Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubclinN Structured version   Visualization version   GIF version

Theorem psubclinN 38814
Description: The intersection of two closed subspaces is closed. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
Hypothesis
Ref Expression
psubclin.c 𝐢 = (PSubClβ€˜πΎ)
Assertion
Ref Expression
psubclinN ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐢 ∧ π‘Œ ∈ 𝐢) β†’ (𝑋 ∩ π‘Œ) ∈ 𝐢)

Proof of Theorem psubclinN
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐢 ∧ π‘Œ ∈ 𝐢) β†’ 𝐾 ∈ HL)
2 hlclat 38223 . . . . . 6 (𝐾 ∈ HL β†’ 𝐾 ∈ CLat)
323ad2ant1 1133 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐢 ∧ π‘Œ ∈ 𝐢) β†’ 𝐾 ∈ CLat)
4 eqid 2732 . . . . . . . 8 (Atomsβ€˜πΎ) = (Atomsβ€˜πΎ)
5 psubclin.c . . . . . . . 8 𝐢 = (PSubClβ€˜πΎ)
64, 5psubclssatN 38807 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐢) β†’ 𝑋 βŠ† (Atomsβ€˜πΎ))
763adant3 1132 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐢 ∧ π‘Œ ∈ 𝐢) β†’ 𝑋 βŠ† (Atomsβ€˜πΎ))
8 eqid 2732 . . . . . . 7 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
98, 4atssbase 38155 . . . . . 6 (Atomsβ€˜πΎ) βŠ† (Baseβ€˜πΎ)
107, 9sstrdi 3994 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐢 ∧ π‘Œ ∈ 𝐢) β†’ 𝑋 βŠ† (Baseβ€˜πΎ))
11 eqid 2732 . . . . . 6 (lubβ€˜πΎ) = (lubβ€˜πΎ)
128, 11clatlubcl 18455 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑋 βŠ† (Baseβ€˜πΎ)) β†’ ((lubβ€˜πΎ)β€˜π‘‹) ∈ (Baseβ€˜πΎ))
133, 10, 12syl2anc 584 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐢 ∧ π‘Œ ∈ 𝐢) β†’ ((lubβ€˜πΎ)β€˜π‘‹) ∈ (Baseβ€˜πΎ))
144, 5psubclssatN 38807 . . . . . . 7 ((𝐾 ∈ HL ∧ π‘Œ ∈ 𝐢) β†’ π‘Œ βŠ† (Atomsβ€˜πΎ))
15143adant2 1131 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐢 ∧ π‘Œ ∈ 𝐢) β†’ π‘Œ βŠ† (Atomsβ€˜πΎ))
1615, 9sstrdi 3994 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐢 ∧ π‘Œ ∈ 𝐢) β†’ π‘Œ βŠ† (Baseβ€˜πΎ))
178, 11clatlubcl 18455 . . . . 5 ((𝐾 ∈ CLat ∧ π‘Œ βŠ† (Baseβ€˜πΎ)) β†’ ((lubβ€˜πΎ)β€˜π‘Œ) ∈ (Baseβ€˜πΎ))
183, 16, 17syl2anc 584 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐢 ∧ π‘Œ ∈ 𝐢) β†’ ((lubβ€˜πΎ)β€˜π‘Œ) ∈ (Baseβ€˜πΎ))
19 eqid 2732 . . . . 5 (meetβ€˜πΎ) = (meetβ€˜πΎ)
20 eqid 2732 . . . . 5 (pmapβ€˜πΎ) = (pmapβ€˜πΎ)
218, 19, 4, 20pmapmeet 38639 . . . 4 ((𝐾 ∈ HL ∧ ((lubβ€˜πΎ)β€˜π‘‹) ∈ (Baseβ€˜πΎ) ∧ ((lubβ€˜πΎ)β€˜π‘Œ) ∈ (Baseβ€˜πΎ)) β†’ ((pmapβ€˜πΎ)β€˜(((lubβ€˜πΎ)β€˜π‘‹)(meetβ€˜πΎ)((lubβ€˜πΎ)β€˜π‘Œ))) = (((pmapβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)) ∩ ((pmapβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘Œ))))
221, 13, 18, 21syl3anc 1371 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐢 ∧ π‘Œ ∈ 𝐢) β†’ ((pmapβ€˜πΎ)β€˜(((lubβ€˜πΎ)β€˜π‘‹)(meetβ€˜πΎ)((lubβ€˜πΎ)β€˜π‘Œ))) = (((pmapβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)) ∩ ((pmapβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘Œ))))
