Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabeq2i | Structured version Visualization version GIF version |
Description: Inference from equality of a class variable and a restricted class abstraction. (Contributed by NM, 16-Feb-2004.) |
Ref | Expression |
---|---|
rabeq2i.1 | ⊢ 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝜑} |
Ref | Expression |
---|---|
rabeq2i | ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq2i.1 | . . 3 ⊢ 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝜑} | |
2 | 1 | eleq2i 2829 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑}) |
3 | rabid 3424 | . 2 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) | |
4 | 2, 3 | bitri 275 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1541 ∈ wcel 2106 {crab 3404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-12 2171 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3405 |
This theorem is referenced by: fvmptss 6948 tfis 7774 nqereu 10791 rpnnen1lem2 12823 rpnnen1lem1 12824 rpnnen1lem3 12825 rpnnen1lem5 12827 qustgpopn 23377 nbusgrf1o0 28025 finsumvtxdg2ssteplem3 28203 frgrwopreglem2 28965 frgrwopreglem5lem 28972 resf1o 31350 nsgqusf1olem2 31894 nsgqusf1olem3 31895 ballotlem2 32753 reprsuc 32893 oddprm2 32933 hgt750lemb 32934 bnj1476 33124 bnj1533 33129 bnj1538 33132 bnj1523 33348 cvmlift2lem12 33573 addsproplem2 34234 sleadd1 34250 neibastop2lem 34686 topdifinfindis 35671 topdifinffinlem 35672 stoweidlem24 43951 stoweidlem31 43958 stoweidlem52 43979 stoweidlem54 43981 stoweidlem57 43984 salexct 44259 ovolval5lem3 44579 pimdecfgtioc 44640 pimincfltioc 44641 pimdecfgtioo 44642 pimincfltioo 44643 smfsuplem1 44736 smfsuplem3 44738 smfliminflem 44755 prprsprreu 45387 |
Copyright terms: Public domain | W3C validator |