↔ ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢))
123, 11mp1i 13 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → (∃𝑠 ∈ ran (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶))((𝐹𝐶) “ 𝑠) ⊆ 𝑢 ↔ ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢))
13 limcflf.l . . . . . . . . . 10 𝐿 = (((nei‘𝐾)‘{𝐵}) ↾t 𝐶)
14 fvex 6920 . . . . . . . . . . 11 ((nei‘𝐾)‘{𝐵}) ∈ V
15 limcflf.c . . . . . . . . . . . . . . 15 𝐶 = (𝐴 ∖ {𝐵})
16 difss 4146 . . . . . . . . . . . . . . 15 (𝐴 ∖ {𝐵}) ⊆ 𝐴
1715, 16eqsstri 4030 . . . . . . . . . . . . . 14 𝐶𝐴
18 limcflf.a . . . . . . . . . . . . . 14 (𝜑𝐴 ⊆ ℂ)
1917, 18sstrid 4007 . . . . . . . . . . . . 13 (𝜑𝐶 ⊆ ℂ)
20 cnex 11234 . . . . . . . . . . . . . 14 ℂ ∈ V
2120ssex 5327 . . . . . . . . . . . . 13 (𝐶 ⊆ ℂ → 𝐶 ∈ V)
2219, 21syl 17 . . . . . . . . . . . 12 (𝜑𝐶 ∈ V)
2322ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → 𝐶 ∈ V)
24 restval 17473 . . . . . . . . . . 11 ((((nei‘𝐾)‘{𝐵}) ∈ V ∧ 𝐶 ∈ V) → (((nei‘𝐾)‘{𝐵}) ↾t 𝐶) = ran (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶)))
2514, 23, 24sylancr 587 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → (((nei‘𝐾)‘{𝐵}) ↾t 𝐶) = ran (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶)))
2613, 25eqtrid 2787 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → 𝐿 = ran (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶)))
2726rexeqdv 3325 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → (∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢 ↔ ∃𝑠 ∈ ran (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶))((𝐹𝐶) “ 𝑠) ⊆ 𝑢))
28 limcflf.k . . . . . . . . . . . . . 14 𝐾 = (TopOpen‘ℂfld)
2928cnfldtop 24820 . . . . . . . . . . . . 13 𝐾 ∈ Top
30 opnneip 23143 . . . . . . . . . . . . 13 ((𝐾 ∈ Top ∧ 𝑤𝐾𝐵𝑤) → 𝑤 ∈ ((nei‘𝐾)‘{𝐵}))
3129, 30mp3an1 1447 . . . . . . . . . . . 12 ((𝑤𝐾𝐵𝑤) → 𝑤 ∈ ((nei‘𝐾)‘{𝐵}))
32 id 22 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑤𝑡 = 𝑤)
3315a1i 11 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑤𝐶 = (𝐴 ∖ {𝐵}))
3432, 33ineq12d 4229 . . . . . . . . . . . . . . 15 (𝑡 = 𝑤 → (𝑡𝐶) = (𝑤 ∩ (𝐴 ∖ {𝐵})))
3534imaeq2d 6080 . . . . . . . . . . . . . 14 (𝑡 = 𝑤 → (𝐹 “ (𝑡𝐶)) = (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))))
3635sseq1d 4027 . . . . . . . . . . . . 13 (𝑡 = 𝑤 → ((𝐹 “ (𝑡𝐶)) ⊆ 𝑢 ↔ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))
3736rspcev 3622 . . . . . . . . . . . 12 ((𝑤 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) → ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢)
3831, 37sylan 580 . . . . . . . . . . 11 (((𝑤𝐾𝐵𝑤) ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) → ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢)
3938anasss 466 . . . . . . . . . 10 ((𝑤𝐾 ∧ (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) → ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢)
4039rexlimiva 3145 . . . . . . . . 9 (∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) → ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢)
41 simprl 771 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → 𝑡 ∈ ((nei‘𝐾)‘{𝐵}))
4228cnfldtopon 24819 . . . . . . . . . . . . . . 15 𝐾 ∈ (TopOn‘ℂ)
4342toponunii 22938 . . . . . . . . . . . . . 14 ℂ = 𝐾
