Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabeq2i | Structured version Visualization version GIF version |
Description: Inference from equality of a class variable and a restricted class abstraction. (Contributed by NM, 16-Feb-2004.) |
Ref | Expression |
---|---|
rabeq2i.1 | ⊢ 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝜑} |
Ref | Expression |
---|---|
rabeq2i | ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq2i.1 | . . 3 ⊢ 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝜑} | |
2 | 1 | eleq2i 2829 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑}) |
3 | rabid 3290 | . 2 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) | |
4 | 2, 3 | bitri 278 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 {crab 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-12 2175 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3070 |
This theorem is referenced by: fvmptss 6830 tfis 7633 nqereu 10543 rpnnen1lem2 12573 rpnnen1lem1 12574 rpnnen1lem3 12575 rpnnen1lem5 12577 qustgpopn 23017 nbusgrf1o0 27457 finsumvtxdg2ssteplem3 27635 frgrwopreglem2 28396 frgrwopreglem5lem 28403 resf1o 30785 nsgqusf1olem2 31313 nsgqusf1olem3 31314 ballotlem2 32167 reprsuc 32307 oddprm2 32347 hgt750lemb 32348 bnj1476 32540 bnj1533 32545 bnj1538 32548 bnj1523 32764 cvmlift2lem12 32989 neibastop2lem 34286 topdifinfindis 35254 topdifinffinlem 35255 stoweidlem24 43240 stoweidlem31 43247 stoweidlem52 43268 stoweidlem54 43270 stoweidlem57 43273 salexct 43548 ovolval5lem3 43867 pimdecfgtioc 43924 pimincfltioc 43925 pimdecfgtioo 43926 pimincfltioo 43927 smfsuplem1 44016 smfsuplem3 44018 smfliminflem 44035 prprsprreu 44644 |
Copyright terms: Public domain | W3C validator |