MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbusgrf1o0 Structured version   Visualization version   GIF version

Theorem nbusgrf1o0 29095
Description: The mapping of neighbors of a vertex to edges incident to the vertex is a bijection ( 1-1 onto function) in a simple graph. (Contributed by Alexander van der Vekens, 17-Dec-2017.) (Revised by AV, 28-Oct-2020.)
Hypotheses
Ref Expression
nbusgrf1o1.v 𝑉 = (Vtx‘𝐺)
nbusgrf1o1.e 𝐸 = (Edg‘𝐺)
nbusgrf1o1.n 𝑁 = (𝐺 NeighbVtx 𝑈)
nbusgrf1o1.i 𝐼 = {𝑒𝐸𝑈𝑒}
nbusgrf1o.f 𝐹 = (𝑛𝑁 ↦ {𝑈, 𝑛})
Assertion
Ref Expression
nbusgrf1o0 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → 𝐹:𝑁1-1-onto𝐼)
Distinct variable groups:   𝑒,𝐸   𝑈,𝑒   𝑛,𝐸   𝑒,𝐺,𝑛   𝑒,𝐼,𝑛   𝑒,𝑁,𝑛   𝑈,𝑛   𝑒,𝑉,𝑛   𝑒,𝐹
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem nbusgrf1o0
StepHypRef Expression
1 nbusgrf1o1.n . . . . 5 𝑁 = (𝐺 NeighbVtx 𝑈)
21eleq2i 2817 . . . 4 (𝑛𝑁𝑛 ∈ (𝐺 NeighbVtx 𝑈))
3 nbusgrf1o1.e . . . . . . 7 𝐸 = (Edg‘𝐺)
43nbusgreledg 29079 . . . . . 6 (𝐺 ∈ USGraph → (𝑛 ∈ (𝐺 NeighbVtx 𝑈) ↔ {𝑛, 𝑈} ∈ 𝐸))
54adantr 480 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → (𝑛 ∈ (𝐺 NeighbVtx 𝑈) ↔ {𝑛, 𝑈} ∈ 𝐸))
6 prcom 4728 . . . . . . . . . 10 {𝑛, 𝑈} = {𝑈, 𝑛}
76eleq1i 2816 . . . . . . . . 9 ({𝑛, 𝑈} ∈ 𝐸 ↔ {𝑈, 𝑛} ∈ 𝐸)
87biimpi 215 . . . . . . . 8 ({𝑛, 𝑈} ∈ 𝐸 → {𝑈, 𝑛} ∈ 𝐸)
98adantl 481 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ {𝑛, 𝑈} ∈ 𝐸) → {𝑈, 𝑛} ∈ 𝐸)
10 prid1g 4756 . . . . . . . . 9 (𝑈𝑉𝑈 ∈ {𝑈, 𝑛})
1110adantl 481 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → 𝑈 ∈ {𝑈, 𝑛})
1211adantr 480 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ {𝑛, 𝑈} ∈ 𝐸) → 𝑈 ∈ {𝑈, 𝑛})
13 eleq2 2814 . . . . . . . 8 (𝑒 = {𝑈, 𝑛} → (𝑈𝑒𝑈 ∈ {𝑈, 𝑛}))
14 nbusgrf1o1.i . . . . . . . 8 𝐼 = {𝑒𝐸𝑈𝑒}
1513, 14elrab2 3678 . . . . . . 7 ({𝑈, 𝑛} ∈ 𝐼 ↔ ({𝑈, 𝑛} ∈ 𝐸𝑈 ∈ {𝑈, 𝑛}))
169, 12, 15sylanbrc 582 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ {𝑛, 𝑈} ∈ 𝐸) → {𝑈, 𝑛} ∈ 𝐼)
1716ex 412 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → ({𝑛, 𝑈} ∈ 𝐸 → {𝑈, 𝑛} ∈ 𝐼))
185, 17sylbid 239 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → (𝑛 ∈ (𝐺 NeighbVtx 𝑈) → {𝑈, 𝑛} ∈ 𝐼))
192, 18biimtrid 241 . . 3 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → (𝑛𝑁 → {𝑈, 𝑛} ∈ 𝐼))
2019ralrimiv 3137 . 2 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → ∀𝑛𝑁 {𝑈, 𝑛} ∈ 𝐼)
2114reqabi 3446 . . . 4 (𝑒𝐼 ↔ (𝑒𝐸𝑈𝑒))
223, 1edgnbusgreu 29093 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ (𝑒𝐸𝑈𝑒)) → ∃!𝑛𝑁 𝑒 = {𝑈, 𝑛})
2321, 22sylan2b 593 . . 3 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑒𝐼) → ∃!𝑛𝑁 𝑒 = {𝑈, 𝑛})
2423ralrimiva 3138 . 2 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → ∀𝑒𝐼 ∃!𝑛𝑁 𝑒 = {𝑈, 𝑛})
25 nbusgrf1o.f . . 3 𝐹 = (𝑛𝑁 ↦ {𝑈, 𝑛})
2625f1ompt 7102 . 2 (𝐹:𝑁1-1-onto𝐼 ↔ (∀𝑛𝑁 {𝑈, 𝑛} ∈ 𝐼 ∧ ∀𝑒𝐼 ∃!𝑛𝑁 𝑒 = {𝑈, 𝑛}))
2720, 24, 26sylanbrc 582 1 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → 𝐹:𝑁1-1-onto𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wral 3053  ∃!wreu 3366  {crab 3424  {cpr 4622  cmpt 5221  1-1-ontowf1o 6532  cfv 6533  (class class class)co 7401  Vtxcvtx 28725  Edgcedg 28776  USGraphcusgr 28878   NeighbVtx cnbgr 29058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-oadd 8465  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-n0 12470  df-xnn0 12542  df-z 12556  df-uz 12820  df-fz 13482  df-hash 14288  df-edg 28777  df-upgr 28811  df-umgr 28812  df-uspgr 28879  df-usgr 28880  df-nbgr 29059
This theorem is referenced by:  nbusgrf1o1  29096
  Copyright terms: Public domain W3C validator