Step | Hyp | Ref
| Expression |
1 | | vex 3435 |
. . . . . . . . . . 11
⊢ 𝑡 ∈ V |
2 | 1 | inex1 5245 |
. . . . . . . . . 10
⊢ (𝑡 ∩ 𝐶) ∈ V |
3 | 2 | rgenw 3078 |
. . . . . . . . 9
⊢
∀𝑡 ∈
((nei‘𝐾)‘{𝐵})(𝑡 ∩ 𝐶) ∈ V |
4 | | eqid 2740 |
. . . . . . . . . 10
⊢ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡 ∩ 𝐶)) = (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡 ∩ 𝐶)) |
5 | | imaeq2 5964 |
. . . . . . . . . . . 12
⊢ (𝑠 = (𝑡 ∩ 𝐶) → ((𝐹 ↾ 𝐶) “ 𝑠) = ((𝐹 ↾ 𝐶) “ (𝑡 ∩ 𝐶))) |
6 | | inss2 4169 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∩ 𝐶) ⊆ 𝐶 |
7 | | resima2 5925 |
. . . . . . . . . . . . 13
⊢ ((𝑡 ∩ 𝐶) ⊆ 𝐶 → ((𝐹 ↾ 𝐶) “ (𝑡 ∩ 𝐶)) = (𝐹 “ (𝑡 ∩ 𝐶))) |
8 | 6, 7 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ((𝐹 ↾ 𝐶) “ (𝑡 ∩ 𝐶)) = (𝐹 “ (𝑡 ∩ 𝐶)) |
9 | 5, 8 | eqtrdi 2796 |
. . . . . . . . . . 11
⊢ (𝑠 = (𝑡 ∩ 𝐶) → ((𝐹 ↾ 𝐶) “ 𝑠) = (𝐹 “ (𝑡 ∩ 𝐶))) |
10 | 9 | sseq1d 3957 |
. . . . . . . . . 10
⊢ (𝑠 = (𝑡 ∩ 𝐶) → (((𝐹 ↾ 𝐶) “ 𝑠) ⊆ 𝑢 ↔ (𝐹 “ (𝑡 ∩ 𝐶)) ⊆ 𝑢)) |
11 | 4, 10 | rexrnmptw 6968 |
. . . . . . . . 9
⊢
(∀𝑡 ∈
((nei‘𝐾)‘{𝐵})(𝑡 ∩ 𝐶) ∈ V → (∃𝑠 ∈ ran (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡 ∩ 𝐶))((𝐹 ↾ 𝐶) “ 𝑠) ⊆ 𝑢 ↔ ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡 ∩ 𝐶)) ⊆ 𝑢)) |
12 | 3, 11 | mp1i 13 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ (𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢)) → (∃𝑠 ∈ ran (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡 ∩ 𝐶))((𝐹 ↾ 𝐶) “ 𝑠) ⊆ 𝑢 ↔ ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡 ∩ 𝐶)) ⊆ 𝑢)) |
13 | | limcflf.l |
. . . . . . . . . 10
⊢ 𝐿 = (((nei‘𝐾)‘{𝐵}) ↾t 𝐶) |
14 | | fvex 6784 |
. . . . . . . . . . 11
⊢
((nei‘𝐾)‘{𝐵}) ∈ V |
15 | | limcflf.c |
. . . . . . . . . . . . . . 15
⊢ 𝐶 = (𝐴 ∖ {𝐵}) |
16 | | difss 4071 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∖ {𝐵}) ⊆ 𝐴 |
17 | 15, 16 | eqsstri 3960 |
. . . . . . . . . . . . . 14
⊢ 𝐶 ⊆ 𝐴 |
18 | | limcflf.a |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ⊆ ℂ) |
19 | 17, 18 | sstrid 3937 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐶 ⊆ ℂ) |
20 | | cnex 10963 |
. . . . . . . . . . . . . 14
⊢ ℂ
∈ V |
21 | 20 | ssex 5249 |
. . . . . . . . . . . . 13
⊢ (𝐶 ⊆ ℂ → 𝐶 ∈ V) |
22 | 19, 21 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐶 ∈ V) |
23 | 22 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ (𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢)) → 𝐶 ∈ V) |
24 | | restval 17148 |
. . . . . . . . . . 11
⊢
((((nei‘𝐾)‘{𝐵}) ∈ V ∧ 𝐶 ∈ V) → (((nei‘𝐾)‘{𝐵}) ↾t 𝐶) = ran (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡 ∩ 𝐶))) |
