Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prprsprreu Structured version   Visualization version   GIF version

Theorem prprsprreu 47681
Description: There is a unique proper unordered pair over a given set 𝑉 fulfilling a wff iff there is a unique unordered pair over 𝑉 of size two fulfilling this wff. (Contributed by AV, 30-Apr-2023.)
Assertion
Ref Expression
prprsprreu (𝑉𝑊 → (∃!𝑝 ∈ (Pairsproper𝑉)𝜑 ↔ ∃!𝑝 ∈ (Pairs‘𝑉)((♯‘𝑝) = 2 ∧ 𝜑)))
Distinct variable groups:   𝑉,𝑝   𝑊,𝑝
Allowed substitution hint:   𝜑(𝑝)

Proof of Theorem prprsprreu
StepHypRef Expression
1 prprspr2 47680 . . . . . . 7 (Pairsproper𝑉) = {𝑝 ∈ (Pairs‘𝑉) ∣ (♯‘𝑝) = 2}
21reqabi 3419 . . . . . 6 (𝑝 ∈ (Pairsproper𝑉) ↔ (𝑝 ∈ (Pairs‘𝑉) ∧ (♯‘𝑝) = 2))
32a1i 11 . . . . 5 (𝑉𝑊 → (𝑝 ∈ (Pairsproper𝑉) ↔ (𝑝 ∈ (Pairs‘𝑉) ∧ (♯‘𝑝) = 2)))
43anbi1d 631 . . . 4 (𝑉𝑊 → ((𝑝 ∈ (Pairsproper𝑉) ∧ 𝜑) ↔ ((𝑝 ∈ (Pairs‘𝑉) ∧ (♯‘𝑝) = 2) ∧ 𝜑)))
5 anass 468 . . . 4 (((𝑝 ∈ (Pairs‘𝑉) ∧ (♯‘𝑝) = 2) ∧ 𝜑) ↔ (𝑝 ∈ (Pairs‘𝑉) ∧ ((♯‘𝑝) = 2 ∧ 𝜑)))
64, 5bitrdi 287 . . 3 (𝑉𝑊 → ((𝑝 ∈ (Pairsproper𝑉) ∧ 𝜑) ↔ (𝑝 ∈ (Pairs‘𝑉) ∧ ((♯‘𝑝) = 2 ∧ 𝜑))))
76eubidv 2583 . 2 (𝑉𝑊 → (∃!𝑝(𝑝 ∈ (Pairsproper𝑉) ∧ 𝜑) ↔ ∃!𝑝(𝑝 ∈ (Pairs‘𝑉) ∧ ((♯‘𝑝) = 2 ∧ 𝜑))))
8 df-reu 3348 . 2 (∃!𝑝 ∈ (Pairsproper𝑉)𝜑 ↔ ∃!𝑝(𝑝 ∈ (Pairsproper𝑉) ∧ 𝜑))
9 df-reu 3348 . 2 (∃!𝑝 ∈ (Pairs‘𝑉)((♯‘𝑝) = 2 ∧ 𝜑) ↔ ∃!𝑝(𝑝 ∈ (Pairs‘𝑉) ∧ ((♯‘𝑝) = 2 ∧ 𝜑)))
107, 8, 93bitr4g 314 1 (𝑉𝑊 → (∃!𝑝 ∈ (Pairsproper𝑉)𝜑 ↔ ∃!𝑝 ∈ (Pairs‘𝑉)((♯‘𝑝) = 2 ∧ 𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  ∃!weu 2565  ∃!wreu 3345  cfv 6489  2c2 12191  chash 14244  Pairscspr 47639  Pairspropercprpr 47674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-oadd 8398  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9805  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-n0 12393  df-z 12480  df-uz 12743  df-fz 13415  df-hash 14245  df-spr 47640  df-prpr 47675
This theorem is referenced by:  reuprpr  47685
  Copyright terms: Public domain W3C validator