Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubclinN Structured version   Visualization version   GIF version

Theorem psubclinN 37237
Description: The intersection of two closed subspaces is closed. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
Hypothesis
Ref Expression
psubclin.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
psubclinN ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → (𝑋𝑌) ∈ 𝐶)

Proof of Theorem psubclinN
StepHypRef Expression
1 simp1 1133 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → 𝐾 ∈ HL)
2 hlclat 36647 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ CLat)
323ad2ant1 1130 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → 𝐾 ∈ CLat)
4 eqid 2801 . . . . . . . 8 (Atoms‘𝐾) = (Atoms‘𝐾)
5 psubclin.c . . . . . . . 8 𝐶 = (PSubCl‘𝐾)
64, 5psubclssatN 37230 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋 ⊆ (Atoms‘𝐾))
763adant3 1129 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → 𝑋 ⊆ (Atoms‘𝐾))
8 eqid 2801 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
98, 4atssbase 36579 . . . . . 6 (Atoms‘𝐾) ⊆ (Base‘𝐾)
107, 9sstrdi 3930 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → 𝑋 ⊆ (Base‘𝐾))
11 eqid 2801 . . . . . 6 (lub‘𝐾) = (lub‘𝐾)
128, 11clatlubcl 17717 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
133, 10, 12syl2anc 587 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
144, 5psubclssatN 37230 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑌𝐶) → 𝑌 ⊆ (Atoms‘𝐾))
15143adant2 1128 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → 𝑌 ⊆ (Atoms‘𝐾))
1615, 9sstrdi 3930 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → 𝑌 ⊆ (Base‘𝐾))
178, 11clatlubcl 17717 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑌 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾))
183, 16, 17syl2anc 587 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾))
19 eqid 2801 . . . . 5 (meet‘𝐾) = (meet‘𝐾)
20 eqid 2801 . . . . 5 (pmap‘𝐾) = (pmap‘𝐾)
218, 19, 4, 20pmapmeet 37062 . . . 4 ((𝐾 ∈ HL ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌))) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))))
221, 13, 18, 21syl3anc 1368 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌))) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))))
2311, 20, 5pmapidclN 37231 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐶) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) = 𝑋)
24233adant3 1129 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) = 𝑋)
2511, 20, 5pmapidclN 37231 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐶) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)) = 𝑌)
26253adant2 1128 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)) = 𝑌)
2724, 26ineq12d 4143 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))) = (𝑋𝑌))
2822, 27eqtrd 2836 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌))) = (𝑋𝑌))
29 hllat 36652 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
30293ad2ant1 1130 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → 𝐾 ∈ Lat)
318, 19latmcl 17657 . . . 4 ((𝐾 ∈ Lat ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) → (((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌)) ∈ (Base‘𝐾))
3230, 13, 18, 31syl3anc 1368 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → (((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌)) ∈ (Base‘𝐾))
338, 20, 5pmapsubclN 37235 . . 3 ((𝐾 ∈ HL ∧ (((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌)) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌))) ∈ 𝐶)
341, 32, 33syl2anc 587 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌))) ∈ 𝐶)
3528, 34eqeltrrd 2894 1 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → (𝑋𝑌) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  wcel 2112  cin 3883  wss 3884  cfv 6328  (class class class)co 7139  Basecbs 16478  lubclub 17547  meetcmee 17550  Latclat 17650  CLatccla 17712  Atomscatm 36552  HLchlt 36639  pmapcpmap 36786  PSubClcpscN 37223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-riotaBAD 36242
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-undef 7926  df-proset 17533  df-poset 17551  df-plt 17563  df-lub 17579  df-glb 17580  df-join 17581  df-meet 17582  df-p0 17644  df-p1 17645  df-lat 17651  df-clat 17713  df-oposet 36465  df-ol 36467  df-oml 36468  df-covers 36555  df-ats 36556  df-atl 36587  df-cvlat 36611  df-hlat 36640  df-pmap 36793  df-polarityN 37192  df-psubclN 37224
This theorem is referenced by:  osumcllem9N  37253
  Copyright terms: Public domain W3C validator