25 | 14, 23, 24 | sylancr 587 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ (𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢)) → (((nei‘𝐾)‘{𝐵}) ↾t 𝐶) = ran (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡 ∩ 𝐶))) |
26 | 13, 25 | eqtrid 2792 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ (𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢)) → 𝐿 = ran (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡 ∩ 𝐶))) |
27 | 26 | rexeqdv 3348 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ (𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢)) → (∃𝑠 ∈ 𝐿 ((𝐹 ↾ 𝐶) “ 𝑠) ⊆ 𝑢 ↔ ∃𝑠 ∈ ran (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↦ (𝑡 ∩ 𝐶))((𝐹 ↾ 𝐶) “ 𝑠) ⊆ 𝑢)) |
28 | | limcflf.k |
. . . . . . . . . . . . . 14
⊢ 𝐾 =
(TopOpen‘ℂfld) |
29 | 28 | cnfldtop 23958 |
. . . . . . . . . . . . 13
⊢ 𝐾 ∈ Top |
30 | | opnneip 22281 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ Top ∧ 𝑤 ∈ 𝐾 ∧ 𝐵 ∈ 𝑤) → 𝑤 ∈ ((nei‘𝐾)‘{𝐵})) |
31 | 29, 30 | mp3an1 1447 |
. . . . . . . . . . . 12
⊢ ((𝑤 ∈ 𝐾 ∧ 𝐵 ∈ 𝑤) → 𝑤 ∈ ((nei‘𝐾)‘{𝐵})) |
32 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = 𝑤 → 𝑡 = 𝑤) |
33 | 15 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = 𝑤 → 𝐶 = (𝐴 ∖ {𝐵})) |
34 | 32, 33 | ineq12d 4153 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑤 → (𝑡 ∩ 𝐶) = (𝑤 ∩ (𝐴 ∖ {𝐵}))) |
35 | 34 | imaeq2d 5968 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑤 → (𝐹 “ (𝑡 ∩ 𝐶)) = (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵})))) |
36 | 35 | sseq1d 3957 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑤 → ((𝐹 “ (𝑡 ∩ 𝐶)) ⊆ 𝑢 ↔ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) |
37 | 36 | rspcev 3561 |
. . . . . . . . . . . 12
⊢ ((𝑤 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) → ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡 ∩ 𝐶)) ⊆ 𝑢) |
38 | 31, 37 | sylan 580 |
. . . . . . . . . . 11
⊢ (((𝑤 ∈ 𝐾 ∧ 𝐵 ∈ 𝑤) ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) → ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡 ∩ 𝐶)) ⊆ 𝑢) |
39 | 38 | anasss 467 |
. . . . . . . . . 10
⊢ ((𝑤 ∈ 𝐾 ∧ (𝐵 ∈ 𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) → ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡 ∩ 𝐶)) ⊆ 𝑢) |
40 | 39 | rexlimiva 3212 |
. . . . . . . . 9
⊢
(∃𝑤 ∈
𝐾 (𝐵 ∈ 𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) → ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡 ∩ 𝐶)) ⊆ 𝑢) |
41 | | simprl 768 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℂ) ∧ (𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡 ∩ 𝐶)) ⊆ 𝑢)) → 𝑡 ∈ ((nei‘𝐾)‘{𝐵})) |
42 | 28 | cnfldtopon 23957 |
. . . . . . . . . . . . . . 15
⊢ 𝐾 ∈
(TopOn‘ℂ) |
43 | 42 | toponunii 22076 |
