Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  predgclnbgrel Structured version   Visualization version   GIF version

Theorem predgclnbgrel 47870
Description: If a (not necessarily proper) unordered pair containing a vertex is an edge, the other vertex is in the closed neighborhood of the first vertex. (Contributed by AV, 23-Aug-2025.)
Hypotheses
Ref Expression
predgclnbgrel.v 𝑉 = (Vtx‘𝐺)
predgclnbgrel.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
predgclnbgrel ((𝑁𝑉𝑋𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → 𝑁 ∈ (𝐺 ClNeighbVtx 𝑋))

Proof of Theorem predgclnbgrel
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 3simpa 1148 . 2 ((𝑁𝑉𝑋𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → (𝑁𝑉𝑋𝑉))
2 simp3 1138 . . . 4 ((𝑁𝑉𝑋𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → {𝑋, 𝑁} ∈ 𝐸)
3 sseq2 3956 . . . . 5 (𝑒 = {𝑋, 𝑁} → ({𝑋, 𝑁} ⊆ 𝑒 ↔ {𝑋, 𝑁} ⊆ {𝑋, 𝑁}))
43adantl 481 . . . 4 (((𝑁𝑉𝑋𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) ∧ 𝑒 = {𝑋, 𝑁}) → ({𝑋, 𝑁} ⊆ 𝑒 ↔ {𝑋, 𝑁} ⊆ {𝑋, 𝑁}))
5 ssidd 3953 . . . 4 ((𝑁𝑉𝑋𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → {𝑋, 𝑁} ⊆ {𝑋, 𝑁})
62, 4, 5rspcedvd 3574 . . 3 ((𝑁𝑉𝑋𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)
76olcd 874 . 2 ((𝑁𝑉𝑋𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒))
8 predgclnbgrel.v . . 3 𝑉 = (Vtx‘𝐺)
9 predgclnbgrel.e . . 3 𝐸 = (Edg‘𝐺)
108, 9clnbgrel 47859 . 2 (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) ↔ ((𝑁𝑉𝑋𝑉) ∧ (𝑁 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑁} ⊆ 𝑒)))
111, 7, 10sylanbrc 583 1 ((𝑁𝑉𝑋𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → 𝑁 ∈ (𝐺 ClNeighbVtx 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wrex 3056  wss 3897  {cpr 4573  cfv 6476  (class class class)co 7341  Vtxcvtx 28969  Edgcedg 29020   ClNeighbVtx cclnbgr 47849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-clnbgr 47850
This theorem is referenced by:  grlimgredgex  48031  grlimgrtri  48034
  Copyright terms: Public domain W3C validator