MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcflf Structured version   Visualization version   GIF version

Theorem limcflf 24950
Description: The limit operator can be expressed as a filter limit, from the filter of neighborhoods of 𝐵 restricted to 𝐴 ∖ {𝐵}, to the topology of the complex numbers. (If 𝐵 is not a limit point of 𝐴, then it is still formally a filter limit, but the neighborhood filter is not a proper filter in this case.) (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
limcflf.f (𝜑𝐹:𝐴⟶ℂ)
limcflf.a (𝜑𝐴 ⊆ ℂ)
limcflf.b (𝜑𝐵 ∈ ((limPt‘𝐾)‘𝐴))
limcflf.k 𝐾 = (TopOpen‘ℂfld)
limcflf.c 𝐶 = (𝐴 ∖ {𝐵})
limcflf.l 𝐿 = (((nei‘𝐾)‘{𝐵}) ↾t 𝐶)
Assertion
Ref Expression
limcflf (𝜑 → (𝐹 lim 𝐵) = ((𝐾 fLimf 𝐿)‘(𝐹𝐶)))

Proof of Theorem limcflf
Dummy variables 𝑡 𝑠 𝑢 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3426 . . . . . . . . . . 11 𝑡 ∈ V
21inex1 5236 . . . . . . . . . 10 (𝑡𝐶) ∈ V
32rgenw 3075 . . . . . . . . 9 𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝑡𝐶) ∈ V
4 eqid 2738 . . . . . . . . . 10 (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶)) = (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶))
5 imaeq2 5954 . . . . . . . . . . . 12 (𝑠 = (𝑡𝐶) → ((𝐹𝐶) “ 𝑠) = ((𝐹𝐶) “ (𝑡𝐶)))
6 inss2 4160 . . . . . . . . . . . . 13 (𝑡𝐶) ⊆ 𝐶
7 resima2 5915 . . . . . . . . . . . . 13 ((𝑡𝐶) ⊆ 𝐶 → ((𝐹𝐶) “ (𝑡𝐶)) = (𝐹 “ (𝑡𝐶)))
86, 7ax-mp 5 . . . . . . . . . . . 12 ((𝐹𝐶) “ (𝑡𝐶)) = (𝐹 “ (𝑡𝐶))
95, 8eqtrdi 2795 . . . . . . . . . . 11 (𝑠 = (𝑡𝐶) → ((𝐹𝐶) “ 𝑠) = (𝐹 “ (𝑡𝐶)))
109sseq1d 3948 . . . . . . . . . 10 (𝑠 = (𝑡𝐶) → (((𝐹𝐶) “ 𝑠) ⊆ 𝑢 ↔ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢))
114, 10rexrnmptw 6953 . . . . . . . . 9 (∀𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝑡𝐶) ∈ V → (∃𝑠 ∈ ran (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶))((𝐹𝐶) “ 𝑠) ⊆ 𝑢 ↔ ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢))
123, 11mp1i 13 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → (∃𝑠 ∈ ran (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶))((𝐹𝐶) “ 𝑠) ⊆ 𝑢 ↔ ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢))
13 limcflf.l . . . . . . . . . 10 𝐿 = (((nei‘𝐾)‘{𝐵}) ↾t 𝐶)
14 fvex 6769 . . . . . . . . . . 11 ((nei‘𝐾)‘{𝐵}) ∈ V
15 limcflf.c . . . . . . . . . . . . . . 15 𝐶 = (𝐴 ∖ {𝐵})
16 difss 4062 . . . . . . . . . . . . . . 15 (𝐴 ∖ {𝐵}) ⊆ 𝐴
1715, 16eqsstri 3951 . . . . . . . . . . . . . 14 𝐶𝐴
18 limcflf.a . . . . . . . . . . . . . 14 (𝜑𝐴 ⊆ ℂ)
1917, 18sstrid 3928 . . . . . . . . . . . . 13 (𝜑𝐶 ⊆ ℂ)
20 cnex 10883 . . . . . . . . . . . . . 14 ℂ ∈ V
2120ssex 5240 . . . . . . . . . . . . 13 (𝐶 ⊆ ℂ → 𝐶 ∈ V)
2219, 21syl 17 . . . . . . . . . . . 12 (𝜑𝐶 ∈ V)
2322ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → 𝐶 ∈ V)
24 restval 17054 . . . . . . . . . . 11 ((((nei‘𝐾)‘{𝐵}) ∈ V ∧ 𝐶 ∈ V) → (((nei‘𝐾)‘{𝐵}) ↾t 𝐶) = ran (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶)))
