![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmicom | Structured version Visualization version GIF version |
Description: The line mirroring function is an involution. Theorem 10.4 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.) |
Ref | Expression |
---|---|
ismid.p | ⊢ 𝑃 = (Base‘𝐺) |
ismid.d | ⊢ − = (dist‘𝐺) |
ismid.i | ⊢ 𝐼 = (Itv‘𝐺) |
ismid.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
ismid.1 | ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
lmif.m | ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) |
lmif.l | ⊢ 𝐿 = (LineG‘𝐺) |
lmif.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
lmicl.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
islmib.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
lmicom.1 | ⊢ (𝜑 → (𝑀‘𝐴) = 𝐵) |
Ref | Expression |
---|---|
lmicom | ⊢ (𝜑 → (𝑀‘𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismid.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
2 | ismid.d | . . . . 5 ⊢ − = (dist‘𝐺) | |
3 | ismid.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | ismid.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | ismid.1 | . . . . 5 ⊢ (𝜑 → 𝐺DimTarskiG≥2) | |
6 | lmicl.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | islmib.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
8 | 1, 2, 3, 4, 5, 6, 7 | midcom 28808 | . . . 4 ⊢ (𝜑 → (𝐴(midG‘𝐺)𝐵) = (𝐵(midG‘𝐺)𝐴)) |
9 | lmicom.1 | . . . . . . 7 ⊢ (𝜑 → (𝑀‘𝐴) = 𝐵) | |
10 | 9 | eqcomd 2746 | . . . . . 6 ⊢ (𝜑 → 𝐵 = (𝑀‘𝐴)) |
11 | lmif.m | . . . . . . 7 ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) | |
12 | lmif.l | . . . . . . 7 ⊢ 𝐿 = (LineG‘𝐺) | |
13 | lmif.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
14 | 1, 2, 3, 4, 5, 11, 12, 13, 6, 7 | islmib 28813 | . . . . . 6 ⊢ (𝜑 → (𝐵 = (𝑀‘𝐴) ↔ ((𝐴(midG‘𝐺)𝐵) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)))) |
15 | 10, 14 | mpbid 232 | . . . . 5 ⊢ (𝜑 → ((𝐴(midG‘𝐺)𝐵) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))) |
16 | 15 | simpld 494 | . . . 4 ⊢ (𝜑 → (𝐴(midG‘𝐺)𝐵) ∈ 𝐷) |
17 | 8, 16 | eqeltrrd 2845 | . . 3 ⊢ (𝜑 → (𝐵(midG‘𝐺)𝐴) ∈ 𝐷) |
18 | 15 | simprd 495 | . . . . . . . . 9 ⊢ (𝜑 → (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵)) |
19 | 18 | orcomd 870 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 = 𝐵 ∨ 𝐷(⟂G‘𝐺)(𝐴𝐿𝐵))) |
20 | 19 | ord 863 | . . . . . . 7 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 → 𝐷(⟂G‘𝐺)(𝐴𝐿𝐵))) |
21 | 4 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐺 ∈ TarskiG) |
22 | 6 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐴 ∈ 𝑃) |
23 | 7 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐵 ∈ 𝑃) |
24 | simpr 484 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 = 𝐵) | |
25 | 24 | neqned 2953 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐴 ≠ 𝐵) |
26 | 1, 3, 12, 21, 22, 23, 25 | tglinecom 28661 | . . . . . . . . 9 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → (𝐴𝐿𝐵) = (𝐵𝐿𝐴)) |
27 | 26 | breq2d 5178 | . . . . . . . 8 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ↔ 𝐷(⟂G‘𝐺)(𝐵𝐿𝐴))) |
28 | 27 | pm5.74da 803 | . . . . . . 7 ⊢ (𝜑 → ((¬ 𝐴 = 𝐵 → 𝐷(⟂G‘𝐺)(𝐴𝐿𝐵)) ↔ (¬ 𝐴 = 𝐵 → 𝐷(⟂G‘𝐺)(𝐵𝐿𝐴)))) |
29 | 20, 28 | mpbid 232 | . . . . . 6 ⊢ (𝜑 → (¬ 𝐴 = 𝐵 → 𝐷(⟂G‘𝐺)(𝐵𝐿𝐴))) |
30 | 29 | orrd 862 | . . . . 5 ⊢ (𝜑 → (𝐴 = 𝐵 ∨ 𝐷(⟂G‘𝐺)(𝐵𝐿𝐴))) |
31 | 30 | orcomd 870 | . . . 4 ⊢ (𝜑 → (𝐷(⟂G‘𝐺)(𝐵𝐿𝐴) ∨ 𝐴 = 𝐵)) |
32 | eqcom 2747 | . . . . 5 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
33 | 32 | orbi2i 911 | . . . 4 ⊢ ((𝐷(⟂G‘𝐺)(𝐵𝐿𝐴) ∨ 𝐴 = 𝐵) ↔ (𝐷(⟂G‘𝐺)(𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) |
34 | 31, 33 | sylib 218 | . . 3 ⊢ (𝜑 → (𝐷(⟂G‘𝐺)(𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)) |
35 | 1, 2, 3, 4, 5, 11, 12, 13, 7, 6 | islmib 28813 | . . 3 ⊢ (𝜑 → (𝐴 = (𝑀‘𝐵) ↔ ((𝐵(midG‘𝐺)𝐴) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐵𝐿𝐴) ∨ 𝐵 = 𝐴)))) |
36 | 17, 34, 35 | mpbir2and 712 | . 2 ⊢ (𝜑 → 𝐴 = (𝑀‘𝐵)) |
37 | 36 | eqcomd 2746 | 1 ⊢ (𝜑 → (𝑀‘𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ran crn 5701 ‘cfv 6573 (class class class)co 7448 2c2 12348 Basecbs 17258 distcds 17320 TarskiGcstrkg 28453 DimTarskiG≥cstrkgld 28457 Itvcitv 28459 LineGclng 28460 ⟂Gcperpg 28721 midGcmid 28798 lInvGclmi 28799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-xnn0 12626 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-hash 14380 df-word 14563 df-concat 14619 df-s1 14644 df-s2 14897 df-s3 14898 df-trkgc 28474 df-trkgb 28475 df-trkgcb 28476 df-trkgld 28478 df-trkg 28479 df-cgrg 28537 df-leg 28609 df-mir 28679 df-rag 28720 df-perpg 28722 df-mid 28800 df-lmi 28801 |
This theorem is referenced by: lmilmi 28815 |
Copyright terms: Public domain | W3C validator |