4443neii1 23130 . . . . . . . . . . . . 13 ((𝐾 ∈ Top ∧ 𝑡 ∈ ((nei‘𝐾)‘{𝐵})) → 𝑡 ⊆ ℂ)
4529, 41, 44sylancr 587 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → 𝑡 ⊆ ℂ)
4643ntropn 23073 . . . . . . . . . . . 12 ((𝐾 ∈ Top ∧ 𝑡 ⊆ ℂ) → ((int‘𝐾)‘𝑡) ∈ 𝐾)
4729, 45, 46sylancr 587 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → ((int‘𝐾)‘𝑡) ∈ 𝐾)
4843lpss 23166 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Top ∧ 𝐴 ⊆ ℂ) → ((limPt‘𝐾)‘𝐴) ⊆ ℂ)
4929, 18, 48sylancr 587 . . . . . . . . . . . . . . . . 17 (𝜑 → ((limPt‘𝐾)‘𝐴) ⊆ ℂ)
50 limcflf.b . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ((limPt‘𝐾)‘𝐴))
5149, 50sseldd 3996 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ ℂ)
5251snssd 4814 . . . . . . . . . . . . . . 15 (𝜑 → {𝐵} ⊆ ℂ)
5352ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → {𝐵} ⊆ ℂ)
5443neiint 23128 . . . . . . . . . . . . . 14 ((𝐾 ∈ Top ∧ {𝐵} ⊆ ℂ ∧ 𝑡 ⊆ ℂ) → (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↔ {𝐵} ⊆ ((int‘𝐾)‘𝑡)))
5529, 53, 45, 54mp3an2i 1465 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↔ {𝐵} ⊆ ((int‘𝐾)‘𝑡)))
5641, 55mpbid 232 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → {𝐵} ⊆ ((int‘𝐾)‘𝑡))
5751ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → 𝐵 ∈ ℂ)
58 snssg 4788 . . . . . . . . . . . . 13 (𝐵 ∈ ℂ → (𝐵 ∈ ((int‘𝐾)‘𝑡) ↔ {𝐵} ⊆ ((int‘𝐾)‘𝑡)))
5957, 58syl 17 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → (𝐵 ∈ ((int‘𝐾)‘𝑡) ↔ {𝐵} ⊆ ((int‘𝐾)‘𝑡)))
6056, 59mpbird 257 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → 𝐵 ∈ ((int‘𝐾)‘𝑡))
6143ntrss2 23081 . . . . . . . . . . . . . 14 ((𝐾 ∈ Top ∧ 𝑡 ⊆ ℂ) → ((int‘𝐾)‘𝑡) ⊆ 𝑡)
6229, 45, 61sylancr 587 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → ((int‘𝐾)‘𝑡) ⊆ 𝑡)
63 ssrin 4250 . . . . . . . . . . . . 13 (((int‘𝐾)‘𝑡) ⊆ 𝑡 → (((int‘𝐾)‘𝑡) ∩ 𝐶) ⊆ (𝑡𝐶))
64 imass2 6123 . . . . . . . . . . . . 13 ((((int‘𝐾)‘𝑡) ∩ 𝐶) ⊆ (𝑡𝐶) → (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)) ⊆ (𝐹 “ (𝑡𝐶)))
6562, 63, 643syl 18 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)) ⊆ (𝐹 “ (𝑡𝐶)))
66 simprr 773 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)
6765, 66sstrd 4006 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)) ⊆ 𝑢)
68 eleq2 2828 . . . . . . . . . . . . 13 (𝑤 = ((int‘𝐾)‘𝑡) → (𝐵𝑤𝐵 ∈ ((int‘𝐾)‘𝑡)))
6915ineq2i 4225 . . . . . . . . . . . . . . . 16 (𝑤𝐶) = (𝑤 ∩ (𝐴 ∖ {𝐵}))
70 ineq1 4221 . . . . . . . . . . . . . . . 16 (𝑤 = ((int‘𝐾)‘𝑡) → (𝑤𝐶) = (((int‘𝐾)‘𝑡) ∩ 𝐶))
7169, 70eqtr3id 2789 . . . . . . . . . . . . . . 15 (𝑤 = ((int‘𝐾)‘𝑡) → (𝑤 ∩ (𝐴 ∖ {𝐵})) = (((int‘𝐾)‘𝑡) ∩ 𝐶))
7271imaeq2d 6080 . . . . . . . . . . . . . 14 (𝑤 = ((int‘𝐾)‘𝑡) → (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) = (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)))
7372sseq1d 4027 . . . . . . . . . . . . 13 (𝑤 = ((int‘𝐾)‘𝑡) → ((𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢 ↔ (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)) ⊆ 𝑢))
7468, 73anbi12d 632 . . . . . . . . . . . 12 (𝑤 = ((int‘𝐾)‘𝑡) → ((𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) ↔ (𝐵 ∈ ((int‘𝐾)‘𝑡) ∧ (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)) ⊆ 𝑢)))