. . . . . . . . . . . . . 14
⊢ ℂ =
∪ 𝐾 |
44 | 43 | neii1 22268 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ Top ∧ 𝑡 ∈ ((nei‘𝐾)‘{𝐵})) → 𝑡 ⊆ ℂ) |
45 | 29, 41, 44 | sylancr 587 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℂ) ∧ (𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡 ∩ 𝐶)) ⊆ 𝑢)) → 𝑡 ⊆ ℂ) |
46 | 43 | ntropn 22211 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ Top ∧ 𝑡 ⊆ ℂ) →
((int‘𝐾)‘𝑡) ∈ 𝐾) |
47 | 29, 45, 46 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℂ) ∧ (𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡 ∩ 𝐶)) ⊆ 𝑢)) → ((int‘𝐾)‘𝑡) ∈ 𝐾) |
48 | 43 | lpss 22304 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐾 ∈ Top ∧ 𝐴 ⊆ ℂ) →
((limPt‘𝐾)‘𝐴) ⊆ ℂ) |
49 | 29, 18, 48 | sylancr 587 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((limPt‘𝐾)‘𝐴) ⊆ ℂ) |
50 | | limcflf.b |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐾)‘𝐴)) |
51 | 49, 50 | sseldd 3927 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐵 ∈ ℂ) |
52 | 51 | snssd 4748 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → {𝐵} ⊆ ℂ) |
53 | 52 | ad3antrrr 727 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℂ) ∧ (𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡 ∩ 𝐶)) ⊆ 𝑢)) → {𝐵} ⊆ ℂ) |
54 | 43 | neiint 22266 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ Top ∧ {𝐵} ⊆ ℂ ∧ 𝑡 ⊆ ℂ) → (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↔ {𝐵} ⊆ ((int‘𝐾)‘𝑡))) |
55 | 29, 53, 45, 54 | mp3an2i 1465 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℂ) ∧ (𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡 ∩ 𝐶)) ⊆ 𝑢)) → (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ↔ {𝐵} ⊆ ((int‘𝐾)‘𝑡))) |
56 | 41, 55 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℂ) ∧ (𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡 ∩ 𝐶)) ⊆ 𝑢)) → {𝐵} ⊆ ((int‘𝐾)‘𝑡)) |
57 | 51 | ad3antrrr 727 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℂ) ∧ (𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡 ∩ 𝐶)) ⊆ 𝑢)) → 𝐵 ∈ ℂ) |
58 | | snssg 4724 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ ℂ → (𝐵 ∈ ((int‘𝐾)‘𝑡) ↔ {𝐵} ⊆ ((int‘𝐾)‘𝑡))) |
59 | 57, 58 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℂ) ∧ (𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡 ∩ 𝐶)) ⊆ 𝑢)) → (𝐵 ∈ ((int‘𝐾)‘𝑡) ↔ {𝐵} ⊆ ((int‘𝐾)‘𝑡))) |
60 | 56, 59 | mpbird 256 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℂ) ∧ (𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡 ∩ 𝐶)) ⊆ 𝑢)) → 𝐵 ∈ ((int‘𝐾)‘𝑡)) |
61 | 43 | ntrss2 22219 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ Top ∧ 𝑡 ⊆ ℂ) →
((int‘𝐾)‘𝑡) ⊆ 𝑡) |
