Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubclinN Structured version   Visualization version   GIF version

Theorem psubclinN 38224
Description: The intersection of two closed subspaces is closed. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
Hypothesis
Ref Expression
psubclin.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
psubclinN ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → (𝑋𝑌) ∈ 𝐶)

Proof of Theorem psubclinN
StepHypRef Expression
1 simp1 1135 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → 𝐾 ∈ HL)
2 hlclat 37633 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ CLat)
323ad2ant1 1132 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → 𝐾 ∈ CLat)
4 eqid 2736 . . . . . . . 8 (Atoms‘𝐾) = (Atoms‘𝐾)
5 psubclin.c . . . . . . . 8 𝐶 = (PSubCl‘𝐾)
64, 5psubclssatN 38217 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋 ⊆ (Atoms‘𝐾))
763adant3 1131 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → 𝑋 ⊆ (Atoms‘𝐾))
8 eqid 2736 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
98, 4atssbase 37565 . . . . . 6 (Atoms‘𝐾) ⊆ (Base‘𝐾)
107, 9sstrdi 3944 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → 𝑋 ⊆ (Base‘𝐾))
11 eqid 2736 . . . . . 6 (lub‘𝐾) = (lub‘𝐾)
128, 11clatlubcl 18318 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
133, 10, 12syl2anc 584 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
144, 5psubclssatN 38217 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑌𝐶) → 𝑌 ⊆ (Atoms‘𝐾))
15143adant2 1130 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → 𝑌 ⊆ (Atoms‘𝐾))
1615, 9sstrdi 3944 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → 𝑌 ⊆ (Base‘𝐾))
178, 11clatlubcl 18318 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑌 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾))
183, 16, 17syl2anc 584 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾))
19 eqid 2736 . . . . 5 (meet‘𝐾) = (meet‘𝐾)
20 eqid 2736 . . . . 5 (pmap‘𝐾) = (pmap‘𝐾)
218, 19, 4, 20pmapmeet 38049 . . . 4 ((𝐾 ∈ HL ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌))) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))))
221, 13, 18, 21syl3anc 1370 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌))) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))))
2311, 20, 5pmapidclN 38218 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐶) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) = 𝑋)
24233adant3 1131 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) = 𝑋)
2511, 20, 5pmapidclN 38218 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐶) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)) = 𝑌)
26253adant2 1130 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)) = 𝑌)
2724, 26ineq12d 4160 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))) = (𝑋𝑌))
2822, 27eqtrd 2776 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌))) = (𝑋𝑌))
29 hllat 37638 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
30293ad2ant1 1132 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → 𝐾 ∈ Lat)
318, 19latmcl 18255 . . . 4 ((𝐾 ∈ Lat ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) → (((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌)) ∈ (Base‘𝐾))
3230, 13, 18, 31syl3anc 1370 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → (((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌)) ∈ (Base‘𝐾))
338, 20, 5pmapsubclN 38222 . . 3 ((𝐾 ∈ HL ∧ (((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌)) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌))) ∈ 𝐶)
341, 32, 33syl2anc 584 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌))) ∈ 𝐶)
3528, 34eqeltrrd 2838 1 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → (𝑋𝑌) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2105  cin 3897  wss 3898  cfv 6479  (class class class)co 7337  Basecbs 17009  lubclub 18124  meetcmee 18127  Latclat 18246  CLatccla 18313  Atomscatm 37538  HLchlt 37625  pmapcpmap 37773  PSubClcpscN 38210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-proset 18110  df-poset 18128  df-plt 18145  df-lub 18161  df-glb 18162  df-join 18163  df-meet 18164  df-p0 18240  df-p1 18241  df-lat 18247  df-clat 18314  df-oposet 37451  df-ol 37453  df-oml 37454  df-covers 37541  df-ats 37542  df-atl 37573  df-cvlat 37597  df-hlat 37626  df-pmap 37780  df-polarityN 38179  df-psubclN 38211
This theorem is referenced by:  osumcllem9N  38240
  Copyright terms: Public domain W3C validator