Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clnbgredg Structured version   Visualization version   GIF version

Theorem clnbgredg 47702
Description: A vertices connected by an edge with another vertex is a neigborhood of those vertex. (Contributed by AV, 24-Aug-2025.)
Hypotheses
Ref Expression
clnbgredg.e 𝐸 = (Edg‘𝐺)
clnbgredg.n 𝑁 = (𝐺 ClNeighbVtx 𝑋)
Assertion
Ref Expression
clnbgredg ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → 𝑌𝑁)

Proof of Theorem clnbgredg
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 clnbgredg.e . . . . . . . . . 10 𝐸 = (Edg‘𝐺)
21eleq2i 2836 . . . . . . . . 9 (𝐾𝐸𝐾 ∈ (Edg‘𝐺))
32biimpi 216 . . . . . . . 8 (𝐾𝐸𝐾 ∈ (Edg‘𝐺))
433ad2ant1 1133 . . . . . . 7 ((𝐾𝐸𝑋𝐾𝑌𝐾) → 𝐾 ∈ (Edg‘𝐺))
5 simp3 1138 . . . . . . 7 ((𝐾𝐸𝑋𝐾𝑌𝐾) → 𝑌𝐾)
64, 5jca 511 . . . . . 6 ((𝐾𝐸𝑋𝐾𝑌𝐾) → (𝐾 ∈ (Edg‘𝐺) ∧ 𝑌𝐾))
76anim2i 616 . . . . 5 ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → (𝐺 ∈ UHGraph ∧ (𝐾 ∈ (Edg‘𝐺) ∧ 𝑌𝐾)))
8 3anass 1095 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝐾 ∈ (Edg‘𝐺) ∧ 𝑌𝐾) ↔ (𝐺 ∈ UHGraph ∧ (𝐾 ∈ (Edg‘𝐺) ∧ 𝑌𝐾)))
97, 8sylibr 234 . . . 4 ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → (𝐺 ∈ UHGraph ∧ 𝐾 ∈ (Edg‘𝐺) ∧ 𝑌𝐾))
10 uhgredgrnv 29157 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐾 ∈ (Edg‘𝐺) ∧ 𝑌𝐾) → 𝑌 ∈ (Vtx‘𝐺))
119, 10syl 17 . . 3 ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → 𝑌 ∈ (Vtx‘𝐺))
12 simp2 1137 . . . . . . 7 ((𝐾𝐸𝑋𝐾𝑌𝐾) → 𝑋𝐾)
134, 12jca 511 . . . . . 6 ((𝐾𝐸𝑋𝐾𝑌𝐾) → (𝐾 ∈ (Edg‘𝐺) ∧ 𝑋𝐾))
1413anim2i 616 . . . . 5 ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → (𝐺 ∈ UHGraph ∧ (𝐾 ∈ (Edg‘𝐺) ∧ 𝑋𝐾)))
15 3anass 1095 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝐾 ∈ (Edg‘𝐺) ∧ 𝑋𝐾) ↔ (𝐺 ∈ UHGraph ∧ (𝐾 ∈ (Edg‘𝐺) ∧ 𝑋𝐾)))
1614, 15sylibr 234 . . . 4 ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → (𝐺 ∈ UHGraph ∧ 𝐾 ∈ (Edg‘𝐺) ∧ 𝑋𝐾))
17 uhgredgrnv 29157 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐾 ∈ (Edg‘𝐺) ∧ 𝑋𝐾) → 𝑋 ∈ (Vtx‘𝐺))
1816, 17syl 17 . . 3 ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → 𝑋 ∈ (Vtx‘𝐺))
19 simpr1 1194 . . . . 5 ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → 𝐾𝐸)
20 sseq2 4035 . . . . . 6 (𝑒 = 𝐾 → ({𝑋, 𝑌} ⊆ 𝑒 ↔ {𝑋, 𝑌} ⊆ 𝐾))
2120adantl 481 . . . . 5 (((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) ∧ 𝑒 = 𝐾) → ({𝑋, 𝑌} ⊆ 𝑒 ↔ {𝑋, 𝑌} ⊆ 𝐾))
22 prssi 4846 . . . . . . 7 ((𝑋𝐾𝑌𝐾) → {𝑋, 𝑌} ⊆ 𝐾)
23223adant1 1130 . . . . . 6 ((𝐾𝐸𝑋𝐾𝑌𝐾) → {𝑋, 𝑌} ⊆ 𝐾)
2423adantl 481 . . . . 5 ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → {𝑋, 𝑌} ⊆ 𝐾)
2519, 21, 24rspcedvd 3637 . . . 4 ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → ∃𝑒𝐸 {𝑋, 𝑌} ⊆ 𝑒)
2625olcd 873 . . 3 ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → (𝑌 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑌} ⊆ 𝑒))
27 eqid 2740 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
2827, 1clnbgrel 47691 . . 3 (𝑌 ∈ (𝐺 ClNeighbVtx 𝑋) ↔ ((𝑌 ∈ (Vtx‘𝐺) ∧ 𝑋 ∈ (Vtx‘𝐺)) ∧ (𝑌 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑌} ⊆ 𝑒)))
2911, 18, 26, 28syl21anbrc 1344 . 2 ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → 𝑌 ∈ (𝐺 ClNeighbVtx 𝑋))
30 clnbgredg.n . . 3 𝑁 = (𝐺 ClNeighbVtx 𝑋)
3130eleq2i 2836 . 2 (𝑌𝑁𝑌 ∈ (𝐺 ClNeighbVtx 𝑋))
3229, 31sylibr 234 1 ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → 𝑌𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  wss 3976  {cpr 4650  cfv 6568  (class class class)co 7443  Vtxcvtx 29023  Edgcedg 29074  UHGraphcuhgr 29083   ClNeighbVtx cclnbgr 47682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7764
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5701  df-rel 5702  df-cnv 5703  df-co 5704  df-dm 5705  df-rn 5706  df-res 5707  df-ima 5708  df-iota 6520  df-fun 6570  df-fn 6571  df-f 6572  df-fv 6576  df-ov 7446  df-oprab 7447  df-mpo 7448  df-1st 8024  df-2nd 8025  df-edg 29075  df-uhgr 29085  df-clnbgr 47683
This theorem is referenced by:  clnbgrssedg  47703  grlimgrtrilem1  47808
  Copyright terms: Public domain W3C validator