2514, 23, 24sylancr 586 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → (((nei‘𝐾)‘{𝐵}) ↾t 𝐶) = ran (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶)))
2613, 25syl5eq 2791 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → 𝐿 = ran (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶)))
2726rexeqdv 3340 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → (∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢 ↔ ∃𝑠 ∈ ran (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡𝐶))((𝐹𝐶) “ 𝑠) ⊆ 𝑢))
28 limcflf.k . . . . . . . . . . . . . 14 𝐾 = (TopOpen‘ℂfld)
2928cnfldtop 23853 . . . . . . . . . . . . 13 𝐾 ∈ Top
30 opnneip 22178 . . . . . . . . . . . . 13 ((𝐾 ∈ Top ∧ 𝑤𝐾𝐵𝑤) → 𝑤 ∈ ((nei‘𝐾)‘{𝐵}))
3129, 30mp3an1 1446 . . . . . . . . . . . 12 ((𝑤𝐾𝐵𝑤) → 𝑤 ∈ ((nei‘𝐾)‘{𝐵}))
32 id 22 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑤𝑡 = 𝑤)
3315a1i 11 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑤𝐶 = (𝐴 ∖ {𝐵}))
3432, 33ineq12d 4144 . . . . . . . . . . . . . . 15 (𝑡 = 𝑤 → (𝑡𝐶) = (𝑤 ∩ (𝐴 ∖ {𝐵})))
3534imaeq2d 5958 . . . . . . . . . . . . . 14 (𝑡 = 𝑤 → (𝐹 “ (𝑡𝐶)) = (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))))
3635sseq1d 3948 . . . . . . . . . . . . 13 (𝑡 = 𝑤 → ((𝐹 “ (𝑡𝐶)) ⊆ 𝑢 ↔ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))
3736rspcev 3552 . . . . . . . . . . . 12 ((𝑤 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) → ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢)
3831, 37sylan 579 . . . . . . . . . . 11 (((𝑤𝐾𝐵𝑤) ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) → ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢)
3938anasss 466 . . . . . . . . . 10 ((𝑤𝐾 ∧ (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) → ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢)
4039rexlimiva 3209 . . . . . . . . 9 (∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) → ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢)
41 simprl 767 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → 𝑡 ∈ ((nei‘𝐾)‘{𝐵}))
4228cnfldtopon 23852 . . . . . . . . . . . . . . 15 𝐾 ∈ (TopOn‘ℂ)
4342toponunii 21973 . . . . . . . . . . . . . 14 ℂ = 𝐾
4443neii1 22165 . . . . . . . . . . . . 13 ((𝐾 ∈ Top ∧ 𝑡 ∈ ((nei‘𝐾)‘{𝐵})) → 𝑡 ⊆ ℂ)
4529, 41, 44sylancr 586 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → 𝑡 ⊆ ℂ)
4643ntropn 22108 . . . . . . . . . . . 12 ((𝐾 ∈ Top ∧ 𝑡 ⊆ ℂ) → ((int‘𝐾)‘𝑡) ∈ 𝐾)
4729, 45, 46sylancr 586 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → ((int‘𝐾)‘𝑡) ∈ 𝐾)
4843lpss 22201 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Top ∧ 𝐴 ⊆ ℂ) → ((limPt‘𝐾)‘𝐴) ⊆ ℂ)
4929, 18, 48sylancr 586 . . . . . . . . . . . . . . . . 17 (𝜑 → ((limPt‘𝐾)‘𝐴) ⊆ ℂ)
50 limcflf.b . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ((limPt‘𝐾)‘𝐴))
