Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmicom | Structured version Visualization version GIF version |
Description: The line mirroring function is an involution. Theorem 10.4 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.) |
Ref | Expression |
---|---|
ismid.p | ⊢ 𝑃 = (Base‘𝐺) |
ismid.d | ⊢ − = (dist‘𝐺) |
ismid.i | ⊢ 𝐼 = (Itv‘𝐺) |
ismid.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
ismid.1 | ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
lmif.m | ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) |
lmif.l | ⊢ 𝐿 = (LineG‘𝐺) |
lmif.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
lmicl.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
islmib.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
lmicom.1 | ⊢ (𝜑 → (𝑀‘𝐴) = 𝐵) |
Ref | Expression |
---|---|
lmicom | ⊢ (𝜑 → (𝑀‘𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismid.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
2 | ismid.d | . . . . 5 ⊢ − = (dist‘𝐺) | |
3 | ismid.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | ismid.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | ismid.1 | . . . . 5 ⊢ (𝜑 → 𝐺DimTarskiG≥2) | |
6 | lmicl.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | islmib.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
8 | 1, 2, 3, 4, 5, 6, 7 | midcom 27143 | . . . 4 ⊢ (𝜑 → (𝐴(midG‘𝐺)𝐵) = (𝐵(midG‘𝐺)𝐴)) |
9 | lmicom.1 | . . . . . . 7 ⊢ (𝜑 → (𝑀‘𝐴) = 𝐵) | |
10 | 9 | eqcomd 2744 | . . . . . 6 ⊢ (𝜑 → 𝐵 = (𝑀‘𝐴)) |
11 | lmif.m | . . . . . . 7 ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) | |
12 | lmif.l | . . . . . . 7 ⊢ 𝐿 = (LineG‘𝐺) | |
13 | lmif.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
14 | 1, 2, 3, 4, 5, 11, 12, 13, 6, 7 | islmib 27148 | . . . . . 6 ⊢ (𝜑 → (𝐵 = (𝑀‘𝐴) ↔ ((𝐴(midG‘𝐺)𝐵) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)))) |
15 | 10, 14 | mpbid 231 | . . . . 5 ⊢ (𝜑 → ((𝐴(midG‘𝐺)𝐵) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))) |
16 | 15 | simpld 495 | . . . 4 ⊢ (𝜑 → (𝐴(midG‘𝐺)𝐵) ∈ 𝐷) |
17 | 8, 16 | eqeltrrd 2840 | . . 3 ⊢ (𝜑 → (𝐵(midG‘𝐺)𝐴) ∈ 𝐷) |
18 | 15 | simprd 496 | . . . . . . . . 9 ⊢ (𝜑 → (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) |
19 | 18 | orcomd 868 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 = 𝐵 ∨ 𝐷(⟂G‘𝐺)(𝐴𝐿𝐵))) |
20 | 19 | ord 861 | . . . . . . 7 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 → 𝐷(⟂G‘𝐺)(𝐴𝐿𝐵))) |
21 | 4 | adantr 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐺 ∈ TarskiG) |
22 | 6 | adantr 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐴 ∈ 𝑃) |
23 | 7 | adantr 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵 ∈ 𝑃) |
24 | simpr 485 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 = 𝐵) | |
25 | 24 | neqned 2950 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐴 ≠ 𝐵) |
26 | 1, 3, 12, 21, 22, 23, 25 | tglinecom 26996 | . . . . . . . . 9 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → (𝐴𝐿𝐵) = (𝐵𝐿𝐴)) |
27 | 26 | breq2d 5086 | . . . . . . . 8 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ↔ 𝐷(⟂G‘𝐺)(𝐵𝐿𝐴))) |
28 | 27 | pm5.74da 801 | . . . . . . 7 ⊢ (𝜑 → ((¬ 𝐴 = 𝐵 → 𝐷(⟂G‘𝐺)(𝐴𝐿𝐵)) ↔ (¬ 𝐴 = 𝐵 → 𝐷(⟂G‘𝐺)(𝐵𝐿𝐴)))) |
29 | 20, 28 | mpbid 231 | . . . . . 6 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 → 𝐷(⟂G‘𝐺)(𝐵𝐿𝐴))) |
30 | 29 | orrd 860 | . . . . 5 ⊢ (𝜑 → (𝐴 = 𝐵 ∨ 𝐷(⟂G‘𝐺)(𝐵𝐿𝐴))) |
31 | 30 | orcomd 868 | . . . 4 ⊢ (𝜑 → (𝐷(⟂G‘𝐺)(𝐵𝐿𝐴) ∨ 𝐴 = 𝐵)) |
32 | eqcom 2745 | . . . . 5 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
33 | 32 | orbi2i 910 | . . . 4 ⊢ ((𝐷(⟂G‘𝐺)(𝐵𝐿𝐴) ∨ 𝐴 = 𝐵) ↔ (𝐷(⟂G‘𝐺)(𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) |
34 | 31, 33 | sylib 217 | . . 3 ⊢ (𝜑 → (𝐷(⟂G‘𝐺)(𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) |
35 | 1, 2, 3, 4, 5, 11, 12, 13, 7, 6 | islmib 27148 | . . 3 ⊢ (𝜑 → (𝐴 = (𝑀‘𝐵) ↔ ((𝐵(midG‘𝐺)𝐴) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)))) |
36 | 17, 34, 35 | mpbir2and 710 | . 2 ⊢ (𝜑 → 𝐴 = (𝑀‘𝐵)) |
37 | 36 | eqcomd 2744 | 1 ⊢ (𝜑 → (𝑀‘𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ran crn 5590 ‘cfv 6433 (class class class)co 7275 2c2 12028 Basecbs 16912 distcds 16971 TarskiGcstrkg 26788 DimTarskiG≥cstrkgld 26792 Itvcitv 26794 LineGclng 26795 ⟂Gcperpg 27056 midGcmid 27133 lInvGclmi 27134 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oadd 8301 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-xnn0 12306 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-hash 14045 df-word 14218 df-concat 14274 df-s1 14301 df-s2 14561 df-s3 14562 df-trkgc 26809 df-trkgb 26810 df-trkgcb 26811 df-trkgld 26813 df-trkg 26814 df-cgrg 26872 df-leg 26944 df-mir 27014 df-rag 27055 df-perpg 27057 df-mid 27135 df-lmi 27136 |
This theorem is referenced by: lmilmi 27150 |
Copyright terms: Public domain | W3C validator |