7574rspcev 3622 . . . . . . . . . . 11 ((((int‘𝐾)‘𝑡) ∈ 𝐾 ∧ (𝐵 ∈ ((int‘𝐾)‘𝑡) ∧ (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)) ⊆ 𝑢)) → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))
7647, 60, 67, 75syl12anc 837 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))
7776rexlimdvaa 3154 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → (∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
7840, 77impbid2 226 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → (∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) ↔ ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢))
7912, 27, 783bitr4rd 312 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → (∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) ↔ ∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢))
8079anassrs 467 . . . . . 6 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑢𝐾) ∧ 𝑥𝑢) → (∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) ↔ ∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢))
8180pm5.74da 804 . . . . 5 (((𝜑𝑥 ∈ ℂ) ∧ 𝑢𝐾) → ((𝑥𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) ↔ (𝑥𝑢 → ∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢)))
8281ralbidva 3174 . . . 4 ((𝜑𝑥 ∈ ℂ) → (∀𝑢𝐾 (𝑥𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) ↔ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢)))
8382pm5.32da 579 . . 3 (𝜑 → ((𝑥 ∈ ℂ ∧ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))) ↔ (𝑥 ∈ ℂ ∧ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢))))
84 limcflf.f . . . 4 (𝜑𝐹:𝐴⟶ℂ)
8584, 18, 51, 28ellimc2 25927 . . 3 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))))
8684, 18, 50, 28, 15, 13limcflflem 25930 . . . 4 (𝜑𝐿 ∈ (Fil‘𝐶))
87 fssres 6775 . . . . 5 ((𝐹:𝐴⟶ℂ ∧ 𝐶𝐴) → (𝐹𝐶):𝐶⟶ℂ)
8884, 17, 87sylancl 586 . . . 4 (𝜑 → (𝐹𝐶):𝐶⟶ℂ)
89 isflf 24017 . . . 4 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐿 ∈ (Fil‘𝐶) ∧ (𝐹𝐶):𝐶⟶ℂ) → (𝑥 ∈ ((𝐾 fLimf 𝐿)‘(𝐹𝐶)) ↔ (𝑥 ∈ ℂ ∧ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢))))
9042, 86, 88, 89mp3an2i 1465 . . 3 (𝜑 → (𝑥 ∈ ((𝐾 fLimf 𝐿)‘(𝐹𝐶)) ↔ (𝑥 ∈ ℂ ∧ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢))))
9183, 85, 903bitr4d 311 . 2 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐵) ↔ 𝑥 ∈ ((𝐾 fLimf 𝐿)‘(𝐹𝐶))))
9291eqrdv 2733 1 (𝜑 → (𝐹 lim 𝐵) = ((𝐾 fLimf 𝐿)‘(𝐹𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  Vcvv 3478  cdif 3960  cin 3962  wss 3963  {csn 4631  cmpt 5231  ran crn 5690  cres 5691  cima 5692  wf 6559  cfv 6563  (class class class)co 7431  cc 11151  t crest 17467  TopOpenctopn 17468  fldccnfld 21382  Topctop 22915  TopOnctopon 22932  intcnt 23041  neicnei 23121  limPtclp 23158  Filcfil 23869   fLimf cflf 23959   lim climc 25912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fi 9449  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-fz 13545  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-struct 17181  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-starv 17313  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-rest 17469  df-topn 17470  df-topgen 17490  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-cnp 23252  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-limc 25916
This theorem is referenced by:  limcmo  25932
  Copyright terms: Public domain W3C validator