2311, 20, 5pmapidclN 38808 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐢) β†’ ((pmapβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)) = 𝑋)
24233adant3 1132 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐢 ∧ π‘Œ ∈ 𝐢) β†’ ((pmapβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)) = 𝑋)
2511, 20, 5pmapidclN 38808 . . . . 5 ((𝐾 ∈ HL ∧ π‘Œ ∈ 𝐢) β†’ ((pmapβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘Œ)) = π‘Œ)
26253adant2 1131 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐢 ∧ π‘Œ ∈ 𝐢) β†’ ((pmapβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘Œ)) = π‘Œ)
2724, 26ineq12d 4213 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐢 ∧ π‘Œ ∈ 𝐢) β†’ (((pmapβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘‹)) ∩ ((pmapβ€˜πΎ)β€˜((lubβ€˜πΎ)β€˜π‘Œ))) = (𝑋 ∩ π‘Œ))
2822, 27eqtrd 2772 . 2 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐢 ∧ π‘Œ ∈ 𝐢) β†’ ((pmapβ€˜πΎ)β€˜(((lubβ€˜πΎ)β€˜π‘‹)(meetβ€˜πΎ)((lubβ€˜πΎ)β€˜π‘Œ))) = (𝑋 ∩ π‘Œ))
29 hllat 38228 . . . . 5 (𝐾 ∈ HL β†’ 𝐾 ∈ Lat)
30293ad2ant1 1133 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐢 ∧ π‘Œ ∈ 𝐢) β†’ 𝐾 ∈ Lat)
318, 19latmcl 18392 . . . 4 ((𝐾 ∈ Lat ∧ ((lubβ€˜πΎ)β€˜π‘‹) ∈ (Baseβ€˜πΎ) ∧ ((lubβ€˜πΎ)β€˜π‘Œ) ∈ (Baseβ€˜πΎ)) β†’ (((lubβ€˜πΎ)β€˜π‘‹)(meetβ€˜πΎ)((lubβ€˜πΎ)β€˜π‘Œ)) ∈ (Baseβ€˜πΎ))
3230, 13, 18, 31syl3anc 1371 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐢 ∧ π‘Œ ∈ 𝐢) β†’ (((lubβ€˜πΎ)β€˜π‘‹)(meetβ€˜πΎ)((lubβ€˜πΎ)β€˜π‘Œ)) ∈ (Baseβ€˜πΎ))
338, 20, 5pmapsubclN 38812 . . 3 ((𝐾 ∈ HL ∧ (((lubβ€˜πΎ)β€˜π‘‹)(meetβ€˜πΎ)((lubβ€˜πΎ)β€˜π‘Œ)) ∈ (Baseβ€˜πΎ)) β†’ ((pmapβ€˜πΎ)β€˜(((lubβ€˜πΎ)β€˜π‘‹)(meetβ€˜πΎ)((lubβ€˜πΎ)β€˜π‘Œ))) ∈ 𝐢)
341, 32, 33syl2anc 584 . 2 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐢 ∧ π‘Œ ∈ 𝐢) β†’ ((pmapβ€˜πΎ)β€˜(((lubβ€˜πΎ)β€˜π‘‹)(meetβ€˜πΎ)((lubβ€˜πΎ)β€˜π‘Œ))) ∈ 𝐢)
3528, 34eqeltrrd 2834 1 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐢 ∧ π‘Œ ∈ 𝐢) β†’ (𝑋 ∩ π‘Œ) ∈ 𝐢)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   ∩ cin 3947   βŠ† wss 3948  β€˜cfv 6543  (class class class)co 7408  Basecbs 17143  lubclub 18261  meetcmee 18264  Latclat 18383  CLatccla 18450  Atomscatm 38128  HLchlt 38215  pmapcpmap 38363  PSubClcpscN 38800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-proset 18247  df-poset 18265  df-plt 18282  df-lub 18298  df-glb 18299  df-join 18300  df-meet 18301  df-p0 18377  df-p1 18378  df-lat 18384  df-clat 18451  df-oposet 38041  df-ol 38043  df-oml 38044  df-covers 38131  df-ats 38132  df-atl 38163  df-cvlat 38187  df-hlat 38216  df-pmap 38370  df-polarityN 38769  df-psubclN 38801
This theorem is referenced by:  osumcllem9N  38830
  Copyright terms: Public domain W3C validator