5149, 50sseldd 3918 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ ℂ)
5251snssd 4739 . . . . . . . . . . . . . . 15 (𝜑 → {𝐵} ⊆ ℂ)
5352ad3antrrr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → {𝐵} ⊆ ℂ)
5443neiint 22163 . . . . . . . . . . . . . 14 ((𝐾 ∈ Top ∧ {𝐵} ⊆ ℂ ∧ 𝑡 ⊆ ℂ) → (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↔ {𝐵} ⊆ ((int‘𝐾)‘𝑡)))
5529, 53, 45, 54mp3an2i 1464 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↔ {𝐵} ⊆ ((int‘𝐾)‘𝑡)))
5641, 55mpbid 231 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → {𝐵} ⊆ ((int‘𝐾)‘𝑡))
5751ad3antrrr 726 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → 𝐵 ∈ ℂ)
58 snssg 4715 . . . . . . . . . . . . 13 (𝐵 ∈ ℂ → (𝐵 ∈ ((int‘𝐾)‘𝑡) ↔ {𝐵} ⊆ ((int‘𝐾)‘𝑡)))
5957, 58syl 17 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → (𝐵 ∈ ((int‘𝐾)‘𝑡) ↔ {𝐵} ⊆ ((int‘𝐾)‘𝑡)))
6056, 59mpbird 256 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → 𝐵 ∈ ((int‘𝐾)‘𝑡))
6143ntrss2 22116 . . . . . . . . . . . . . 14 ((𝐾 ∈ Top ∧ 𝑡 ⊆ ℂ) → ((int‘𝐾)‘𝑡) ⊆ 𝑡)
6229, 45, 61sylancr 586 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → ((int‘𝐾)‘𝑡) ⊆ 𝑡)
63 ssrin 4164 . . . . . . . . . . . . 13 (((int‘𝐾)‘𝑡) ⊆ 𝑡 → (((int‘𝐾)‘𝑡) ∩ 𝐶) ⊆ (𝑡𝐶))
64 imass2 5999 . . . . . . . . . . . . 13 ((((int‘𝐾)‘𝑡) ∩ 𝐶) ⊆ (𝑡𝐶) → (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)) ⊆ (𝐹 “ (𝑡𝐶)))
6562, 63, 643syl 18 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)) ⊆ (𝐹 “ (𝑡𝐶)))
66 simprr 769 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)
6765, 66sstrd 3927 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)) ⊆ 𝑢)
68 eleq2 2827 . . . . . . . . . . . . 13 (𝑤 = ((int‘𝐾)‘𝑡) → (𝐵𝑤𝐵 ∈ ((int‘𝐾)‘𝑡)))
6915ineq2i 4140 . . . . . . . . . . . . . . . 16 (𝑤𝐶) = (𝑤 ∩ (𝐴 ∖ {𝐵}))
70 ineq1 4136 . . . . . . . . . . . . . . . 16 (𝑤 = ((int‘𝐾)‘𝑡) → (𝑤𝐶) = (((int‘𝐾)‘𝑡) ∩ 𝐶))
7169, 70eqtr3id 2793 . . . . . . . . . . . . . . 15 (𝑤 = ((int‘𝐾)‘𝑡) → (𝑤 ∩ (𝐴 ∖ {𝐵})) = (((int‘𝐾)‘𝑡) ∩ 𝐶))
7271imaeq2d 5958 . . . . . . . . . . . . . 14 (𝑤 = ((int‘𝐾)‘𝑡) → (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) = (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)))
7372sseq1d 3948 . . . . . . . . . . . . 13 (𝑤 = ((int‘𝐾)‘𝑡) → ((𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢 ↔ (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)) ⊆ 𝑢))
7468, 73anbi12d 630 . . . . . . . . . . . 12 (𝑤 = ((int‘𝐾)‘𝑡) → ((𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) ↔ (𝐵 ∈ ((int‘𝐾)‘𝑡) ∧ (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)) ⊆ 𝑢)))
7574rspcev 3552 . . . . . . . . . . 11 ((((int‘𝐾)‘𝑡) ∈ 𝐾 ∧ (𝐵 ∈ ((int‘𝐾)‘𝑡) ∧ (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)) ⊆ 𝑢)) → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))
7647, 60, 67, 75syl12anc 833 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡𝐶)) ⊆ 𝑢)) → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))
