Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem24 Structured version   Visualization version   GIF version

Theorem stoweidlem24 41873
Description: This lemma proves that for 𝑛 sufficiently large, qn( t ) > ( 1 - epsilon ), for all 𝑡 in 𝑉: see Lemma 1 [BrosowskiDeutsh] p. 90, (at the bottom of page 90). 𝑄 is used to represent qn in the paper, 𝑁 to represent 𝑛 in the paper, 𝐾 to represent 𝑘, 𝐷 to represent δ, and 𝐸 to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem24.1 𝑉 = {𝑡𝑇 ∣ (𝑃𝑡) < (𝐷 / 2)}
stoweidlem24.2 𝑄 = (𝑡𝑇 ↦ ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
stoweidlem24.3 (𝜑𝑃:𝑇⟶ℝ)
stoweidlem24.4 (𝜑𝑁 ∈ ℕ0)
stoweidlem24.5 (𝜑𝐾 ∈ ℕ0)
stoweidlem24.6 (𝜑𝐷 ∈ ℝ+)
stoweidlem24.8 (𝜑𝐸 ∈ ℝ+)
stoweidlem24.9 (𝜑 → (1 − 𝐸) < (1 − (((𝐾 · 𝐷) / 2)↑𝑁)))
stoweidlem24.10 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
Assertion
Ref Expression
stoweidlem24 ((𝜑𝑡𝑉) → (1 − 𝐸) < (𝑄𝑡))
Distinct variable group:   𝑡,𝑇
Allowed substitution hints:   𝜑(𝑡)   𝐷(𝑡)   𝑃(𝑡)   𝑄(𝑡)   𝐸(𝑡)   𝐾(𝑡)   𝑁(𝑡)   𝑉(𝑡)

Proof of Theorem stoweidlem24
StepHypRef Expression
1 1red 10495 . . . 4 ((𝜑𝑡𝑉) → 1 ∈ ℝ)
2 stoweidlem24.8 . . . . . 6 (𝜑𝐸 ∈ ℝ+)
32rpred 12285 . . . . 5 (𝜑𝐸 ∈ ℝ)
43adantr 481 . . . 4 ((𝜑𝑡𝑉) → 𝐸 ∈ ℝ)
51, 4resubcld 10922 . . 3 ((𝜑𝑡𝑉) → (1 − 𝐸) ∈ ℝ)
6 stoweidlem24.5 . . . . . . . 8 (𝜑𝐾 ∈ ℕ0)
76nn0red 11810 . . . . . . 7 (𝜑𝐾 ∈ ℝ)
87adantr 481 . . . . . 6 ((𝜑𝑡𝑉) → 𝐾 ∈ ℝ)
9 stoweidlem24.3 . . . . . . . 8 (𝜑𝑃:𝑇⟶ℝ)
109adantr 481 . . . . . . 7 ((𝜑𝑡𝑉) → 𝑃:𝑇⟶ℝ)
11 stoweidlem24.1 . . . . . . . . . 10 𝑉 = {𝑡𝑇 ∣ (𝑃𝑡) < (𝐷 / 2)}
1211rabeq2i 3435 . . . . . . . . 9 (𝑡𝑉 ↔ (𝑡𝑇 ∧ (𝑃𝑡) < (𝐷 / 2)))
1312simplbi 498 . . . . . . . 8 (𝑡𝑉𝑡𝑇)
1413adantl 482 . . . . . . 7 ((𝜑𝑡𝑉) → 𝑡𝑇)
1510, 14ffvelrnd 6724 . . . . . 6 ((𝜑𝑡𝑉) → (𝑃𝑡) ∈ ℝ)
168, 15remulcld 10524 . . . . 5 ((𝜑𝑡𝑉) → (𝐾 · (𝑃𝑡)) ∈ ℝ)
17 stoweidlem24.4 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
