Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddatclN Structured version   Visualization version   GIF version

Theorem paddatclN 37959
Description: The projective sum of a closed subspace and an atom is a closed projective subspace. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
paddatcl.a 𝐴 = (Atoms‘𝐾)
paddatcl.p + = (+𝑃𝐾)
paddatcl.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
paddatclN ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → (𝑋 + {𝑄}) ∈ 𝐶)

Proof of Theorem paddatclN
StepHypRef Expression
1 hlclat 37368 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ CLat)
213ad2ant1 1132 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → 𝐾 ∈ CLat)
3 paddatcl.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
4 paddatcl.c . . . . . . . 8 𝐶 = (PSubCl‘𝐾)
53, 4psubclssatN 37951 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋𝐴)
6 eqid 2740 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
76, 3atssbase 37300 . . . . . . 7 𝐴 ⊆ (Base‘𝐾)
85, 7sstrdi 3938 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋 ⊆ (Base‘𝐾))
983adant3 1131 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → 𝑋 ⊆ (Base‘𝐾))
10 eqid 2740 . . . . . 6 (lub‘𝐾) = (lub‘𝐾)
116, 10clatlubcl 18219 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
122, 9, 11syl2anc 584 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
13 eqid 2740 . . . . 5 (join‘𝐾) = (join‘𝐾)
14 eqid 2740 . . . . 5 (pmap‘𝐾) = (pmap‘𝐾)
15 paddatcl.p . . . . 5 + = (+𝑃𝐾)
166, 13, 3, 14, 15pmapjat1 37863 . . . 4 ((𝐾 ∈ HL ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ 𝑄𝐴) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄)) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) + ((pmap‘𝐾)‘𝑄)))
1712, 16syld3an2 1410 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄)) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) + ((pmap‘𝐾)‘𝑄)))
1810, 14, 4pmapidclN 37952 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐶) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) = 𝑋)
19183adant3 1131 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) = 𝑋)
203, 14pmapat 37773 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄𝐴) → ((pmap‘𝐾)‘𝑄) = {𝑄})
21203adant2 1130 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → ((pmap‘𝐾)‘𝑄) = {𝑄})
2219, 21oveq12d 7289 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) + ((pmap‘𝐾)‘𝑄)) = (𝑋 + {𝑄}))
2317, 22eqtr2d 2781 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → (𝑋 + {𝑄}) = ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄)))
24 simp1 1135 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → 𝐾 ∈ HL)
25 hllat 37373 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
26253ad2ant1 1132 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → 𝐾 ∈ Lat)
276, 3atbase 37299 . . . . 5 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
28273ad2ant3 1134 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → 𝑄 ∈ (Base‘𝐾))
296, 13latjcl 18155 . . . 4 ((𝐾 ∈ Lat ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄) ∈ (Base‘𝐾))
3026, 12, 28, 29syl3anc 1370 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → (((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄) ∈ (Base‘𝐾))
316, 14, 4pmapsubclN 37956 . . 3 ((𝐾 ∈ HL ∧ (((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄)) ∈ 𝐶)
3224, 30, 31syl2anc 584 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄)) ∈ 𝐶)
3323, 32eqeltrd 2841 1 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → (𝑋 + {𝑄}) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1542  wcel 2110  wss 3892  {csn 4567  cfv 6432  (class class class)co 7271  Basecbs 16910  lubclub 18025  joincjn 18027  Latclat 18147  CLatccla 18214  Atomscatm 37273  HLchlt 37360  pmapcpmap 37507  +𝑃cpadd 37805  PSubClcpscN 37944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-riotaBAD 36963
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-1st 7824  df-2nd 7825  df-undef 8080  df-proset 18011  df-poset 18029  df-plt 18046  df-lub 18062  df-glb 18063  df-join 18064  df-meet 18065  df-p0 18141  df-p1 18142  df-lat 18148  df-clat 18215  df-oposet 37186  df-ol 37188  df-oml 37189  df-covers 37276  df-ats 37277  df-atl 37308  df-cvlat 37332  df-hlat 37361  df-pmap 37514  df-padd 37806  df-polarityN 37913  df-psubclN 37945
This theorem is referenced by:  pclfinclN  37960  osumcllem9N  37974  pexmidlem6N  37985
  Copyright terms: Public domain W3C validator