Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddatclN Structured version   Visualization version   GIF version

Theorem paddatclN 39936
Description: The projective sum of a closed subspace and an atom is a closed projective subspace. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
paddatcl.a 𝐴 = (Atoms‘𝐾)
paddatcl.p + = (+𝑃𝐾)
paddatcl.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
paddatclN ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → (𝑋 + {𝑄}) ∈ 𝐶)

Proof of Theorem paddatclN
StepHypRef Expression
1 hlclat 39344 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ CLat)
213ad2ant1 1133 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → 𝐾 ∈ CLat)
3 paddatcl.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
4 paddatcl.c . . . . . . . 8 𝐶 = (PSubCl‘𝐾)
53, 4psubclssatN 39928 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋𝐴)
6 eqid 2729 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
76, 3atssbase 39276 . . . . . . 7 𝐴 ⊆ (Base‘𝐾)
85, 7sstrdi 3956 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋 ⊆ (Base‘𝐾))
983adant3 1132 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → 𝑋 ⊆ (Base‘𝐾))
10 eqid 2729 . . . . . 6 (lub‘𝐾) = (lub‘𝐾)
116, 10clatlubcl 18444 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
122, 9, 11syl2anc 584 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
13 eqid 2729 . . . . 5 (join‘𝐾) = (join‘𝐾)
14 eqid 2729 . . . . 5 (pmap‘𝐾) = (pmap‘𝐾)
15 paddatcl.p . . . . 5 + = (+𝑃𝐾)
166, 13, 3, 14, 15pmapjat1 39840 . . . 4 ((𝐾 ∈ HL ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ 𝑄𝐴) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄)) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) + ((pmap‘𝐾)‘𝑄)))
1712, 16syld3an2 1413 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄)) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) + ((pmap‘𝐾)‘𝑄)))
1810, 14, 4pmapidclN 39929 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐶) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) = 𝑋)
19183adant3 1132 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) = 𝑋)
203, 14pmapat 39750 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄𝐴) → ((pmap‘𝐾)‘𝑄) = {𝑄})
21203adant2 1131 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → ((pmap‘𝐾)‘𝑄) = {𝑄})
2219, 21oveq12d 7387 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) + ((pmap‘𝐾)‘𝑄)) = (𝑋 + {𝑄}))
2317, 22eqtr2d 2765 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → (𝑋 + {𝑄}) = ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄)))
24 simp1 1136 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → 𝐾 ∈ HL)
25 hllat 39349 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
26253ad2ant1 1133 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → 𝐾 ∈ Lat)
276, 3atbase 39275 . . . . 5 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
28273ad2ant3 1135 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → 𝑄 ∈ (Base‘𝐾))
296, 13latjcl 18380 . . . 4 ((𝐾 ∈ Lat ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄) ∈ (Base‘𝐾))
3026, 12, 28, 29syl3anc 1373 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → (((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄) ∈ (Base‘𝐾))
316, 14, 4pmapsubclN 39933 . . 3 ((𝐾 ∈ HL ∧ (((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄)) ∈ 𝐶)
3224, 30, 31syl2anc 584 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄)) ∈ 𝐶)
3323, 32eqeltrd 2828 1 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → (𝑋 + {𝑄}) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3911  {csn 4585  cfv 6499  (class class class)co 7369  Basecbs 17155  lubclub 18250  joincjn 18252  Latclat 18372  CLatccla 18439  Atomscatm 39249  HLchlt 39336  pmapcpmap 39484  +𝑃cpadd 39782  PSubClcpscN 39921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-proset 18235  df-poset 18254  df-plt 18269  df-lub 18285  df-glb 18286  df-join 18287  df-meet 18288  df-p0 18364  df-p1 18365  df-lat 18373  df-clat 18440  df-oposet 39162  df-ol 39164  df-oml 39165  df-covers 39252  df-ats 39253  df-atl 39284  df-cvlat 39308  df-hlat 39337  df-pmap 39491  df-padd 39783  df-polarityN 39890  df-psubclN 39922
This theorem is referenced by:  pclfinclN  39937  osumcllem9N  39951  pexmidlem6N  39962
  Copyright terms: Public domain W3C validator