62 | 29, 45, 61 | sylancr 587 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℂ) ∧ (𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡 ∩ 𝐶)) ⊆ 𝑢)) → ((int‘𝐾)‘𝑡) ⊆ 𝑡) |
63 | | ssrin 4173 |
. . . . . . . . . . . . 13
⊢
(((int‘𝐾)‘𝑡) ⊆ 𝑡 → (((int‘𝐾)‘𝑡) ∩ 𝐶) ⊆ (𝑡 ∩ 𝐶)) |
64 | | imass2 6009 |
. . . . . . . . . . . . 13
⊢
((((int‘𝐾)‘𝑡) ∩ 𝐶) ⊆ (𝑡 ∩ 𝐶) → (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)) ⊆ (𝐹 “ (𝑡 ∩ 𝐶))) |
65 | 62, 63, 64 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℂ) ∧ (𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡 ∩ 𝐶)) ⊆ 𝑢)) → (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)) ⊆ (𝐹 “ (𝑡 ∩ 𝐶))) |
66 | | simprr 770 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℂ) ∧ (𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡 ∩ 𝐶)) ⊆ 𝑢)) → (𝐹 “ (𝑡 ∩ 𝐶)) ⊆ 𝑢) |
67 | 65, 66 | sstrd 3936 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℂ) ∧ (𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡 ∩ 𝐶)) ⊆ 𝑢)) → (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)) ⊆ 𝑢) |
68 | | eleq2 2829 |
. . . . . . . . . . . . 13
⊢ (𝑤 = ((int‘𝐾)‘𝑡) → (𝐵 ∈ 𝑤 ↔ 𝐵 ∈ ((int‘𝐾)‘𝑡))) |
69 | 15 | ineq2i 4149 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 ∩ 𝐶) = (𝑤 ∩ (𝐴 ∖ {𝐵})) |
70 | | ineq1 4145 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = ((int‘𝐾)‘𝑡) → (𝑤 ∩ 𝐶) = (((int‘𝐾)‘𝑡) ∩ 𝐶)) |
71 | 69, 70 | eqtr3id 2794 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = ((int‘𝐾)‘𝑡) → (𝑤 ∩ (𝐴 ∖ {𝐵})) = (((int‘𝐾)‘𝑡) ∩ 𝐶)) |
72 | 71 | imaeq2d 5968 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = ((int‘𝐾)‘𝑡) → (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) = (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶))) |
73 | 72 | sseq1d 3957 |
. . . . . . . . . . . . 13
⊢ (𝑤 = ((int‘𝐾)‘𝑡) → ((𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢 ↔ (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)) ⊆ 𝑢)) |
74 | 68, 73 | anbi12d 631 |
. . . . . . . . . . . 12
⊢ (𝑤 = ((int‘𝐾)‘𝑡) → ((𝐵 ∈ 𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) ↔ (𝐵 ∈ ((int‘𝐾)‘𝑡) ∧ (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)) ⊆ 𝑢))) |
75 | 74 | rspcev 3561 |
. . . . . . . . . . 11
⊢
((((int‘𝐾)‘𝑡) ∈ 𝐾 ∧ (𝐵 ∈ ((int‘𝐾)‘𝑡) ∧ (𝐹 “ (((int‘𝐾)‘𝑡) ∩ 𝐶)) ⊆ 𝑢)) → ∃𝑤 ∈ 𝐾 (𝐵 ∈ 𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) |
76 | 47, 60, 67, 75 | syl12anc 834 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℂ) ∧ (𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢)) ∧ (𝑡 ∈ ((nei‘𝐾)‘{𝐵}) ∧ (𝐹 “ (𝑡 ∩ 𝐶)) ⊆ 𝑢)) → ∃𝑤 ∈ 𝐾 (𝐵 ∈ 𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) |
