Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  predgclnbgrel Structured version   Visualization version   GIF version

Theorem predgclnbgrel 47829
Description: If a (not necessarily proper) unordered pair containing a vertex is an edge, the other vertex is in the closed neighborhood of the first vertex. (Contributed by AV, 23-Aug-2025.)
Hypotheses
Ref Expression
predgclnbgrel.v 𝑉 = (Vtx‘𝐺)
predgclnbgrel.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
predgclnbgrel ((𝑁𝑉𝑋𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → 𝑁 ∈ (𝐺 ClNeighbVtx 𝑋))

Proof of Theorem predgclnbgrel
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 3simpa 1148 . 2 ((𝑁𝑉𝑋𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → (𝑁𝑉𝑋𝑉))
2 simp3 1138 . . . 4 ((𝑁𝑉𝑋𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → {𝑋, 𝑁} ∈ 𝐸)
3 sseq2 3975 . . . . 5 (𝑒 = {𝑋, 𝑁} → ({𝑋, 𝑁} ⊆ 𝑒 ↔ {𝑋, 𝑁} ⊆ {𝑋, 𝑁}))
43adantl 481 . . . 4 (((𝑁𝑉𝑋𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) ∧ 𝑒 = {𝑋, 𝑁}) → ({𝑋, 𝑁} ⊆ 𝑒 ↔ {𝑋, 𝑁} ⊆ {𝑋, 𝑁}))
5 ssidd 3972 . . . 4 ((𝑁𝑉𝑋𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → {𝑋, 𝑁} ⊆ {𝑋, 𝑁})
62, 4, 5rspcedvd 3593 . . 3 ((𝑁𝑉𝑋𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)
76olcd 874 . 2 ((𝑁𝑉𝑋𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
8 predgclnbgrel.v . . 3 𝑉 = (Vtx‘𝐺)
9 predgclnbgrel.e . . 3 𝐸 = (Edg‘𝐺)
108, 9clnbgrel 47819 . 2 (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) ↔ ((𝑁𝑉𝑋𝑉) ∧ (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)))
111, 7, 10sylanbrc 583 1 ((𝑁𝑉𝑋𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → 𝑁 ∈ (𝐺 ClNeighbVtx 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wrex 3054  wss 3916  {cpr 4593  cfv 6513  (class class class)co 7389  Vtxcvtx 28929  Edgcedg 28980   ClNeighbVtx cclnbgr 47809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-clnbgr 47810
This theorem is referenced by:  grlimgrtri  47985
  Copyright terms: Public domain W3C validator