Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clnbgredg Structured version   Visualization version   GIF version

Theorem clnbgredg 48002
Description: A vertex connected by an edge with another vertex is a neighbor of that vertex. (Contributed by AV, 24-Aug-2025.)
Hypotheses
Ref Expression
clnbgredg.e 𝐸 = (Edg‘𝐺)
clnbgredg.n 𝑁 = (𝐺 ClNeighbVtx 𝑋)
Assertion
Ref Expression
clnbgredg ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → 𝑌𝑁)

Proof of Theorem clnbgredg
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 clnbgredg.e . . . . . . . . . 10 𝐸 = (Edg‘𝐺)
21eleq2i 2825 . . . . . . . . 9 (𝐾𝐸𝐾 ∈ (Edg‘𝐺))
32biimpi 216 . . . . . . . 8 (𝐾𝐸𝐾 ∈ (Edg‘𝐺))
433ad2ant1 1133 . . . . . . 7 ((𝐾𝐸𝑋𝐾𝑌𝐾) → 𝐾 ∈ (Edg‘𝐺))
5 simp3 1138 . . . . . . 7 ((𝐾𝐸𝑋𝐾𝑌𝐾) → 𝑌𝐾)
64, 5jca 511 . . . . . 6 ((𝐾𝐸𝑋𝐾𝑌𝐾) → (𝐾 ∈ (Edg‘𝐺) ∧ 𝑌𝐾))
76anim2i 617 . . . . 5 ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → (𝐺 ∈ UHGraph ∧ (𝐾 ∈ (Edg‘𝐺) ∧ 𝑌𝐾)))
8 3anass 1094 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝐾 ∈ (Edg‘𝐺) ∧ 𝑌𝐾) ↔ (𝐺 ∈ UHGraph ∧ (𝐾 ∈ (Edg‘𝐺) ∧ 𝑌𝐾)))
97, 8sylibr 234 . . . 4 ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → (𝐺 ∈ UHGraph ∧ 𝐾 ∈ (Edg‘𝐺) ∧ 𝑌𝐾))
10 uhgredgrnv 29129 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐾 ∈ (Edg‘𝐺) ∧ 𝑌𝐾) → 𝑌 ∈ (Vtx‘𝐺))
119, 10syl 17 . . 3 ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → 𝑌 ∈ (Vtx‘𝐺))
12 simp2 1137 . . . . . . 7 ((𝐾𝐸𝑋𝐾𝑌𝐾) → 𝑋𝐾)
134, 12jca 511 . . . . . 6 ((𝐾𝐸𝑋𝐾𝑌𝐾) → (𝐾 ∈ (Edg‘𝐺) ∧ 𝑋𝐾))
1413anim2i 617 . . . . 5 ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → (𝐺 ∈ UHGraph ∧ (𝐾 ∈ (Edg‘𝐺) ∧ 𝑋𝐾)))
15 3anass 1094 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝐾 ∈ (Edg‘𝐺) ∧ 𝑋𝐾) ↔ (𝐺 ∈ UHGraph ∧ (𝐾 ∈ (Edg‘𝐺) ∧ 𝑋𝐾)))
1614, 15sylibr 234 . . . 4 ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → (𝐺 ∈ UHGraph ∧ 𝐾 ∈ (Edg‘𝐺) ∧ 𝑋𝐾))
17 uhgredgrnv 29129 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐾 ∈ (Edg‘𝐺) ∧ 𝑋𝐾) → 𝑋 ∈ (Vtx‘𝐺))
1816, 17syl 17 . . 3 ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → 𝑋 ∈ (Vtx‘𝐺))
19 simpr1 1195 . . . . 5 ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → 𝐾𝐸)
20 sseq2 3957 . . . . . 6 (𝑒 = 𝐾 → ({𝑋, 𝑌} ⊆ 𝑒 ↔ {𝑋, 𝑌} ⊆ 𝐾))
2120adantl 481 . . . . 5 (((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) ∧ 𝑒 = 𝐾) → ({𝑋, 𝑌} ⊆ 𝑒 ↔ {𝑋, 𝑌} ⊆ 𝐾))
22 prssi 4774 . . . . . . 7 ((𝑋𝐾𝑌𝐾) → {𝑋, 𝑌} ⊆ 𝐾)
23223adant1 1130 . . . . . 6 ((𝐾𝐸𝑋𝐾𝑌𝐾) → {𝑋, 𝑌} ⊆ 𝐾)
2423adantl 481 . . . . 5 ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → {𝑋, 𝑌} ⊆ 𝐾)
2519, 21, 24rspcedvd 3575 . . . 4 ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → ∃𝑒𝐸 {𝑋, 𝑌} ⊆ 𝑒)
2625olcd 874 . . 3 ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → (𝑌 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑌} ⊆ 𝑒))
27 eqid 2733 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
2827, 1clnbgrel 47990 . . 3 (𝑌 ∈ (𝐺 ClNeighbVtx 𝑋) ↔ ((𝑌 ∈ (Vtx‘𝐺) ∧ 𝑋 ∈ (Vtx‘𝐺)) ∧ (𝑌 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑌} ⊆ 𝑒)))
2911, 18, 26, 28syl21anbrc 1345 . 2 ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → 𝑌 ∈ (𝐺 ClNeighbVtx 𝑋))
30 clnbgredg.n . . 3 𝑁 = (𝐺 ClNeighbVtx 𝑋)
3130eleq2i 2825 . 2 (𝑌𝑁𝑌 ∈ (𝐺 ClNeighbVtx 𝑋))
3229, 31sylibr 234 1 ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → 𝑌𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  wrex 3057  wss 3898  {cpr 4579  cfv 6489  (class class class)co 7355  Vtxcvtx 28995  Edgcedg 29046  UHGraphcuhgr 29055   ClNeighbVtx cclnbgr 47980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-edg 29047  df-uhgr 29057  df-clnbgr 47981
This theorem is referenced by:  clnbgrssedg  48003  grlimgrtrilem1  48163
  Copyright terms: Public domain W3C validator