| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qusbas | Structured version Visualization version GIF version | ||
| Description: Base set of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| Ref | Expression |
|---|---|
| qusbas.u | ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) |
| qusbas.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| qusbas.e | ⊢ (𝜑 → ∼ ∈ 𝑊) |
| qusbas.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
| Ref | Expression |
|---|---|
| qusbas | ⊢ (𝜑 → (𝑉 / ∼ ) = (Base‘𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusbas.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) | |
| 2 | qusbas.v | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
| 3 | eqid 2731 | . . 3 ⊢ (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
| 4 | qusbas.e | . . 3 ⊢ (𝜑 → ∼ ∈ 𝑊) | |
| 5 | qusbas.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
| 6 | 1, 2, 3, 4, 5 | qusval 17446 | . 2 ⊢ (𝜑 → 𝑈 = ((𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) “s 𝑅)) |
| 7 | 1, 2, 3, 4, 5 | quslem 17447 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ):𝑉–onto→(𝑉 / ∼ )) |
| 8 | 6, 2, 7, 5 | imasbas 17416 | 1 ⊢ (𝜑 → (𝑉 / ∼ ) = (Base‘𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ↦ cmpt 5172 ‘cfv 6481 (class class class)co 7346 [cec 8620 / cqs 8621 Basecbs 17120 /s cqus 17409 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-ec 8624 df-qs 8628 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-imas 17412 df-qus 17413 |
| This theorem is referenced by: quselbas 19097 quseccl0 19098 qus0subgbas 19111 ghmqusnsglem1 19193 ghmqusnsglem2 19194 ghmqusnsg 19195 ghmquskerlem1 19196 ghmquskerco 19197 ghmquskerlem2 19198 ghmquskerlem3 19199 ghmqusker 19200 frgpeccl 19674 frgpupf 19686 frgpup1 19688 frgpup3lem 19690 qusabl 19778 frgpnabllem2 19787 quscrng 21221 rhmqusnsg 21223 rngqiprngimf 21235 rngqiprngfulem1 21249 pzriprnglem11 21429 znbas 21481 qustgplem 24037 pi1bas 24966 rlocbas 33232 qustriv 33327 qustrivr 33328 nsgqusf1olem1 33376 nsgqusf1olem2 33377 lmhmqusker 33380 rhmquskerlem 33388 qsidomlem1 33415 qsidomlem2 33416 opprqusbas 33451 opprqusplusg 33452 opprqusmulr 33454 qsdrngilem 33457 qsdrngi 33458 qsdrnglem2 33459 qusdimsum 33639 algextdeglem4 33731 |
| Copyright terms: Public domain | W3C validator |