Proof of Theorem psubclinN
| Step | Hyp | Ref
| Expression |
| 1 | | simp1 1137 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → 𝐾 ∈ HL) |
| 2 | | hlclat 39359 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
| 3 | 2 | 3ad2ant1 1134 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → 𝐾 ∈ CLat) |
| 4 | | eqid 2737 |
. . . . . . . 8
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) |
| 5 | | psubclin.c |
. . . . . . . 8
⊢ 𝐶 = (PSubCl‘𝐾) |
| 6 | 4, 5 | psubclssatN 39943 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → 𝑋 ⊆ (Atoms‘𝐾)) |
| 7 | 6 | 3adant3 1133 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → 𝑋 ⊆ (Atoms‘𝐾)) |
| 8 | | eqid 2737 |
. . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 9 | 8, 4 | atssbase 39291 |
. . . . . 6
⊢
(Atoms‘𝐾)
⊆ (Base‘𝐾) |
| 10 | 7, 9 | sstrdi 3996 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → 𝑋 ⊆ (Base‘𝐾)) |
| 11 | | eqid 2737 |
. . . . . 6
⊢
(lub‘𝐾) =
(lub‘𝐾) |
| 12 | 8, 11 | clatlubcl 18548 |
. . . . 5
⊢ ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) |
| 13 | 3, 10, 12 | syl2anc 584 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) |
| 14 | 4, 5 | psubclssatN 39943 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶) → 𝑌 ⊆ (Atoms‘𝐾)) |
| 15 | 14 | 3adant2 1132 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → 𝑌 ⊆ (Atoms‘𝐾)) |
| 16 | 15, 9 | sstrdi 3996 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → 𝑌 ⊆ (Base‘𝐾)) |
| 17 | 8, 11 | clatlubcl 18548 |
. . . . 5
⊢ ((𝐾 ∈ CLat ∧ 𝑌 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) |
| 18 | 3, 16, 17 | syl2anc 584 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) |
| 19 | | eqid 2737 |
. . . . 5
⊢
(meet‘𝐾) =
(meet‘𝐾) |
| 20 | | eqid 2737 |
. . . . 5
⊢
(pmap‘𝐾) =
(pmap‘𝐾) |
| 21 | 8, 19, 4, 20 | pmapmeet 39775 |
. . . 4
⊢ ((𝐾 ∈ HL ∧
((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌))) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) |
| 22 | 1, 13, 18, 21 | syl3anc 1373 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌))) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) |
| 23 | 11, 20, 5 | pmapidclN 39944 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) = 𝑋) |
| 24 | 23 | 3adant3 1133 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) = 𝑋) |
| 25 | 11, 20, 5 | pmapidclN 39944 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)) = 𝑌) |
| 26 | 25 | 3adant2 1132 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)) = 𝑌) |
| 27 | 24, 26 | ineq12d 4221 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))) = (𝑋 ∩ 𝑌)) |
| 28 | 22, 27 | eqtrd 2777 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌))) = (𝑋 ∩ 𝑌)) |
| 29 | | hllat 39364 |
. . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
| 30 | 29 | 3ad2ant1 1134 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → 𝐾 ∈ Lat) |
| 31 | 8, 19 | latmcl 18485 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧
((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) → (((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌)) ∈ (Base‘𝐾)) |
| 32 | 30, 13, 18, 31 | syl3anc 1373 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → (((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌)) ∈ (Base‘𝐾)) |
| 33 | 8, 20, 5 | pmapsubclN 39948 |
. . 3
⊢ ((𝐾 ∈ HL ∧
(((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌)) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌))) ∈ 𝐶) |
| 34 | 1, 32, 33 | syl2anc 584 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌))) ∈ 𝐶) |
| 35 | 28, 34 | eqeltrrd 2842 |
1
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → (𝑋 ∩ 𝑌) ∈ 𝐶) |