1817adantr 481 . . . . 5 ((𝜑𝑡𝑉) → 𝑁 ∈ ℕ0)
1916, 18reexpcld 13381 . . . 4 ((𝜑𝑡𝑉) → ((𝐾 · (𝑃𝑡))↑𝑁) ∈ ℝ)
201, 19resubcld 10922 . . 3 ((𝜑𝑡𝑉) → (1 − ((𝐾 · (𝑃𝑡))↑𝑁)) ∈ ℝ)
2115, 18reexpcld 13381 . . . . 5 ((𝜑𝑡𝑉) → ((𝑃𝑡)↑𝑁) ∈ ℝ)
221, 21resubcld 10922 . . . 4 ((𝜑𝑡𝑉) → (1 − ((𝑃𝑡)↑𝑁)) ∈ ℝ)
236, 17jca 512 . . . . . 6 (𝜑 → (𝐾 ∈ ℕ0𝑁 ∈ ℕ0))
2423adantr 481 . . . . 5 ((𝜑𝑡𝑉) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ0))
25 nn0expcl 13297 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾𝑁) ∈ ℕ0)
2624, 25syl 17 . . . 4 ((𝜑𝑡𝑉) → (𝐾𝑁) ∈ ℕ0)
2722, 26reexpcld 13381 . . 3 ((𝜑𝑡𝑉) → ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)) ∈ ℝ)
28 1red 10495 . . . . . 6 (𝜑 → 1 ∈ ℝ)
29 stoweidlem24.6 . . . . . . . . . 10 (𝜑𝐷 ∈ ℝ+)
3029rpred 12285 . . . . . . . . 9 (𝜑𝐷 ∈ ℝ)
317, 30remulcld 10524 . . . . . . . 8 (𝜑 → (𝐾 · 𝐷) ∈ ℝ)
3231rehalfcld 11738 . . . . . . 7 (𝜑 → ((𝐾 · 𝐷) / 2) ∈ ℝ)
3332, 17reexpcld 13381 . . . . . 6 (𝜑 → (((𝐾 · 𝐷) / 2)↑𝑁) ∈ ℝ)
3428, 33resubcld 10922 . . . . 5 (𝜑 → (1 − (((𝐾 · 𝐷) / 2)↑𝑁)) ∈ ℝ)
3534adantr 481 . . . 4 ((𝜑𝑡𝑉) → (1 − (((𝐾 · 𝐷) / 2)↑𝑁)) ∈ ℝ)
36 stoweidlem24.9 . . . . 5 (𝜑 → (1 − 𝐸) < (1 − (((𝐾 · 𝐷) / 2)↑𝑁)))
3736adantr 481 . . . 4 ((𝜑𝑡𝑉) → (1 − 𝐸) < (1 − (((𝐾 · 𝐷) / 2)↑𝑁)))
3833adantr 481 . . . . 5 ((𝜑𝑡𝑉) → (((𝐾 · 𝐷) / 2)↑𝑁) ∈ ℝ)
3932adantr 481 . . . . . 6 ((𝜑𝑡𝑉) → ((𝐾 · 𝐷) / 2) ∈ ℝ)
406nn0ge0d 11812 . . . . . . . . 9 (𝜑 → 0 ≤ 𝐾)
417, 40jca 512 . . . . . . . 8 (𝜑 → (𝐾 ∈ ℝ ∧ 0 ≤ 𝐾))
4241adantr 481 . . . . . . 7 ((𝜑𝑡𝑉) → (𝐾 ∈ ℝ ∧ 0 ≤ 𝐾))
43 stoweidlem24.10 . . . . . . . . . 10 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
4443r19.21bi 3177 . . . . . . . . 9 ((𝜑𝑡𝑇) → (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
4544simpld 495 . . . . . . . 8 ((𝜑𝑡𝑇) → 0 ≤ (𝑃𝑡))
4613, 45sylan2 592 . . . . . . 7 ((𝜑𝑡𝑉) → 0 ≤ (𝑃𝑡))
47 mulge0 11012 . . . . . . 7 (((𝐾 ∈ ℝ ∧ 0 ≤ 𝐾) ∧ ((𝑃𝑡) ∈ ℝ ∧ 0 ≤ (𝑃𝑡))) → 0 ≤ (𝐾 · (𝑃𝑡)))
