| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmicom | Structured version Visualization version GIF version | ||
| Description: The line mirroring function is an involution. Theorem 10.4 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| ismid.p | ⊢ 𝑃 = (Base‘𝐺) |
| ismid.d | ⊢ − = (dist‘𝐺) |
| ismid.i | ⊢ 𝐼 = (Itv‘𝐺) |
| ismid.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| ismid.1 | ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
| lmif.m | ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) |
| lmif.l | ⊢ 𝐿 = (LineG‘𝐺) |
| lmif.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
| lmicl.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| islmib.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| lmicom.1 | ⊢ (𝜑 → (𝑀‘𝐴) = 𝐵) |
| Ref | Expression |
|---|---|
| lmicom | ⊢ (𝜑 → (𝑀‘𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismid.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | ismid.d | . . . . 5 ⊢ − = (dist‘𝐺) | |
| 3 | ismid.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | ismid.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | ismid.1 | . . . . 5 ⊢ (𝜑 → 𝐺DimTarskiG≥2) | |
| 6 | lmicl.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 7 | islmib.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | midcom 28707 | . . . 4 ⊢ (𝜑 → (𝐴(midG‘𝐺)𝐵) = (𝐵(midG‘𝐺)𝐴)) |
| 9 | lmicom.1 | . . . . . . 7 ⊢ (𝜑 → (𝑀‘𝐴) = 𝐵) | |
| 10 | 9 | eqcomd 2741 | . . . . . 6 ⊢ (𝜑 → 𝐵 = (𝑀‘𝐴)) |
| 11 | lmif.m | . . . . . . 7 ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) | |
| 12 | lmif.l | . . . . . . 7 ⊢ 𝐿 = (LineG‘𝐺) | |
| 13 | lmif.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
| 14 | 1, 2, 3, 4, 5, 11, 12, 13, 6, 7 | islmib 28712 | . . . . . 6 ⊢ (𝜑 → (𝐵 = (𝑀‘𝐴) ↔ ((𝐴(midG‘𝐺)𝐵) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)))) |
| 15 | 10, 14 | mpbid 232 | . . . . 5 ⊢ (𝜑 → ((𝐴(midG‘𝐺)𝐵) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))) |
| 16 | 15 | simpld 494 | . . . 4 ⊢ (𝜑 → (𝐴(midG‘𝐺)𝐵) ∈ 𝐷) |
| 17 | 8, 16 | eqeltrrd 2835 | . . 3 ⊢ (𝜑 → (𝐵(midG‘𝐺)𝐴) ∈ 𝐷) |
| 18 | 15 | simprd 495 | . . . . . . . . 9 ⊢ (𝜑 → (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) |
| 19 | 18 | orcomd 871 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 = 𝐵 ∨ 𝐷(⟂G‘𝐺)(𝐴𝐿𝐵))) |
| 20 | 19 | ord 864 | . . . . . . 7 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 → 𝐷(⟂G‘𝐺)(𝐴𝐿𝐵))) |
| 21 | 4 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐺 ∈ TarskiG) |
| 22 | 6 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐴 ∈ 𝑃) |
| 23 | 7 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵 ∈ 𝑃) |
| 24 | simpr 484 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 = 𝐵) | |
| 25 | 24 | neqned 2939 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐴 ≠ 𝐵) |
| 26 | 1, 3, 12, 21, 22, 23, 25 | tglinecom 28560 | . . . . . . . . 9 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → (𝐴𝐿𝐵) = (𝐵𝐿𝐴)) |
| 27 | 26 | breq2d 5131 | . . . . . . . 8 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ↔ 𝐷(⟂G‘𝐺)(𝐵𝐿𝐴))) |
| 28 | 27 | pm5.74da 803 | . . . . . . 7 ⊢ (𝜑 → ((¬ 𝐴 = 𝐵 → 𝐷(⟂G‘𝐺)(𝐴𝐿𝐵)) ↔ (¬ 𝐴 = 𝐵 → 𝐷(⟂G‘𝐺)(𝐵𝐿𝐴)))) |
| 29 | 20, 28 | mpbid 232 | . . . . . 6 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 → 𝐷(⟂G‘𝐺)(𝐵𝐿𝐴))) |
| 30 | 29 | orrd 863 | . . . . 5 ⊢ (𝜑 → (𝐴 = 𝐵 ∨ 𝐷(⟂G‘𝐺)(𝐵𝐿𝐴))) |
| 31 | 30 | orcomd 871 | . . . 4 ⊢ (𝜑 → (𝐷(⟂G‘𝐺)(𝐵𝐿𝐴) ∨ 𝐴 = 𝐵)) |
| 32 | eqcom 2742 | . . . . 5 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
| 33 | 32 | orbi2i 912 | . . . 4 ⊢ ((𝐷(⟂G‘𝐺)(𝐵𝐿𝐴) ∨ 𝐴 = 𝐵) ↔ (𝐷(⟂G‘𝐺)(𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) |
| 34 | 31, 33 | sylib 218 | . . 3 ⊢ (𝜑 → (𝐷(⟂G‘𝐺)(𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) |
| 35 | 1, 2, 3, 4, 5, 11, 12, 13, 7, 6 | islmib 28712 | . . 3 ⊢ (𝜑 → (𝐴 = (𝑀‘𝐵) ↔ ((𝐵(midG‘𝐺)𝐴) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)))) |
| 36 | 17, 34, 35 | mpbir2and 713 | . 2 ⊢ (𝜑 → 𝐴 = (𝑀‘𝐵)) |
| 37 | 36 | eqcomd 2741 | 1 ⊢ (𝜑 → (𝑀‘𝐵) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ran crn 5655 ‘cfv 6530 (class class class)co 7403 2c2 12293 Basecbs 17226 distcds 17278 TarskiGcstrkg 28352 DimTarskiG≥cstrkgld 28356 Itvcitv 28358 LineGclng 28359 ⟂Gcperpg 28620 midGcmid 28697 lInvGclmi 28698 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-oadd 8482 df-er 8717 df-map 8840 df-pm 8841 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-dju 9913 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-n0 12500 df-xnn0 12573 df-z 12587 df-uz 12851 df-fz 13523 df-fzo 13670 df-hash 14347 df-word 14530 df-concat 14587 df-s1 14612 df-s2 14865 df-s3 14866 df-trkgc 28373 df-trkgb 28374 df-trkgcb 28375 df-trkgld 28377 df-trkg 28378 df-cgrg 28436 df-leg 28508 df-mir 28578 df-rag 28619 df-perpg 28621 df-mid 28699 df-lmi 28700 |
| This theorem is referenced by: lmilmi 28714 |
| Copyright terms: Public domain | W3C validator |