77 | 76 | rexlimdvaa 3216 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ (𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢)) → (∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡 ∩ 𝐶)) ⊆ 𝑢 → ∃𝑤 ∈ 𝐾 (𝐵 ∈ 𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))) |
78 | 40, 77 | impbid2 225 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ (𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢)) → (∃𝑤 ∈ 𝐾 (𝐵 ∈ 𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) ↔ ∃𝑡 ∈ ((nei‘𝐾)‘{𝐵})(𝐹 “ (𝑡 ∩ 𝐶)) ⊆ 𝑢)) |
79 | 12, 27, 78 | 3bitr4rd 312 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ (𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝑢)) → (∃𝑤 ∈ 𝐾 (𝐵 ∈ 𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) ↔ ∃𝑠 ∈ 𝐿 ((𝐹 ↾ 𝐶) “ 𝑠) ⊆ 𝑢)) |
80 | 79 | anassrs 468 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑢 ∈ 𝐾) ∧ 𝑥 ∈ 𝑢) → (∃𝑤 ∈ 𝐾 (𝐵 ∈ 𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢) ↔ ∃𝑠 ∈ 𝐿 ((𝐹 ↾ 𝐶) “ 𝑠) ⊆ 𝑢)) |
81 | 80 | pm5.74da 801 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℂ) ∧ 𝑢 ∈ 𝐾) → ((𝑥 ∈ 𝑢 → ∃𝑤 ∈ 𝐾 (𝐵 ∈ 𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) ↔ (𝑥 ∈ 𝑢 → ∃𝑠 ∈ 𝐿 ((𝐹 ↾ 𝐶) “ 𝑠) ⊆ 𝑢))) |
82 | 81 | ralbidva 3122 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (∀𝑢 ∈ 𝐾 (𝑥 ∈ 𝑢 → ∃𝑤 ∈ 𝐾 (𝐵 ∈ 𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢)) ↔ ∀𝑢 ∈ 𝐾 (𝑥 ∈ 𝑢 → ∃𝑠 ∈ 𝐿 ((𝐹 ↾ 𝐶) “ 𝑠) ⊆ 𝑢))) |
83 | 82 | pm5.32da 579 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ ℂ ∧ ∀𝑢 ∈ 𝐾 (𝑥 ∈ 𝑢 → ∃𝑤 ∈ 𝐾 (𝐵 ∈ 𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))) ↔ (𝑥 ∈ ℂ ∧ ∀𝑢 ∈ 𝐾 (𝑥 ∈ 𝑢 → ∃𝑠 ∈ 𝐿 ((𝐹 ↾ 𝐶) “ 𝑠) ⊆ 𝑢)))) |
84 | | limcflf.f |
. . . 4
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
85 | 84, 18, 51, 28 | ellimc2 25052 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (𝐹 limℂ 𝐵) ↔ (𝑥 ∈ ℂ ∧ ∀𝑢 ∈ 𝐾 (𝑥 ∈ 𝑢 → ∃𝑤 ∈ 𝐾 (𝐵 ∈ 𝑤 ∧ (𝐹 “ (𝑤 ∩ (𝐴 ∖ {𝐵}))) ⊆ 𝑢))))) |
86 | 84, 18, 50, 28, 15, 13 | limcflflem 25055 |
. . . 4
⊢ (𝜑 → 𝐿 ∈ (Fil‘𝐶)) |
87 | | fssres 6638 |
. . . . 5
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶ℂ) |
88 | 84, 17, 87 | sylancl 586 |
. . . 4
⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶ℂ) |
89 | | isflf 23155 |
. . . 4
⊢ ((𝐾 ∈ (TopOn‘ℂ)
∧ 𝐿 ∈
(Fil‘𝐶) ∧ (𝐹 ↾ 𝐶):𝐶⟶ℂ) → (𝑥 ∈ ((𝐾 fLimf 𝐿)‘(𝐹 ↾ 𝐶)) ↔ (𝑥 ∈ ℂ ∧ ∀𝑢 ∈ 𝐾 (𝑥 ∈ 𝑢 → ∃𝑠 ∈ 𝐿 ((𝐹 ↾ 𝐶) “ 𝑠) ⊆ 𝑢)))) |
90 | 42, 86, 88, 89 | mp3an2i 1465 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ((𝐾 fLimf 𝐿)‘(𝐹 ↾ 𝐶)) ↔ (𝑥 ∈ ℂ ∧ ∀𝑢 ∈ 𝐾 (𝑥 ∈ 𝑢 → ∃𝑠 ∈ 𝐿 ((𝐹 ↾ 𝐶) “ 𝑠) ⊆ 𝑢)))) |
91 | 83, 85, 90 | 3bitr4d 311 |
. 2
⊢ (𝜑 → (𝑥 ∈ (𝐹 limℂ 𝐵) ↔ 𝑥 ∈ ((𝐾 fLimf 𝐿)‘(𝐹 ↾ 𝐶)))) |
92 | 91 | eqrdv 2738 |
1
⊢ (𝜑 → (𝐹 limℂ 𝐵) = ((𝐾 fLimf 𝐿)‘(𝐹 ↾ 𝐶))) |