7776rexlimdvaa 3213 . . . . . . . . 9 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → (∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))
7840, 77impbid2 225 . . . . . . . 8 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → (∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) ↔ ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡𝐶)) ⊆ 𝑢))
7912, 27, 783bitr4rd 311 . . . . . . 7 (((𝜑𝑥 ∈ ℂ) ∧ (𝑢𝐾𝑥𝑢)) → (∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) ↔ ∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢))
8079anassrs 467 . . . . . 6 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑢𝐾) ∧ 𝑥𝑢) → (∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) ↔ ∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢))
8180pm5.74da 800 . . . . 5 (((𝜑𝑥 ∈ ℂ) ∧ 𝑢𝐾) → ((𝑥𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) ↔ (𝑥𝑢 → ∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢)))
8281ralbidva 3119 . . . 4 ((𝜑𝑥 ∈ ℂ) → (∀𝑢𝐾 (𝑥𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) ↔ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢)))
8382pm5.32da 578 . . 3 (𝜑 → ((𝑥 ∈ ℂ ∧ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))) ↔ (𝑥 ∈ ℂ ∧ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢))))
84 limcflf.f . . . 4 (𝜑𝐹:𝐴⟶ℂ)
8584, 18, 51, 28ellimc2 24946 . . 3 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑤𝐾 (𝐵𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)))))
8684, 18, 50, 28, 15, 13limcflflem 24949 . . . 4 (𝜑𝐿 ∈ (Fil‘𝐶))
87 fssres 6624 . . . . 5 ((𝐹:𝐴⟶ℂ ∧ 𝐶𝐴) → (𝐹𝐶):𝐶⟶ℂ)
8884, 17, 87sylancl 585 . . . 4 (𝜑 → (𝐹𝐶):𝐶⟶ℂ)
89 isflf 23052 . . . 4 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐿 ∈ (Fil‘𝐶) ∧ (𝐹𝐶):𝐶⟶ℂ) → (𝑥 ∈ ((𝐾 fLimf 𝐿)‘(𝐹𝐶)) ↔ (𝑥 ∈ ℂ ∧ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢))))
9042, 86, 88, 89mp3an2i 1464 . . 3 (𝜑 → (𝑥 ∈ ((𝐾 fLimf 𝐿)‘(𝐹𝐶)) ↔ (𝑥 ∈ ℂ ∧ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑠𝐿 ((𝐹𝐶) “ 𝑠) ⊆ 𝑢))))
9183, 85, 903bitr4d 310 . 2 (𝜑 → (𝑥 ∈ (𝐹 lim 𝐵) ↔ 𝑥 ∈ ((𝐾 fLimf 𝐿)‘(𝐹𝐶))))
9291eqrdv 2736 1 (𝜑 → (𝐹 lim 𝐵) = ((𝐾 fLimf 𝐿)‘(𝐹𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  cdif 3880  cin 3882  wss 3883  {csn 4558  cmpt 5153  ran crn 5581  cres 5582  cima 5583  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  t crest 17048  TopOpenctopn 17049  fldccnfld 20510  Topctop 21950  TopOnctopon 21967  intcnt 22076  neicnei 22156  limPtclp 22193  Filcfil 22904   fLimf cflf 22994   lim climc 24931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-rest 17050  df-topn 17051  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-cnp 22287  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-limc 24935
This theorem is referenced by:  limcmo  24951
  Copyright terms: Public domain W3C validator