| Step | Hyp | Ref
| Expression |
| 1 | | clnbgredg.e |
. . . . . . . . . 10
⊢ 𝐸 = (Edg‘𝐺) |
| 2 | 1 | eleq2i 2825 |
. . . . . . . . 9
⊢ (𝐾 ∈ 𝐸 ↔ 𝐾 ∈ (Edg‘𝐺)) |
| 3 | 2 | biimpi 216 |
. . . . . . . 8
⊢ (𝐾 ∈ 𝐸 → 𝐾 ∈ (Edg‘𝐺)) |
| 4 | 3 | 3ad2ant1 1133 |
. . . . . . 7
⊢ ((𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → 𝐾 ∈ (Edg‘𝐺)) |
| 5 | | simp3 1138 |
. . . . . . 7
⊢ ((𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → 𝑌 ∈ 𝐾) |
| 6 | 4, 5 | jca 511 |
. . . . . 6
⊢ ((𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝐾 ∈ (Edg‘𝐺) ∧ 𝑌 ∈ 𝐾)) |
| 7 | 6 | anim2i 617 |
. . . . 5
⊢ ((𝐺 ∈ UHGraph ∧ (𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾)) → (𝐺 ∈ UHGraph ∧ (𝐾 ∈ (Edg‘𝐺) ∧ 𝑌 ∈ 𝐾))) |
| 8 | | 3anass 1094 |
. . . . 5
⊢ ((𝐺 ∈ UHGraph ∧ 𝐾 ∈ (Edg‘𝐺) ∧ 𝑌 ∈ 𝐾) ↔ (𝐺 ∈ UHGraph ∧ (𝐾 ∈ (Edg‘𝐺) ∧ 𝑌 ∈ 𝐾))) |
| 9 | 7, 8 | sylibr 234 |
. . . 4
⊢ ((𝐺 ∈ UHGraph ∧ (𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾)) → (𝐺 ∈ UHGraph ∧ 𝐾 ∈ (Edg‘𝐺) ∧ 𝑌 ∈ 𝐾)) |
| 10 | | uhgredgrnv 29076 |
. . . 4
⊢ ((𝐺 ∈ UHGraph ∧ 𝐾 ∈ (Edg‘𝐺) ∧ 𝑌 ∈ 𝐾) → 𝑌 ∈ (Vtx‘𝐺)) |
| 11 | 9, 10 | syl 17 |
. . 3
⊢ ((𝐺 ∈ UHGraph ∧ (𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾)) → 𝑌 ∈ (Vtx‘𝐺)) |
| 12 | | simp2 1137 |
. . . . . . 7
⊢ ((𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → 𝑋 ∈ 𝐾) |
| 13 | 4, 12 | jca 511 |
. . . . . 6
⊢ ((𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝐾 ∈ (Edg‘𝐺) ∧ 𝑋 ∈ 𝐾)) |
| 14 | 13 | anim2i 617 |
. . . . 5
⊢ ((𝐺 ∈ UHGraph ∧ (𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾)) → (𝐺 ∈ UHGraph ∧ (𝐾 ∈ (Edg‘𝐺) ∧ 𝑋 ∈ 𝐾))) |
| 15 | | 3anass 1094 |
. . . . 5
⊢ ((𝐺 ∈ UHGraph ∧ 𝐾 ∈ (Edg‘𝐺) ∧ 𝑋 ∈ 𝐾) ↔ (𝐺 ∈ UHGraph ∧ (𝐾 ∈ (Edg‘𝐺) ∧ 𝑋 ∈ 𝐾))) |
| 16 | 14, 15 | sylibr 234 |
. . . 4
⊢ ((𝐺 ∈ UHGraph ∧ (𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾)) → (𝐺 ∈ UHGraph ∧ 𝐾 ∈ (Edg‘𝐺) ∧ 𝑋 ∈ 𝐾)) |
| 17 | | uhgredgrnv 29076 |
. . . 4
⊢ ((𝐺 ∈ UHGraph ∧ 𝐾 ∈ (Edg‘𝐺) ∧ 𝑋 ∈ 𝐾) → 𝑋 ∈ (Vtx‘𝐺)) |
| 18 | 16, 17 | syl 17 |
. . 3
⊢ ((𝐺 ∈ UHGraph ∧ (𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾)) → 𝑋 ∈ (Vtx‘𝐺)) |
| 19 | | simpr1 1194 |
. . . . 5
⊢ ((𝐺 ∈ UHGraph ∧ (𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾)) → 𝐾 ∈ 𝐸) |
| 20 | | sseq2 3990 |
. . . . . 6
⊢ (𝑒 = 𝐾 → ({𝑋, 𝑌} ⊆ 𝑒 ↔ {𝑋, 𝑌} ⊆ 𝐾)) |
| 21 | 20 | adantl 481 |
. . . . 5
⊢ (((𝐺 ∈ UHGraph ∧ (𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾)) ∧ 𝑒 = 𝐾) → ({𝑋, 𝑌} ⊆ 𝑒 ↔ {𝑋, 𝑌} ⊆ 𝐾)) |
| 22 | | prssi 4801 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → {𝑋, 𝑌} ⊆ 𝐾) |
| 23 | 22 | 3adant1 1130 |
. . . . . 6
⊢ ((𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → {𝑋, 𝑌} ⊆ 𝐾) |
| 24 | 23 | adantl 481 |
. . . . 5
⊢ ((𝐺 ∈ UHGraph ∧ (𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾)) → {𝑋, 𝑌} ⊆ 𝐾) |
| 25 | 19, 21, 24 | rspcedvd 3607 |
. . . 4
⊢ ((𝐺 ∈ UHGraph ∧ (𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾)) → ∃𝑒 ∈ 𝐸 {𝑋, 𝑌} ⊆ 𝑒) |
| 26 | 25 | olcd 874 |
. . 3
⊢ ((𝐺 ∈ UHGraph ∧ (𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾)) → (𝑌 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑌} ⊆ 𝑒)) |
| 27 | | eqid 2734 |
. . . 4
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 28 | 27, 1 | clnbgrel 47788 |
. . 3
⊢ (𝑌 ∈ (𝐺 ClNeighbVtx 𝑋) ↔ ((𝑌 ∈ (Vtx‘𝐺) ∧ 𝑋 ∈ (Vtx‘𝐺)) ∧ (𝑌 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑌} ⊆ 𝑒))) |
| 29 | 11, 18, 26, 28 | syl21anbrc 1344 |
. 2
⊢ ((𝐺 ∈ UHGraph ∧ (𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾)) → 𝑌 ∈ (𝐺 ClNeighbVtx 𝑋)) |
| 30 | | clnbgredg.n |
. . 3
⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑋) |
| 31 | 30 | eleq2i 2825 |
. 2
⊢ (𝑌 ∈ 𝑁 ↔ 𝑌 ∈ (𝐺 ClNeighbVtx 𝑋)) |
| 32 | 29, 31 | sylibr 234 |
1
⊢ ((𝐺 ∈ UHGraph ∧ (𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾)) → 𝑌 ∈ 𝑁) |