Step | Hyp | Ref
| Expression |
1 | | clnbgredg.e |
. . . . . . . . . 10
⊢ 𝐸 = (Edg‘𝐺) |
2 | 1 | eleq2i 2836 |
. . . . . . . . 9
⊢ (𝐾 ∈ 𝐸 ↔ 𝐾 ∈ (Edg‘𝐺)) |
3 | 2 | biimpi 216 |
. . . . . . . 8
⊢ (𝐾 ∈ 𝐸 → 𝐾 ∈ (Edg‘𝐺)) |
4 | 3 | 3ad2ant1 1133 |
. . . . . . 7
⊢ ((𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → 𝐾 ∈ (Edg‘𝐺)) |
5 | | simp3 1138 |
. . . . . . 7
⊢ ((𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → 𝑌 ∈ 𝐾) |
6 | 4, 5 | jca 511 |
. . . . . 6
⊢ ((𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝐾 ∈ (Edg‘𝐺) ∧ 𝑌 ∈ 𝐾)) |
7 | 6 | anim2i 616 |
. . . . 5
⊢ ((𝐺 ∈ UHGraph ∧ (𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾)) → (𝐺 ∈ UHGraph ∧ (𝐾 ∈ (Edg‘𝐺) ∧ 𝑌 ∈ 𝐾))) |
8 | | 3anass 1095 |
. . . . 5
⊢ ((𝐺 ∈ UHGraph ∧ 𝐾 ∈ (Edg‘𝐺) ∧ 𝑌 ∈ 𝐾) ↔ (𝐺 ∈ UHGraph ∧ (𝐾 ∈ (Edg‘𝐺) ∧ 𝑌 ∈ 𝐾))) |
9 | 7, 8 | sylibr 234 |
. . . 4
⊢ ((𝐺 ∈ UHGraph ∧ (𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾)) → (𝐺 ∈ UHGraph ∧ 𝐾 ∈ (Edg‘𝐺) ∧ 𝑌 ∈ 𝐾)) |
10 | | uhgredgrnv 29157 |
. . . 4
⊢ ((𝐺 ∈ UHGraph ∧ 𝐾 ∈ (Edg‘𝐺) ∧ 𝑌 ∈ 𝐾) → 𝑌 ∈ (Vtx‘𝐺)) |
11 | 9, 10 | syl 17 |
. . 3
⊢ ((𝐺 ∈ UHGraph ∧ (𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾)) → 𝑌 ∈ (Vtx‘𝐺)) |
12 | | simp2 1137 |
. . . . . . 7
⊢ ((𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → 𝑋 ∈ 𝐾) |
13 | 4, 12 | jca 511 |
. . . . . 6
⊢ ((𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝐾 ∈ (Edg‘𝐺) ∧ 𝑋 ∈ 𝐾)) |
14 | 13 | anim2i 616 |
. . . . 5
⊢ ((𝐺 ∈ UHGraph ∧ (𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾)) → (𝐺 ∈ UHGraph ∧ (𝐾 ∈ (Edg‘𝐺) ∧ 𝑋 ∈ 𝐾))) |
15 | | 3anass 1095 |
. . . . 5
⊢ ((𝐺 ∈ UHGraph ∧ 𝐾 ∈ (Edg‘𝐺) ∧ 𝑋 ∈ 𝐾) ↔ (𝐺 ∈ UHGraph ∧ (𝐾 ∈ (Edg‘𝐺) ∧ 𝑋 ∈ 𝐾))) |
16 | 14, 15 | sylibr 234 |
. . . 4
⊢ ((𝐺 ∈ UHGraph ∧ (𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾)) → (𝐺 ∈ UHGraph ∧ 𝐾 ∈ (Edg‘𝐺) ∧ 𝑋 ∈ 𝐾)) |
17 | | uhgredgrnv 29157 |
. . . 4
⊢ ((𝐺 ∈ UHGraph ∧ 𝐾 ∈ (Edg‘𝐺) ∧ 𝑋 ∈ 𝐾) → 𝑋 ∈ (Vtx‘𝐺)) |
18 | 16, 17 | syl 17 |
. . 3
⊢ ((𝐺 ∈ UHGraph ∧ (𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾)) → 𝑋 ∈ (Vtx‘𝐺)) |
19 | | simpr1 1194 |
. . . . 5
⊢ ((𝐺 ∈ UHGraph ∧ (𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾)) → 𝐾 ∈ 𝐸) |
20 | | sseq2 4035 |
. . . . . 6
⊢ (𝑒 = 𝐾 → ({𝑋, 𝑌} ⊆ 𝑒 ↔ {𝑋, 𝑌} ⊆ 𝐾)) |
21 | 20 | adantl 481 |
. . . . 5
⊢ (((𝐺 ∈ UHGraph ∧ (𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾)) ∧ 𝑒 = 𝐾) → ({𝑋, 𝑌} ⊆ 𝑒 ↔ {𝑋, 𝑌} ⊆ 𝐾)) |
22 | | prssi 4846 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → {𝑋, 𝑌} ⊆ 𝐾) |
23 | 22 | 3adant1 1130 |
. . . . . 6
⊢ ((𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → {𝑋, 𝑌} ⊆ 𝐾) |
24 | 23 | adantl 481 |
. . . . 5
⊢ ((𝐺 ∈ UHGraph ∧ (𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾)) → {𝑋, 𝑌} ⊆ 𝐾) |
25 | 19, 21, 24 | rspcedvd 3637 |
. . . 4
⊢ ((𝐺 ∈ UHGraph ∧ (𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾)) → ∃𝑒 ∈ 𝐸 {𝑋, 𝑌} ⊆ 𝑒) |
26 | 25 | olcd 873 |
. . 3
⊢ ((𝐺 ∈ UHGraph ∧ (𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾)) → (𝑌 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑌} ⊆ 𝑒)) |
27 | | eqid 2740 |
. . . 4
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
28 | 27, 1 | clnbgrel 47691 |
. . 3
⊢ (𝑌 ∈ (𝐺 ClNeighbVtx 𝑋) ↔ ((𝑌 ∈ (Vtx‘𝐺) ∧ 𝑋 ∈ (Vtx‘𝐺)) ∧ (𝑌 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑌} ⊆ 𝑒))) |
29 | 11, 18, 26, 28 | syl21anbrc 1344 |
. 2
⊢ ((𝐺 ∈ UHGraph ∧ (𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾)) → 𝑌 ∈ (𝐺 ClNeighbVtx 𝑋)) |
30 | | clnbgredg.n |
. . 3
⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑋) |
31 | 30 | eleq2i 2836 |
. 2
⊢ (𝑌 ∈ 𝑁 ↔ 𝑌 ∈ (𝐺 ClNeighbVtx 𝑋)) |
32 | 29, 31 | sylibr 234 |
1
⊢ ((𝐺 ∈ UHGraph ∧ (𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾)) → 𝑌 ∈ 𝑁) |