4842, 15, 46, 47syl12anc 833 . . . . . 6 ((𝜑𝑡𝑉) → 0 ≤ (𝐾 · (𝑃𝑡)))
4930rehalfcld 11738 . . . . . . . . 9 (𝜑 → (𝐷 / 2) ∈ ℝ)
5049adantr 481 . . . . . . . 8 ((𝜑𝑡𝑉) → (𝐷 / 2) ∈ ℝ)
5112simprbi 497 . . . . . . . . . 10 (𝑡𝑉 → (𝑃𝑡) < (𝐷 / 2))
5251adantl 482 . . . . . . . . 9 ((𝜑𝑡𝑉) → (𝑃𝑡) < (𝐷 / 2))
5315, 50, 52ltled 10641 . . . . . . . 8 ((𝜑𝑡𝑉) → (𝑃𝑡) ≤ (𝐷 / 2))
54 lemul2a 11349 . . . . . . . 8 ((((𝑃𝑡) ∈ ℝ ∧ (𝐷 / 2) ∈ ℝ ∧ (𝐾 ∈ ℝ ∧ 0 ≤ 𝐾)) ∧ (𝑃𝑡) ≤ (𝐷 / 2)) → (𝐾 · (𝑃𝑡)) ≤ (𝐾 · (𝐷 / 2)))
5515, 50, 42, 53, 54syl31anc 1366 . . . . . . 7 ((𝜑𝑡𝑉) → (𝐾 · (𝑃𝑡)) ≤ (𝐾 · (𝐷 / 2)))
566nn0cnd 11811 . . . . . . . . 9 (𝜑𝐾 ∈ ℂ)
5756adantr 481 . . . . . . . 8 ((𝜑𝑡𝑉) → 𝐾 ∈ ℂ)
5829rpcnd 12287 . . . . . . . . 9 (𝜑𝐷 ∈ ℂ)
5958adantr 481 . . . . . . . 8 ((𝜑𝑡𝑉) → 𝐷 ∈ ℂ)
60 2cnne0 11701 . . . . . . . . 9 (2 ∈ ℂ ∧ 2 ≠ 0)
6160a1i 11 . . . . . . . 8 ((𝜑𝑡𝑉) → (2 ∈ ℂ ∧ 2 ≠ 0))
62 divass 11170 . . . . . . . 8 ((𝐾 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝐾 · 𝐷) / 2) = (𝐾 · (𝐷 / 2)))
6357, 59, 61, 62syl3anc 1364 . . . . . . 7 ((𝜑𝑡𝑉) → ((𝐾 · 𝐷) / 2) = (𝐾 · (𝐷 / 2)))
6455, 63breqtrrd 4996 . . . . . 6 ((𝜑𝑡𝑉) → (𝐾 · (𝑃𝑡)) ≤ ((𝐾 · 𝐷) / 2))
65 leexp1a 13393 . . . . . 6 ((((𝐾 · (𝑃𝑡)) ∈ ℝ ∧ ((𝐾 · 𝐷) / 2) ∈ ℝ ∧ 𝑁 ∈ ℕ0) ∧ (0 ≤ (𝐾 · (𝑃𝑡)) ∧ (𝐾 · (𝑃𝑡)) ≤ ((𝐾 · 𝐷) / 2))) → ((𝐾 · (𝑃𝑡))↑𝑁) ≤ (((𝐾 · 𝐷) / 2)↑𝑁))
6616, 39, 18, 48, 64, 65syl32anc 1371 . . . . 5 ((𝜑𝑡𝑉) → ((𝐾 · (𝑃𝑡))↑𝑁) ≤ (((𝐾 · 𝐷) / 2)↑𝑁))
6719, 38, 1, 66lesub2dd 11111 . . . 4 ((𝜑𝑡𝑉) → (1 − (((𝐾 · 𝐷) / 2)↑𝑁)) ≤ (1 − ((𝐾 · (𝑃𝑡))↑𝑁)))
685, 35, 20, 37, 67ltletrd 10653 . . 3 ((𝜑𝑡𝑉) → (1 − 𝐸) < (1 − ((𝐾 · (𝑃𝑡))↑𝑁)))
6915recnd 10522 . . . . . . 7 ((𝜑𝑡𝑉) → (𝑃𝑡) ∈ ℂ)
7057, 69, 18mulexpd 13379 . . . . . 6 ((𝜑𝑡𝑉) → ((𝐾 · (𝑃𝑡))↑𝑁) = ((𝐾𝑁) · ((𝑃𝑡)↑𝑁)))
7170eqcomd 2803 . . . . 5 ((𝜑𝑡𝑉) → ((𝐾𝑁) · ((𝑃𝑡)↑𝑁)) = ((𝐾 · (𝑃𝑡))↑𝑁))
7271oveq2d 7039 . . . 4 ((𝜑𝑡𝑉) → (1 − ((𝐾𝑁) · ((𝑃𝑡)↑𝑁))) = (1 − ((𝐾 · (𝑃𝑡))↑𝑁)))
