![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabeq2i | Structured version Visualization version GIF version |
Description: Inference from equality of a class variable and a restricted class abstraction. (Contributed by NM, 16-Feb-2004.) |
Ref | Expression |
---|---|
rabeq2i.1 | ⊢ 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝜑} |
Ref | Expression |
---|---|
rabeq2i | ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq2i.1 | . . 3 ⊢ 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝜑} | |
2 | 1 | eleq2i 2876 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑}) |
3 | rabid 3339 | . 2 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) | |
4 | 2, 3 | bitri 276 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 ∧ wa 396 = wceq 1525 ∈ wcel 2083 {crab 3111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-12 2143 ax-ext 2771 |
This theorem depends on definitions: df-bi 208 df-an 397 df-tru 1528 df-ex 1766 df-sb 2045 df-clab 2778 df-cleq 2790 df-clel 2865 df-rab 3116 |
This theorem is referenced by: fvmptss 6653 tfis 7432 nqereu 10204 rpnnen1lem2 12230 rpnnen1lem1 12231 rpnnen1lem3 12232 rpnnen1lem5 12234 qustgpopn 22415 nbusgrf1o0 26838 finsumvtxdg2ssteplem3 27016 frgrwopreglem2 27780 frgrwopreglem5lem 27787 resf1o 30150 ballotlem2 31359 reprsuc 31499 oddprm2 31539 hgt750lemb 31540 bnj1476 31731 bnj1533 31736 bnj1538 31739 bnj1523 31953 cvmlift2lem12 32171 neibastop2lem 33319 topdifinfindis 34179 topdifinffinlem 34180 stoweidlem24 41873 stoweidlem31 41880 stoweidlem52 41901 stoweidlem54 41903 stoweidlem57 41906 salexct 42181 ovolval5lem3 42500 pimdecfgtioc 42557 pimincfltioc 42558 pimdecfgtioo 42559 pimincfltioo 42560 smfsuplem1 42649 smfsuplem3 42651 smfliminflem 42668 prprsprreu 43185 |
Copyright terms: Public domain | W3C validator |