Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clnbgredg Structured version   Visualization version   GIF version

Theorem clnbgredg 47799
Description: A vertex connected by an edge with another vertex is a neighbor of that vertex. (Contributed by AV, 24-Aug-2025.)
Hypotheses
Ref Expression
clnbgredg.e 𝐸 = (Edg‘𝐺)
clnbgredg.n 𝑁 = (𝐺 ClNeighbVtx 𝑋)
Assertion
Ref Expression
clnbgredg ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → 𝑌𝑁)

Proof of Theorem clnbgredg
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 clnbgredg.e . . . . . . . . . 10 𝐸 = (Edg‘𝐺)
21eleq2i 2825 . . . . . . . . 9 (𝐾𝐸𝐾 ∈ (Edg‘𝐺))
32biimpi 216 . . . . . . . 8 (𝐾𝐸𝐾 ∈ (Edg‘𝐺))
433ad2ant1 1133 . . . . . . 7 ((𝐾𝐸𝑋𝐾𝑌𝐾) → 𝐾 ∈ (Edg‘𝐺))
5 simp3 1138 . . . . . . 7 ((𝐾𝐸𝑋𝐾𝑌𝐾) → 𝑌𝐾)
64, 5jca 511 . . . . . 6 ((𝐾𝐸𝑋𝐾𝑌𝐾) → (𝐾 ∈ (Edg‘𝐺) ∧ 𝑌𝐾))
76anim2i 617 . . . . 5 ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → (𝐺 ∈ UHGraph ∧ (𝐾 ∈ (Edg‘𝐺) ∧ 𝑌𝐾)))
8 3anass 1094 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝐾 ∈ (Edg‘𝐺) ∧ 𝑌𝐾) ↔ (𝐺 ∈ UHGraph ∧ (𝐾 ∈ (Edg‘𝐺) ∧ 𝑌𝐾)))
97, 8sylibr 234 . . . 4 ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → (𝐺 ∈ UHGraph ∧ 𝐾 ∈ (Edg‘𝐺) ∧ 𝑌𝐾))
10 uhgredgrnv 29076 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐾 ∈ (Edg‘𝐺) ∧ 𝑌𝐾) → 𝑌 ∈ (Vtx‘𝐺))
119, 10syl 17 . . 3 ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → 𝑌 ∈ (Vtx‘𝐺))
12 simp2 1137 . . . . . . 7 ((𝐾𝐸𝑋𝐾𝑌𝐾) → 𝑋𝐾)
134, 12jca 511 . . . . . 6 ((𝐾𝐸𝑋𝐾𝑌𝐾) → (𝐾 ∈ (Edg‘𝐺) ∧ 𝑋𝐾))
1413anim2i 617 . . . . 5 ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → (𝐺 ∈ UHGraph ∧ (𝐾 ∈ (Edg‘𝐺) ∧ 𝑋𝐾)))
15 3anass 1094 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝐾 ∈ (Edg‘𝐺) ∧ 𝑋𝐾) ↔ (𝐺 ∈ UHGraph ∧ (𝐾 ∈ (Edg‘𝐺) ∧ 𝑋𝐾)))
1614, 15sylibr 234 . . . 4 ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → (𝐺 ∈ UHGraph ∧ 𝐾 ∈ (Edg‘𝐺) ∧ 𝑋𝐾))
17 uhgredgrnv 29076 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐾 ∈ (Edg‘𝐺) ∧ 𝑋𝐾) → 𝑋 ∈ (Vtx‘𝐺))
1816, 17syl 17 . . 3 ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → 𝑋 ∈ (Vtx‘𝐺))
19 simpr1 1194 . . . . 5 ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → 𝐾𝐸)
20 sseq2 3990 . . . . . 6 (𝑒 = 𝐾 → ({𝑋, 𝑌} ⊆ 𝑒 ↔ {𝑋, 𝑌} ⊆ 𝐾))
2120adantl 481 . . . . 5 (((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) ∧ 𝑒 = 𝐾) → ({𝑋, 𝑌} ⊆ 𝑒 ↔ {𝑋, 𝑌} ⊆ 𝐾))
22 prssi 4801 . . . . . . 7 ((𝑋𝐾𝑌𝐾) → {𝑋, 𝑌} ⊆ 𝐾)
23223adant1 1130 . . . . . 6 ((𝐾𝐸𝑋𝐾𝑌𝐾) → {𝑋, 𝑌} ⊆ 𝐾)
2423adantl 481 . . . . 5 ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → {𝑋, 𝑌} ⊆ 𝐾)
2519, 21, 24rspcedvd 3607 . . . 4 ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → ∃𝑒𝐸 {𝑋, 𝑌} ⊆ 𝑒)
2625olcd 874 . . 3 ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → (𝑌 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑌} ⊆ 𝑒))
27 eqid 2734 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
2827, 1clnbgrel 47788 . . 3 (𝑌 ∈ (𝐺 ClNeighbVtx 𝑋) ↔ ((𝑌 ∈ (Vtx‘𝐺) ∧ 𝑋 ∈ (Vtx‘𝐺)) ∧ (𝑌 = 𝑋 ∨ ∃𝑒𝐸 {𝑋, 𝑌} ⊆ 𝑒)))
2911, 18, 26, 28syl21anbrc 1344 . 2 ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → 𝑌 ∈ (𝐺 ClNeighbVtx 𝑋))
30 clnbgredg.n . . 3 𝑁 = (𝐺 ClNeighbVtx 𝑋)
3130eleq2i 2825 . 2 (𝑌𝑁𝑌 ∈ (𝐺 ClNeighbVtx 𝑋))
3229, 31sylibr 234 1 ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑌𝐾)) → 𝑌𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1539  wcel 2107  wrex 3059  wss 3931  {cpr 4608  cfv 6541  (class class class)co 7413  Vtxcvtx 28942  Edgcedg 28993  UHGraphcuhgr 29002   ClNeighbVtx cclnbgr 47778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-edg 28994  df-uhgr 29004  df-clnbgr 47779
This theorem is referenced by:  clnbgrssedg  47800  grlimgrtrilem1  47934
  Copyright terms: Public domain W3C validator