Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  predgclnbgrel Structured version   Visualization version   GIF version

Theorem predgclnbgrel 47812
Description: If a (not necessarily proper) unordered pair containing a vertex is an edge, the other vertex is in the closed neighborhood of the first vertex. (Contributed by AV, 23-Aug-2025.)
Hypotheses
Ref Expression
predgclnbgrel.v 𝑉 = (Vtx‘𝐺)
predgclnbgrel.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
predgclnbgrel ((𝑁𝑉𝑋𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → 𝑁 ∈ (𝐺 ClNeighbVtx 𝑋))

Proof of Theorem predgclnbgrel
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 3simpa 1148 . 2 ((𝑁𝑉𝑋𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → (𝑁𝑉𝑋𝑉))
2 simp3 1138 . . . 4 ((𝑁𝑉𝑋𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → {𝑋, 𝑁} ∈ 𝐸)
3 sseq2 3970 . . . . 5 (𝑒 = {𝑋, 𝑁} → ({𝑋, 𝑁} ⊆ 𝑒 ↔ {𝑋, 𝑁} ⊆ {𝑋, 𝑁}))
43adantl 481 . . . 4 (((𝑁𝑉𝑋𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) ∧ 𝑒 = {𝑋, 𝑁}) → ({𝑋, 𝑁} ⊆ 𝑒 ↔ {𝑋, 𝑁} ⊆ {𝑋, 𝑁}))
5 ssidd 3967 . . . 4 ((𝑁𝑉𝑋𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → {𝑋, 𝑁} ⊆ {𝑋, 𝑁})
62, 4, 5rspcedvd 3587 . . 3 ((𝑁𝑉𝑋𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)
76olcd 874 . 2 ((𝑁𝑉𝑋𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
8 predgclnbgrel.v . . 3 𝑉 = (Vtx‘𝐺)
9 predgclnbgrel.e . . 3 𝐸 = (Edg‘𝐺)
108, 9clnbgrel 47802 . 2 (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) ↔ ((𝑁𝑉𝑋𝑉) ∧ (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)))
111, 7, 10sylanbrc 583 1 ((𝑁𝑉𝑋𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → 𝑁 ∈ (𝐺 ClNeighbVtx 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  wss 3911  {cpr 4587  cfv 6499  (class class class)co 7369  Vtxcvtx 28899  Edgcedg 28950   ClNeighbVtx cclnbgr 47792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-clnbgr 47793
This theorem is referenced by:  grlimgrtri  47968
  Copyright terms: Public domain W3C validator