MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabeq2i Structured version   Visualization version   GIF version

Theorem rabeq2i 3424
Description: Inference from equality of a class variable and a restricted class abstraction. (Contributed by NM, 16-Feb-2004.)
Hypothesis
Ref Expression
rabeq2i.1 𝐴 = {𝑥𝐵𝜑}
Assertion
Ref Expression
rabeq2i (𝑥𝐴 ↔ (𝑥𝐵𝜑))

Proof of Theorem rabeq2i
StepHypRef Expression
1 rabeq2i.1 . . 3 𝐴 = {𝑥𝐵𝜑}
21eleq2i 2825 . 2 (𝑥𝐴𝑥 ∈ {𝑥𝐵𝜑})
3 rabid 3312 . 2 (𝑥 ∈ {𝑥𝐵𝜑} ↔ (𝑥𝐵𝜑))
42, 3bitri 274 1 (𝑥𝐴 ↔ (𝑥𝐵𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1537  wcel 2101  {crab 3221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-12 2166  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1540  df-ex 1778  df-sb 2063  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3224
This theorem is referenced by:  fvmptss  6907  tfis  7721  nqereu  10713  rpnnen1lem2  12745  rpnnen1lem1  12746  rpnnen1lem3  12747  rpnnen1lem5  12749  qustgpopn  23299  nbusgrf1o0  27764  finsumvtxdg2ssteplem3  27942  frgrwopreglem2  28705  frgrwopreglem5lem  28712  resf1o  31093  nsgqusf1olem2  31627  nsgqusf1olem3  31628  ballotlem2  32483  reprsuc  32623  oddprm2  32663  hgt750lemb  32664  bnj1476  32855  bnj1533  32860  bnj1538  32863  bnj1523  33079  cvmlift2lem12  33304  neibastop2lem  34577  topdifinfindis  35545  topdifinffinlem  35546  stoweidlem24  43600  stoweidlem31  43607  stoweidlem52  43628  stoweidlem54  43630  stoweidlem57  43633  salexct  43908  ovolval5lem3  44228  pimdecfgtioc  44289  pimincfltioc  44290  pimdecfgtioo  44291  pimincfltioo  44292  smfsuplem1  44384  smfsuplem3  44386  smfliminflem  44403  prprsprreu  45011
  Copyright terms: Public domain W3C validator