7313, 44sylan2 592 . . . . . . 7 ((𝜑𝑡𝑉) → (0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1))
7473simprd 496 . . . . . 6 ((𝜑𝑡𝑉) → (𝑃𝑡) ≤ 1)
75 exple1 13394 . . . . . 6 ((((𝑃𝑡) ∈ ℝ ∧ 0 ≤ (𝑃𝑡) ∧ (𝑃𝑡) ≤ 1) ∧ 𝑁 ∈ ℕ0) → ((𝑃𝑡)↑𝑁) ≤ 1)
7615, 46, 74, 18, 75syl31anc 1366 . . . . 5 ((𝜑𝑡𝑉) → ((𝑃𝑡)↑𝑁) ≤ 1)
77 stoweidlem10 41859 . . . . 5 ((((𝑃𝑡)↑𝑁) ∈ ℝ ∧ (𝐾𝑁) ∈ ℕ0 ∧ ((𝑃𝑡)↑𝑁) ≤ 1) → (1 − ((𝐾𝑁) · ((𝑃𝑡)↑𝑁))) ≤ ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
7821, 26, 76, 77syl3anc 1364 . . . 4 ((𝜑𝑡𝑉) → (1 − ((𝐾𝑁) · ((𝑃𝑡)↑𝑁))) ≤ ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
7972, 78eqbrtrrd 4992 . . 3 ((𝜑𝑡𝑉) → (1 − ((𝐾 · (𝑃𝑡))↑𝑁)) ≤ ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
805, 20, 27, 68, 79ltletrd 10653 . 2 ((𝜑𝑡𝑉) → (1 − 𝐸) < ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
81 stoweidlem24.2 . . . 4 𝑄 = (𝑡𝑇 ↦ ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
8281, 9, 17, 6stoweidlem12 41861 . . 3 ((𝜑𝑡𝑇) → (𝑄𝑡) = ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
8313, 82sylan2 592 . 2 ((𝜑𝑡𝑉) → (𝑄𝑡) = ((1 − ((𝑃𝑡)↑𝑁))↑(𝐾𝑁)))
8480, 83breqtrrd 4996 1 ((𝜑𝑡𝑉) → (1 − 𝐸) < (𝑄𝑡))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1525  wcel 2083  wne 2986  wral 3107  {crab 3111   class class class wbr 4968  cmpt 5047  wf 6228  cfv 6232  (class class class)co 7023  cc 10388  cr 10389  0cc0 10390  1c1 10391   · cmul 10395   < clt 10528  cle 10529  cmin 10723   / cdiv 11151  2c2 11546  0cn0 11751  +crp 12243  cexp 13283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-er 8146  df-en 8365  df-dom 8366  df-sdom 8367  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-nn 11493  df-2 11554  df-n0 11752  df-z 11836  df-uz 12098  df-rp 12244  df-seq 13224  df-exp 13284
This theorem is referenced by:  stoweidlem45  41894
  Copyright terms: Public domain W3C validator