Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddatclN Structured version   Visualization version   GIF version

Theorem paddatclN 39951
Description: The projective sum of a closed subspace and an atom is a closed projective subspace. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
paddatcl.a 𝐴 = (Atoms‘𝐾)
paddatcl.p + = (+𝑃𝐾)
paddatcl.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
paddatclN ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → (𝑋 + {𝑄}) ∈ 𝐶)

Proof of Theorem paddatclN
StepHypRef Expression
1 hlclat 39359 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ CLat)
213ad2ant1 1134 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → 𝐾 ∈ CLat)
3 paddatcl.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
4 paddatcl.c . . . . . . . 8 𝐶 = (PSubCl‘𝐾)
53, 4psubclssatN 39943 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋𝐴)
6 eqid 2737 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
76, 3atssbase 39291 . . . . . . 7 𝐴 ⊆ (Base‘𝐾)
85, 7sstrdi 3996 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋 ⊆ (Base‘𝐾))
983adant3 1133 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → 𝑋 ⊆ (Base‘𝐾))
10 eqid 2737 . . . . . 6 (lub‘𝐾) = (lub‘𝐾)
116, 10clatlubcl 18548 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
122, 9, 11syl2anc 584 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
13 eqid 2737 . . . . 5 (join‘𝐾) = (join‘𝐾)
14 eqid 2737 . . . . 5 (pmap‘𝐾) = (pmap‘𝐾)
15 paddatcl.p . . . . 5 + = (+𝑃𝐾)
166, 13, 3, 14, 15pmapjat1 39855 . . . 4 ((𝐾 ∈ HL ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ 𝑄𝐴) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄)) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) + ((pmap‘𝐾)‘𝑄)))
1712, 16syld3an2 1413 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄)) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) + ((pmap‘𝐾)‘𝑄)))
1810, 14, 4pmapidclN 39944 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐶) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) = 𝑋)
19183adant3 1133 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) = 𝑋)
203, 14pmapat 39765 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄𝐴) → ((pmap‘𝐾)‘𝑄) = {𝑄})
21203adant2 1132 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → ((pmap‘𝐾)‘𝑄) = {𝑄})
2219, 21oveq12d 7449 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) + ((pmap‘𝐾)‘𝑄)) = (𝑋 + {𝑄}))
2317, 22eqtr2d 2778 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → (𝑋 + {𝑄}) = ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄)))
24 simp1 1137 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → 𝐾 ∈ HL)
25 hllat 39364 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
26253ad2ant1 1134 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → 𝐾 ∈ Lat)
276, 3atbase 39290 . . . . 5 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
28273ad2ant3 1136 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → 𝑄 ∈ (Base‘𝐾))
296, 13latjcl 18484 . . . 4 ((𝐾 ∈ Lat ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄) ∈ (Base‘𝐾))
3026, 12, 28, 29syl3anc 1373 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → (((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄) ∈ (Base‘𝐾))
316, 14, 4pmapsubclN 39948 . . 3 ((𝐾 ∈ HL ∧ (((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄)) ∈ 𝐶)
3224, 30, 31syl2anc 584 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄)) ∈ 𝐶)
3323, 32eqeltrd 2841 1 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → (𝑋 + {𝑄}) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wss 3951  {csn 4626  cfv 6561  (class class class)co 7431  Basecbs 17247  lubclub 18355  joincjn 18357  Latclat 18476  CLatccla 18543  Atomscatm 39264  HLchlt 39351  pmapcpmap 39499  +𝑃cpadd 39797  PSubClcpscN 39936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-p1 18471  df-lat 18477  df-clat 18544  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-pmap 39506  df-padd 39798  df-polarityN 39905  df-psubclN 39937
This theorem is referenced by:  pclfinclN  39952  osumcllem9N  39966  pexmidlem6N  39977
  Copyright terms: Public domain W3C validator