Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  predgclnbgrel Structured version   Visualization version   GIF version

Theorem predgclnbgrel 47798
Description: If a (not necessarily proper) unordered pair containing a vertex is an edge, the other vertex is in the closed neighborhood of the first vertex. (Contributed by AV, 23-Aug-2025.)
Hypotheses
Ref Expression
predgclnbgrel.v 𝑉 = (Vtx‘𝐺)
predgclnbgrel.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
predgclnbgrel ((𝑁𝑉𝑋𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → 𝑁 ∈ (𝐺 ClNeighbVtx 𝑋))

Proof of Theorem predgclnbgrel
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 3simpa 1148 . 2 ((𝑁𝑉𝑋𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → (𝑁𝑉𝑋𝑉))
2 simp3 1138 . . . 4 ((𝑁𝑉𝑋𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → {𝑋, 𝑁} ∈ 𝐸)
3 sseq2 3990 . . . . 5 (𝑒 = {𝑋, 𝑁} → ({𝑋, 𝑁} ⊆ 𝑒 ↔ {𝑋, 𝑁} ⊆ {𝑋, 𝑁}))
43adantl 481 . . . 4 (((𝑁𝑉𝑋𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) ∧ 𝑒 = {𝑋, 𝑁}) → ({𝑋, 𝑁} ⊆ 𝑒 ↔ {𝑋, 𝑁} ⊆ {𝑋, 𝑁}))
5 ssidd 3987 . . . 4 ((𝑁𝑉𝑋𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → {𝑋, 𝑁} ⊆ {𝑋, 𝑁})
62, 4, 5rspcedvd 3607 . . 3 ((𝑁𝑉𝑋𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)
76olcd 874 . 2 ((𝑁𝑉𝑋𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
8 predgclnbgrel.v . . 3 𝑉 = (Vtx‘𝐺)
9 predgclnbgrel.e . . 3 𝐸 = (Edg‘𝐺)
108, 9clnbgrel 47788 . 2 (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) ↔ ((𝑁𝑉𝑋𝑉) ∧ (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)))
111, 7, 10sylanbrc 583 1 ((𝑁𝑉𝑋𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → 𝑁 ∈ (𝐺 ClNeighbVtx 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1539  wcel 2107  wrex 3059  wss 3931  {cpr 4608  cfv 6541  (class class class)co 7413  Vtxcvtx 28942  Edgcedg 28993   ClNeighbVtx cclnbgr 47778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-clnbgr 47779
This theorem is referenced by:  grlimgrtri  47936
  Copyright terms: Public domain W3C validator