Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddatclN Structured version   Visualization version   GIF version

Theorem paddatclN 36025
Description: The projective sum of a closed subspace and an atom is a closed projective subspace. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
paddatcl.a 𝐴 = (Atoms‘𝐾)
paddatcl.p + = (+𝑃𝐾)
paddatcl.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
paddatclN ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → (𝑋 + {𝑄}) ∈ 𝐶)

Proof of Theorem paddatclN
StepHypRef Expression
1 hlclat 35434 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ CLat)
213ad2ant1 1169 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → 𝐾 ∈ CLat)
3 paddatcl.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
4 paddatcl.c . . . . . . . 8 𝐶 = (PSubCl‘𝐾)
53, 4psubclssatN 36017 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋𝐴)
6 eqid 2826 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
76, 3atssbase 35366 . . . . . . 7 𝐴 ⊆ (Base‘𝐾)
85, 7syl6ss 3840 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋 ⊆ (Base‘𝐾))
983adant3 1168 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → 𝑋 ⊆ (Base‘𝐾))
10 eqid 2826 . . . . . 6 (lub‘𝐾) = (lub‘𝐾)
116, 10clatlubcl 17466 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
122, 9, 11syl2anc 581 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
13 eqid 2826 . . . . 5 (join‘𝐾) = (join‘𝐾)
14 eqid 2826 . . . . 5 (pmap‘𝐾) = (pmap‘𝐾)
15 paddatcl.p . . . . 5 + = (+𝑃𝐾)
166, 13, 3, 14, 15pmapjat1 35929 . . . 4 ((𝐾 ∈ HL ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ 𝑄𝐴) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄)) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) + ((pmap‘𝐾)‘𝑄)))
1712, 16syld3an2 1537 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄)) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) + ((pmap‘𝐾)‘𝑄)))
1810, 14, 4pmapidclN 36018 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐶) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) = 𝑋)
19183adant3 1168 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) = 𝑋)
203, 14pmapat 35839 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄𝐴) → ((pmap‘𝐾)‘𝑄) = {𝑄})
21203adant2 1167 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → ((pmap‘𝐾)‘𝑄) = {𝑄})
2219, 21oveq12d 6924 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) + ((pmap‘𝐾)‘𝑄)) = (𝑋 + {𝑄}))
2317, 22eqtr2d 2863 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → (𝑋 + {𝑄}) = ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄)))
24 simp1 1172 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → 𝐾 ∈ HL)
25 hllat 35439 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
26253ad2ant1 1169 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → 𝐾 ∈ Lat)
276, 3atbase 35365 . . . . 5 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
28273ad2ant3 1171 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → 𝑄 ∈ (Base‘𝐾))
296, 13latjcl 17405 . . . 4 ((𝐾 ∈ Lat ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄) ∈ (Base‘𝐾))
3026, 12, 28, 29syl3anc 1496 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → (((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄) ∈ (Base‘𝐾))
316, 14, 4pmapsubclN 36022 . . 3 ((𝐾 ∈ HL ∧ (((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄)) ∈ 𝐶)
3224, 30, 31syl2anc 581 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(join‘𝐾)𝑄)) ∈ 𝐶)
3323, 32eqeltrd 2907 1 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → (𝑋 + {𝑄}) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1113   = wceq 1658  wcel 2166  wss 3799  {csn 4398  cfv 6124  (class class class)co 6906  Basecbs 16223  lubclub 17296  joincjn 17298  Latclat 17399  CLatccla 17461  Atomscatm 35339  HLchlt 35426  pmapcpmap 35573  +𝑃cpadd 35871  PSubClcpscN 36010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-riotaBAD 35029
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4660  df-iun 4743  df-iin 4744  df-br 4875  df-opab 4937  df-mpt 4954  df-id 5251  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-1st 7429  df-2nd 7430  df-undef 7665  df-proset 17282  df-poset 17300  df-plt 17312  df-lub 17328  df-glb 17329  df-join 17330  df-meet 17331  df-p0 17393  df-p1 17394  df-lat 17400  df-clat 17462  df-oposet 35252  df-ol 35254  df-oml 35255  df-covers 35342  df-ats 35343  df-atl 35374  df-cvlat 35398  df-hlat 35427  df-pmap 35580  df-padd 35872  df-polarityN 35979  df-psubclN 36011
This theorem is referenced by:  pclfinclN  36026  osumcllem9N  36040  pexmidlem6N  36051
  Copyright terms: Public domain W3C validator