![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmicom | Structured version Visualization version GIF version |
Description: The line mirroring function is an involution. Theorem 10.4 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.) |
Ref | Expression |
---|---|
ismid.p | β’ π = (BaseβπΊ) |
ismid.d | β’ β = (distβπΊ) |
ismid.i | β’ πΌ = (ItvβπΊ) |
ismid.g | β’ (π β πΊ β TarskiG) |
ismid.1 | β’ (π β πΊDimTarskiGβ₯2) |
lmif.m | β’ π = ((lInvGβπΊ)βπ·) |
lmif.l | β’ πΏ = (LineGβπΊ) |
lmif.d | β’ (π β π· β ran πΏ) |
lmicl.1 | β’ (π β π΄ β π) |
islmib.b | β’ (π β π΅ β π) |
lmicom.1 | β’ (π β (πβπ΄) = π΅) |
Ref | Expression |
---|---|
lmicom | β’ (π β (πβπ΅) = π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismid.p | . . . . 5 β’ π = (BaseβπΊ) | |
2 | ismid.d | . . . . 5 β’ β = (distβπΊ) | |
3 | ismid.i | . . . . 5 β’ πΌ = (ItvβπΊ) | |
4 | ismid.g | . . . . 5 β’ (π β πΊ β TarskiG) | |
5 | ismid.1 | . . . . 5 β’ (π β πΊDimTarskiGβ₯2) | |
6 | lmicl.1 | . . . . 5 β’ (π β π΄ β π) | |
7 | islmib.b | . . . . 5 β’ (π β π΅ β π) | |
8 | 1, 2, 3, 4, 5, 6, 7 | midcom 28033 | . . . 4 β’ (π β (π΄(midGβπΊ)π΅) = (π΅(midGβπΊ)π΄)) |
9 | lmicom.1 | . . . . . . 7 β’ (π β (πβπ΄) = π΅) | |
10 | 9 | eqcomd 2739 | . . . . . 6 β’ (π β π΅ = (πβπ΄)) |
11 | lmif.m | . . . . . . 7 β’ π = ((lInvGβπΊ)βπ·) | |
12 | lmif.l | . . . . . . 7 β’ πΏ = (LineGβπΊ) | |
13 | lmif.d | . . . . . . 7 β’ (π β π· β ran πΏ) | |
14 | 1, 2, 3, 4, 5, 11, 12, 13, 6, 7 | islmib 28038 | . . . . . 6 β’ (π β (π΅ = (πβπ΄) β ((π΄(midGβπΊ)π΅) β π· β§ (π·(βGβπΊ)(π΄πΏπ΅) β¨ π΄ = π΅)))) |
15 | 10, 14 | mpbid 231 | . . . . 5 β’ (π β ((π΄(midGβπΊ)π΅) β π· β§ (π·(βGβπΊ)(π΄πΏπ΅) β¨ π΄ = π΅))) |
16 | 15 | simpld 496 | . . . 4 β’ (π β (π΄(midGβπΊ)π΅) β π·) |
17 | 8, 16 | eqeltrrd 2835 | . . 3 β’ (π β (π΅(midGβπΊ)π΄) β π·) |
18 | 15 | simprd 497 | . . . . . . . . 9 β’ (π β (π·(βGβπΊ)(π΄πΏπ΅) β¨ π΄ = π΅)) |
19 | 18 | orcomd 870 | . . . . . . . 8 β’ (π β (π΄ = π΅ β¨ π·(βGβπΊ)(π΄πΏπ΅))) |
20 | 19 | ord 863 | . . . . . . 7 β’ (π β (Β¬ π΄ = π΅ β π·(βGβπΊ)(π΄πΏπ΅))) |
21 | 4 | adantr 482 | . . . . . . . . . 10 β’ ((π β§ Β¬ π΄ = π΅) β πΊ β TarskiG) |
22 | 6 | adantr 482 | . . . . . . . . . 10 β’ ((π β§ Β¬ π΄ = π΅) β π΄ β π) |
