Proof of Theorem psubclinN
Step | Hyp | Ref
| Expression |
1 | | simp1 1135 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → 𝐾 ∈ HL) |
2 | | hlclat 37372 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
3 | 2 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → 𝐾 ∈ CLat) |
4 | | eqid 2738 |
. . . . . . . 8
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) |
5 | | psubclin.c |
. . . . . . . 8
⊢ 𝐶 = (PSubCl‘𝐾) |
6 | 4, 5 | psubclssatN 37955 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → 𝑋 ⊆ (Atoms‘𝐾)) |
7 | 6 | 3adant3 1131 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → 𝑋 ⊆ (Atoms‘𝐾)) |
8 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) |
9 | 8, 4 | atssbase 37304 |
. . . . . 6
⊢
(Atoms‘𝐾)
⊆ (Base‘𝐾) |
10 | 7, 9 | sstrdi 3933 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → 𝑋 ⊆ (Base‘𝐾)) |
11 | | eqid 2738 |
. . . . . 6
⊢
(lub‘𝐾) =
(lub‘𝐾) |
12 | 8, 11 | clatlubcl 18221 |
. . . . 5
⊢ ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) |
13 | 3, 10, 12 | syl2anc 584 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) |
14 | 4, 5 | psubclssatN 37955 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶) → 𝑌 ⊆ (Atoms‘𝐾)) |
15 | 14 | 3adant2 1130 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → 𝑌 ⊆ (Atoms‘𝐾)) |
16 | 15, 9 | sstrdi 3933 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → 𝑌 ⊆ (Base‘𝐾)) |
17 | 8, 11 | clatlubcl 18221 |
. . . . 5
⊢ ((𝐾 ∈ CLat ∧ 𝑌 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) |
18 | 3, 16, 17 | syl2anc 584 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) |
19 | | eqid 2738 |
. . . . 5
⊢
(meet‘𝐾) =
(meet‘𝐾) |
20 | | eqid 2738 |
. . . . 5
⊢
(pmap‘𝐾) =
(pmap‘𝐾) |
21 | 8, 19, 4, 20 | pmapmeet 37787 |
. . . 4
⊢ ((𝐾 ∈ HL ∧
((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌))) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) |
22 | 1, 13, 18, 21 | syl3anc 1370 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌))) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) |
23 | 11, 20, 5 | pmapidclN 37956 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) = 𝑋) |
24 | 23 | 3adant3 1131 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) = 𝑋) |
25 | 11, 20, 5 | pmapidclN 37956 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)) = 𝑌) |
26 | 25 | 3adant2 1130 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)) = 𝑌) |
27 | 24, 26 | ineq12d 4147 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))) = (𝑋 ∩ 𝑌)) |
28 | 22, 27 | eqtrd 2778 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌))) = (𝑋 ∩ 𝑌)) |
29 | | hllat 37377 |
. . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
30 | 29 | 3ad2ant1 1132 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → 𝐾 ∈ Lat) |
31 | 8, 19 | latmcl 18158 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧
((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) → (((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌)) ∈ (Base‘𝐾)) |
32 | 30, 13, 18, 31 | syl3anc 1370 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → (((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌)) ∈ (Base‘𝐾)) |
33 | 8, 20, 5 | pmapsubclN 37960 |
. . 3
⊢ ((𝐾 ∈ HL ∧
(((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌)) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌))) ∈ 𝐶) |
34 | 1, 32, 33 | syl2anc 584 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌))) ∈ 𝐶) |
35 | 28, 34 | eqeltrrd 2840 |
1
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → (𝑋 ∩ 𝑌) ∈ 𝐶) |