Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabeq2i | Structured version Visualization version GIF version |
Description: Inference from equality of a class variable and a restricted class abstraction. (Contributed by NM, 16-Feb-2004.) |
Ref | Expression |
---|---|
rabeq2i.1 | ⊢ 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝜑} |
Ref | Expression |
---|---|
rabeq2i | ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq2i.1 | . . 3 ⊢ 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝜑} | |
2 | 1 | eleq2i 2830 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑}) |
3 | rabid 3304 | . 2 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) | |
4 | 2, 3 | bitri 274 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 |
This theorem is referenced by: fvmptss 6869 tfis 7676 nqereu 10616 rpnnen1lem2 12646 rpnnen1lem1 12647 rpnnen1lem3 12648 rpnnen1lem5 12650 qustgpopn 23179 nbusgrf1o0 27639 finsumvtxdg2ssteplem3 27817 frgrwopreglem2 28578 frgrwopreglem5lem 28585 resf1o 30967 nsgqusf1olem2 31501 nsgqusf1olem3 31502 ballotlem2 32355 reprsuc 32495 oddprm2 32535 hgt750lemb 32536 bnj1476 32727 bnj1533 32732 bnj1538 32735 bnj1523 32951 cvmlift2lem12 33176 neibastop2lem 34476 topdifinfindis 35444 topdifinffinlem 35445 stoweidlem24 43455 stoweidlem31 43462 stoweidlem52 43483 stoweidlem54 43485 stoweidlem57 43488 salexct 43763 ovolval5lem3 44082 pimdecfgtioc 44139 pimincfltioc 44140 pimdecfgtioo 44141 pimincfltioo 44142 smfsuplem1 44231 smfsuplem3 44233 smfliminflem 44250 prprsprreu 44859 |
Copyright terms: Public domain | W3C validator |