Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  probcun Structured version   Visualization version   GIF version

Theorem probcun 32285
Description: The probability of the union of a countable disjoint set of events is the sum of their probabilities. (Third axiom of Kolmogorov) Here, the Σ construct cannot be used as it can handle infinite indexing set only if they are subsets of , which is not the case here. (Contributed by Thierry Arnoux, 25-Dec-2016.)
Assertion
Ref Expression
probcun ((𝑃 ∈ Prob ∧ 𝐴 ∈ 𝒫 dom 𝑃 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝑥)) → (𝑃 𝐴) = Σ*𝑥𝐴(𝑃𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑃

Proof of Theorem probcun
StepHypRef Expression
1 domprobmeas 32277 . 2 (𝑃 ∈ Prob → 𝑃 ∈ (measures‘dom 𝑃))
2 measvun 32077 . 2 ((𝑃 ∈ (measures‘dom 𝑃) ∧ 𝐴 ∈ 𝒫 dom 𝑃 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝑥)) → (𝑃 𝐴) = Σ*𝑥𝐴(𝑃𝑥))
31, 2syl3an1 1161 1 ((𝑃 ∈ Prob ∧ 𝐴 ∈ 𝒫 dom 𝑃 ∧ (𝐴 ≼ ω ∧ Disj 𝑥𝐴 𝑥)) → (𝑃 𝐴) = Σ*𝑥𝐴(𝑃𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  𝒫 cpw 4530   cuni 4836  Disj wdisj 5035   class class class wbr 5070  dom cdm 5580  cfv 6418  ωcom 7687  cdom 8689  Σ*cesum 31895  measurescmeas 32063  Probcprb 32274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-esum 31896  df-meas 32064  df-prob 32275
This theorem is referenced by:  probun  32286
  Copyright terms: Public domain W3C validator