![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qusbas | Structured version Visualization version GIF version |
Description: Base set of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015.) |
Ref | Expression |
---|---|
qusbas.u | ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) |
qusbas.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
qusbas.e | ⊢ (𝜑 → ∼ ∈ 𝑊) |
qusbas.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
Ref | Expression |
---|---|
qusbas | ⊢ (𝜑 → (𝑉 / ∼ ) = (Base‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusbas.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) | |
2 | qusbas.v | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
3 | eqid 2733 | . . 3 ⊢ (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
4 | qusbas.e | . . 3 ⊢ (𝜑 → ∼ ∈ 𝑊) | |
5 | qusbas.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
6 | 1, 2, 3, 4, 5 | qusval 17483 | . 2 ⊢ (𝜑 → 𝑈 = ((𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) “s 𝑅)) |
7 | 1, 2, 3, 4, 5 | quslem 17484 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ):𝑉–onto→(𝑉 / ∼ )) |
8 | 6, 2, 7, 5 | imasbas 17453 | 1 ⊢ (𝜑 → (𝑉 / ∼ ) = (Base‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ↦ cmpt 5229 ‘cfv 6539 (class class class)co 7403 [cec 8696 / cqs 8697 Basecbs 17139 /s cqus 17446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5283 ax-sep 5297 ax-nul 5304 ax-pow 5361 ax-pr 5425 ax-un 7719 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4527 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4907 df-iun 4997 df-br 5147 df-opab 5209 df-mpt 5230 df-tr 5264 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6296 df-ord 6363 df-on 6364 df-lim 6365 df-suc 6366 df-iota 6491 df-fun 6541 df-fn 6542 df-f 6543 df-f1 6544 df-fo 6545 df-f1o 6546 df-fv 6547 df-riota 7359 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8260 df-wrecs 8291 df-recs 8365 df-rdg 8404 df-1o 8460 df-er 8698 df-ec 8700 df-qs 8704 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-sup 9432 df-inf 9433 df-pnf 11245 df-mnf 11246 df-xr 11247 df-ltxr 11248 df-le 11249 df-sub 11441 df-neg 11442 df-nn 12208 df-2 12270 df-3 12271 df-4 12272 df-5 12273 df-6 12274 df-7 12275 df-8 12276 df-9 12277 df-n0 12468 df-z 12554 df-dec 12673 df-uz 12818 df-fz 13480 df-struct 17075 df-slot 17110 df-ndx 17122 df-base 17140 df-plusg 17205 df-mulr 17206 df-sca 17208 df-vsca 17209 df-ip 17210 df-tset 17211 df-ple 17212 df-ds 17214 df-imas 17449 df-qus 17450 |
This theorem is referenced by: quselbas 19056 quseccl0 19057 qus0subgbas 19068 frgpeccl 19621 frgpupf 19633 frgpup1 19635 frgpup3lem 19637 qusabl 19724 frgpnabllem2 19733 quscrng 20864 znbas 21082 qustgplem 23606 pi1bas 24535 qustriv 32444 qustrivr 32445 nsgqusf1olem1 32486 nsgqusf1olem2 32487 ghmquskerlem1 32490 ghmquskerco 32491 ghmquskerlem2 32492 ghmqusker 32493 lmhmqusker 32495 rhmqusker 32501 qsidomlem1 32528 qsidomlem2 32529 opprqusbas 32554 opprqusplusg 32555 opprqusmulr 32557 qsdrngilem 32560 qsdrngi 32561 qsdrnglem2 32562 qusdimsum 32657 rngqiprngimf 46710 |
Copyright terms: Public domain | W3C validator |