| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > predgclnbgrel | Structured version Visualization version GIF version | ||
| Description: If a (not necessarily proper) unordered pair containing a vertex is an edge, the other vertex is in the closed neighborhood of the first vertex. (Contributed by AV, 23-Aug-2025.) |
| Ref | Expression |
|---|---|
| predgclnbgrel.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| predgclnbgrel.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| predgclnbgrel | ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → 𝑁 ∈ (𝐺 ClNeighbVtx 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa 1148 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → (𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) | |
| 2 | simp3 1138 | . . . 4 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → {𝑋, 𝑁} ∈ 𝐸) | |
| 3 | sseq2 3964 | . . . . 5 ⊢ (𝑒 = {𝑋, 𝑁} → ({𝑋, 𝑁} ⊆ 𝑒 ↔ {𝑋, 𝑁} ⊆ {𝑋, 𝑁})) | |
| 4 | 3 | adantl 481 | . . . 4 ⊢ (((𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) ∧ 𝑒 = {𝑋, 𝑁}) → ({𝑋, 𝑁} ⊆ 𝑒 ↔ {𝑋, 𝑁} ⊆ {𝑋, 𝑁})) |
| 5 | ssidd 3961 | . . . 4 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → {𝑋, 𝑁} ⊆ {𝑋, 𝑁}) | |
| 6 | 2, 4, 5 | rspcedvd 3581 | . . 3 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒) |
| 7 | 6 | olcd 874 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)) |
| 8 | predgclnbgrel.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 9 | predgclnbgrel.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
| 10 | 8, 9 | clnbgrel 47832 | . 2 ⊢ (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) ↔ ((𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒))) |
| 11 | 1, 7, 10 | sylanbrc 583 | 1 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → 𝑁 ∈ (𝐺 ClNeighbVtx 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3905 {cpr 4581 ‘cfv 6486 (class class class)co 7353 Vtxcvtx 28960 Edgcedg 29011 ClNeighbVtx cclnbgr 47822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-clnbgr 47823 |
| This theorem is referenced by: grlimgredgex 48004 grlimgrtri 48007 |
| Copyright terms: Public domain | W3C validator |