23 | 7 | adantr 482 | . . . . . . . . . 10 β’ ((π β§ Β¬ π΄ = π΅) β π΅ β π) |
24 | simpr 486 | . . . . . . . . . . 11 β’ ((π β§ Β¬ π΄ = π΅) β Β¬ π΄ = π΅) | |
25 | 24 | neqned 2948 | . . . . . . . . . 10 β’ ((π β§ Β¬ π΄ = π΅) β π΄ β π΅) |
26 | 1, 3, 12, 21, 22, 23, 25 | tglinecom 27886 | . . . . . . . . 9 β’ ((π β§ Β¬ π΄ = π΅) β (π΄πΏπ΅) = (π΅πΏπ΄)) |
27 | 26 | breq2d 5161 | . . . . . . . 8 β’ ((π β§ Β¬ π΄ = π΅) β (π·(βGβπΊ)(π΄πΏπ΅) β π·(βGβπΊ)(π΅πΏπ΄))) |
28 | 27 | pm5.74da 803 | . . . . . . 7 β’ (π β ((Β¬ π΄ = π΅ β π·(βGβπΊ)(π΄πΏπ΅)) β (Β¬ π΄ = π΅ β π·(βGβπΊ)(π΅πΏπ΄)))) |
29 | 20, 28 | mpbid 231 | . . . . . 6 β’ (π β (Β¬ π΄ = π΅ β π·(βGβπΊ)(π΅πΏπ΄))) |
30 | 29 | orrd 862 | . . . . 5 β’ (π β (π΄ = π΅ β¨ π·(βGβπΊ)(π΅πΏπ΄))) |
31 | 30 | orcomd 870 | . . . 4 β’ (π β (π·(βGβπΊ)(π΅πΏπ΄) β¨ π΄ = π΅)) |
32 | eqcom 2740 | . . . . 5 β’ (π΄ = π΅ β π΅ = π΄) | |
33 | 32 | orbi2i 912 | . . . 4 β’ ((π·(βGβπΊ)(π΅πΏπ΄) β¨ π΄ = π΅) β (π·(βGβπΊ)(π΅πΏπ΄) β¨ π΅ = π΄)) |
34 | 31, 33 | sylib 217 | . . 3 β’ (π β (π·(βGβπΊ)(π΅πΏπ΄) β¨ π΅ = π΄)) |
35 | 1, 2, 3, 4, 5, 11, 12, 13, 7, 6 | islmib 28038 | . . 3 β’ (π β (π΄ = (πβπ΅) β ((π΅(midGβπΊ)π΄) β π· β§ (π·(βGβπΊ)(π΅πΏπ΄) β¨ π΅ = π΄)))) |
36 | 17, 34, 35 | mpbir2and 712 | . 2 β’ (π β π΄ = (πβπ΅)) |
37 | 36 | eqcomd 2739 | 1 β’ (π β (πβπ΅) = π΄) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 397 β¨ wo 846 = wceq 1542 β wcel 2107 class class class wbr 5149 ran crn 5678 βcfv 6544 (class class class)co 7409 2c2 12267 Basecbs 17144 distcds 17206 TarskiGcstrkg 27678 DimTarskiGβ₯cstrkgld 27682 Itvcitv 27684 LineGclng 27685 βGcperpg 27946 midGcmid 28023 lInvGclmi 28024 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-oadd 8470 df-er 8703 df-map 8822 df-pm 8823 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-dju 9896 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-n0 12473 df-xnn0 12545 df-z 12559 df-uz 12823 df-fz 13485 df-fzo 13628 df-hash 14291 df-word 14465 df-concat 14521 df-s1 14546 df-s2 14799 df-s3 14800 df-trkgc 27699 df-trkgb 27700 df-trkgcb 27701 df-trkgld 27703 df-trkg 27704 df-cgrg 27762 df-leg 27834 df-mir 27904 df-rag 27945 df-perpg 27947 df-mid 28025 df-lmi 28026 |
This theorem is referenced by: lmilmi 28040 |
Copyright terms: Public domain | W3C validator |