Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddatclN Structured version   Visualization version   GIF version

Theorem paddatclN 38412
Description: The projective sum of a closed subspace and an atom is a closed projective subspace. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
paddatcl.a 𝐴 = (Atoms‘𝐾)
paddatcl.p + = (+𝑃𝐾)
paddatcl.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
paddatclN ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → (𝑋 + {𝑄}) ∈ 𝐶)

Proof of Theorem paddatclN
StepHypRef Expression
1 hlclat 37820 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ CLat)
213ad2ant1 1133 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → 𝐾 ∈ CLat)
3 paddatcl.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
4 paddatcl.c . . . . . . . 8 𝐶 = (PSubCl‘𝐾)
53, 4psubclssatN 38404 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋𝐴)
6 eqid 2736 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
76, 3atssbase 37752 . . . . . . 7 𝐴 ⊆ (Base‘𝐾)
85, 7sstrdi 3956 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋 ⊆ (Base‘𝐾))
983adant3 1132 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → 𝑋 ⊆ (Base‘𝐾))
10 eqid 2736 . . . . . 6 (lub‘𝐾) = (lub‘𝐾)
116, 10clatlubcl 18392 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
122, 9, 11syl2anc 584 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
13 eqid 2736 . . . . 5 (join‘𝐾) = (join‘𝐾)
14 eqid 2736 . . . . 5 (pmap‘𝐾) = (pmap‘𝐾)
15 paddatcl.p . . . . 5 + = (+𝑃𝐾)
166, 13, 3, 14, 15pmapjat1 38316 . . . 4 ((𝐾 ∈ HL ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ 𝑄𝐴) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄)) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) + ((pmap‘𝐾)‘𝑄)))
1712, 16syld3an2 1411 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄)) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) + ((pmap‘𝐾)‘𝑄)))
1810, 14, 4pmapidclN 38405 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐶) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) = 𝑋)
19183adant3 1132 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) = 𝑋)
203, 14pmapat 38226 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄𝐴) → ((pmap‘𝐾)‘𝑄) = {𝑄})
21203adant2 1131 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → ((pmap‘𝐾)‘𝑄) = {𝑄})
2219, 21oveq12d 7375 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) + ((pmap‘𝐾)‘𝑄)) = (𝑋 + {𝑄}))
2317, 22eqtr2d 2777 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → (𝑋 + {𝑄}) = ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄)))
24 simp1 1136 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → 𝐾 ∈ HL)
25 hllat 37825 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
26253ad2ant1 1133 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → 𝐾 ∈ Lat)
276, 3atbase 37751 . . . . 5 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
28273ad2ant3 1135 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → 𝑄 ∈ (Base‘𝐾))
296, 13latjcl 18328 . . . 4 ((𝐾 ∈ Lat ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄) ∈ (Base‘𝐾))
3026, 12, 28, 29syl3anc 1371 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → (((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄) ∈ (Base‘𝐾))
316, 14, 4pmapsubclN 38409 . . 3 ((𝐾 ∈ HL ∧ (((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄)) ∈ 𝐶)
3224, 30, 31syl2anc 584 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄)) ∈ 𝐶)
3323, 32eqeltrd 2838 1 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → (𝑋 + {𝑄}) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wss 3910  {csn 4586  cfv 6496  (class class class)co 7357  Basecbs 17083  lubclub 18198  joincjn 18200  Latclat 18320  CLatccla 18387  Atomscatm 37725  HLchlt 37812  pmapcpmap 37960  +𝑃cpadd 38258  PSubClcpscN 38397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-p1 18315  df-lat 18321  df-clat 18388  df-oposet 37638  df-ol 37640  df-oml 37641  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813  df-pmap 37967  df-padd 38259  df-polarityN 38366  df-psubclN 38398
This theorem is referenced by:  pclfinclN  38413  osumcllem9N  38427  pexmidlem6N  38438
  Copyright terms: Public domain W3C validator