Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psubclinN Structured version   Visualization version   GIF version

Theorem psubclinN 37889
Description: The intersection of two closed subspaces is closed. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
Hypothesis
Ref Expression
psubclin.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
psubclinN ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → (𝑋𝑌) ∈ 𝐶)

Proof of Theorem psubclinN
StepHypRef Expression
1 simp1 1134 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → 𝐾 ∈ HL)
2 hlclat 37299 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ CLat)
323ad2ant1 1131 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → 𝐾 ∈ CLat)
4 eqid 2738 . . . . . . . 8 (Atoms‘𝐾) = (Atoms‘𝐾)
5 psubclin.c . . . . . . . 8 𝐶 = (PSubCl‘𝐾)
64, 5psubclssatN 37882 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋 ⊆ (Atoms‘𝐾))
763adant3 1130 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → 𝑋 ⊆ (Atoms‘𝐾))
8 eqid 2738 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
98, 4atssbase 37231 . . . . . 6 (Atoms‘𝐾) ⊆ (Base‘𝐾)
107, 9sstrdi 3929 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → 𝑋 ⊆ (Base‘𝐾))
11 eqid 2738 . . . . . 6 (lub‘𝐾) = (lub‘𝐾)
128, 11clatlubcl 18136 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
133, 10, 12syl2anc 583 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
144, 5psubclssatN 37882 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑌𝐶) → 𝑌 ⊆ (Atoms‘𝐾))
15143adant2 1129 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → 𝑌 ⊆ (Atoms‘𝐾))
1615, 9sstrdi 3929 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → 𝑌 ⊆ (Base‘𝐾))
178, 11clatlubcl 18136 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑌 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾))
183, 16, 17syl2anc 583 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾))
19 eqid 2738 . . . . 5 (meet‘𝐾) = (meet‘𝐾)
20 eqid 2738 . . . . 5 (pmap‘𝐾) = (pmap‘𝐾)
218, 19, 4, 20pmapmeet 37714 . . . 4 ((𝐾 ∈ HL ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌))) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))))
221, 13, 18, 21syl3anc 1369 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌))) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))))
2311, 20, 5pmapidclN 37883 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐶) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) = 𝑋)
24233adant3 1130 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) = 𝑋)
2511, 20, 5pmapidclN 37883 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐶) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)) = 𝑌)
26253adant2 1129 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)) = 𝑌)
2724, 26ineq12d 4144 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → (((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))) = (𝑋𝑌))
2822, 27eqtrd 2778 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌))) = (𝑋𝑌))
29 hllat 37304 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
30293ad2ant1 1131 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → 𝐾 ∈ Lat)
318, 19latmcl 18073 . . . 4 ((𝐾 ∈ Lat ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) → (((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌)) ∈ (Base‘𝐾))
3230, 13, 18, 31syl3anc 1369 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → (((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌)) ∈ (Base‘𝐾))
338, 20, 5pmapsubclN 37887 . . 3 ((𝐾 ∈ HL ∧ (((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌)) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌))) ∈ 𝐶)
341, 32, 33syl2anc 583 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑋)(meet‘𝐾)((lub‘𝐾)‘𝑌))) ∈ 𝐶)
3528, 34eqeltrrd 2840 1 ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → (𝑋𝑌) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108  cin 3882  wss 3883  cfv 6418  (class class class)co 7255  Basecbs 16840  lubclub 17942  meetcmee 17945  Latclat 18064  CLatccla 18131  Atomscatm 37204  HLchlt 37291  pmapcpmap 37438  PSubClcpscN 37875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-riotaBAD 36894
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-undef 8060  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-p1 18059  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-pmap 37445  df-polarityN 37844  df-psubclN 37876
This theorem is referenced by:  osumcllem9N  37905
  Copyright terms: Public domain W3C validator