| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > predgclnbgrel | Structured version Visualization version GIF version | ||
| Description: If a (not necessarily proper) unordered pair containing a vertex is an edge, the other vertex is in the closed neighborhood of the first vertex. (Contributed by AV, 23-Aug-2025.) |
| Ref | Expression |
|---|---|
| predgclnbgrel.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| predgclnbgrel.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| predgclnbgrel | ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → 𝑁 ∈ (𝐺 ClNeighbVtx 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa 1148 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → (𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) | |
| 2 | simp3 1138 | . . . 4 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → {𝑋, 𝑁} ∈ 𝐸) | |
| 3 | sseq2 3990 | . . . . 5 ⊢ (𝑒 = {𝑋, 𝑁} → ({𝑋, 𝑁} ⊆ 𝑒 ↔ {𝑋, 𝑁} ⊆ {𝑋, 𝑁})) | |
| 4 | 3 | adantl 481 | . . . 4 ⊢ (((𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) ∧ 𝑒 = {𝑋, 𝑁}) → ({𝑋, 𝑁} ⊆ 𝑒 ↔ {𝑋, 𝑁} ⊆ {𝑋, 𝑁})) |
| 5 | ssidd 3987 | . . . 4 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → {𝑋, 𝑁} ⊆ {𝑋, 𝑁}) | |
| 6 | 2, 4, 5 | rspcedvd 3607 | . . 3 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒) |
| 7 | 6 | olcd 874 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒)) |
| 8 | predgclnbgrel.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 9 | predgclnbgrel.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
| 10 | 8, 9 | clnbgrel 47788 | . 2 ⊢ (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) ↔ ((𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒))) |
| 11 | 1, 7, 10 | sylanbrc 583 | 1 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → 𝑁 ∈ (𝐺 ClNeighbVtx 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 ⊆ wss 3931 {cpr 4608 ‘cfv 6541 (class class class)co 7413 Vtxcvtx 28942 Edgcedg 28993 ClNeighbVtx cclnbgr 47778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-clnbgr 47779 |
| This theorem is referenced by: grlimgrtri 47936 |
| Copyright terms: Public domain | W3C validator |