Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabeq2i | Structured version Visualization version GIF version |
Description: Inference from equality of a class variable and a restricted class abstraction. (Contributed by NM, 16-Feb-2004.) |
Ref | Expression |
---|---|
rabeq2i.1 | ⊢ 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝜑} |
Ref | Expression |
---|---|
rabeq2i | ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq2i.1 | . . 3 ⊢ 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝜑} | |
2 | 1 | eleq2i 2825 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑}) |
3 | rabid 3312 | . 2 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) | |
4 | 2, 3 | bitri 274 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1537 ∈ wcel 2101 {crab 3221 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-12 2166 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1540 df-ex 1778 df-sb 2063 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3224 |
This theorem is referenced by: fvmptss 6907 tfis 7721 nqereu 10713 rpnnen1lem2 12745 rpnnen1lem1 12746 rpnnen1lem3 12747 rpnnen1lem5 12749 qustgpopn 23299 nbusgrf1o0 27764 finsumvtxdg2ssteplem3 27942 frgrwopreglem2 28705 frgrwopreglem5lem 28712 resf1o 31093 nsgqusf1olem2 31627 nsgqusf1olem3 31628 ballotlem2 32483 reprsuc 32623 oddprm2 32663 hgt750lemb 32664 bnj1476 32855 bnj1533 32860 bnj1538 32863 bnj1523 33079 cvmlift2lem12 33304 neibastop2lem 34577 topdifinfindis 35545 topdifinffinlem 35546 stoweidlem24 43600 stoweidlem31 43607 stoweidlem52 43628 stoweidlem54 43630 stoweidlem57 43633 salexct 43908 ovolval5lem3 44228 pimdecfgtioc 44289 pimincfltioc 44290 pimdecfgtioo 44291 pimincfltioo 44292 smfsuplem1 44384 smfsuplem3 44386 smfliminflem 44403 prprsprreu 45011 |
Copyright terms: Public domain | W3C validator |