![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nbusgrf1o0 | Structured version Visualization version GIF version |
Description: The mapping of neighbors of a vertex to edges incident to the vertex is a bijection ( 1-1 onto function) in a simple graph. (Contributed by Alexander van der Vekens, 17-Dec-2017.) (Revised by AV, 28-Oct-2020.) |
Ref | Expression |
---|---|
nbusgrf1o1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
nbusgrf1o1.e | ⊢ 𝐸 = (Edg‘𝐺) |
nbusgrf1o1.n | ⊢ 𝑁 = (𝐺 NeighbVtx 𝑈) |
nbusgrf1o1.i | ⊢ 𝐼 = {𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} |
nbusgrf1o.f | ⊢ 𝐹 = (𝑛 ∈ 𝑁 ↦ {𝑈, 𝑛}) |
Ref | Expression |
---|---|
nbusgrf1o0 | ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → 𝐹:𝑁–1-1-onto→𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbusgrf1o1.n | . . . . 5 ⊢ 𝑁 = (𝐺 NeighbVtx 𝑈) | |
2 | 1 | eleq2i 2818 | . . . 4 ⊢ (𝑛 ∈ 𝑁 ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝑈)) |
3 | nbusgrf1o1.e | . . . . . . 7 ⊢ 𝐸 = (Edg‘𝐺) | |
4 | 3 | nbusgreledg 29289 | . . . . . 6 ⊢ (𝐺 ∈ USGraph → (𝑛 ∈ (𝐺 NeighbVtx 𝑈) ↔ {𝑛, 𝑈} ∈ 𝐸)) |
5 | 4 | adantr 479 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → (𝑛 ∈ (𝐺 NeighbVtx 𝑈) ↔ {𝑛, 𝑈} ∈ 𝐸)) |
6 | prcom 4741 | . . . . . . . . . 10 ⊢ {𝑛, 𝑈} = {𝑈, 𝑛} | |
7 | 6 | eleq1i 2817 | . . . . . . . . 9 ⊢ ({𝑛, 𝑈} ∈ 𝐸 ↔ {𝑈, 𝑛} ∈ 𝐸) |
8 | 7 | biimpi 215 | . . . . . . . 8 ⊢ ({𝑛, 𝑈} ∈ 𝐸 → {𝑈, 𝑛} ∈ 𝐸) |
9 | 8 | adantl 480 | . . . . . . 7 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ {𝑛, 𝑈} ∈ 𝐸) → {𝑈, 𝑛} ∈ 𝐸) |
10 | prid1g 4769 | . . . . . . . . 9 ⊢ (𝑈 ∈ 𝑉 → 𝑈 ∈ {𝑈, 𝑛}) | |
11 | 10 | adantl 480 | . . . . . . . 8 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → 𝑈 ∈ {𝑈, 𝑛}) |
12 | 11 | adantr 479 | . . . . . . 7 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ {𝑛, 𝑈} ∈ 𝐸) → 𝑈 ∈ {𝑈, 𝑛}) |
13 | eleq2 2815 | . . . . . . . 8 ⊢ (𝑒 = {𝑈, 𝑛} → (𝑈 ∈ 𝑒 ↔ 𝑈 ∈ {𝑈, 𝑛})) | |
14 | nbusgrf1o1.i | . . . . . . . 8 ⊢ 𝐼 = {𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} | |
15 | 13, 14 | elrab2 3684 | . . . . . . 7 ⊢ ({𝑈, 𝑛} ∈ 𝐼 ↔ ({𝑈, 𝑛} ∈ 𝐸 ∧ 𝑈 ∈ {𝑈, 𝑛})) |
16 | 9, 12, 15 | sylanbrc 581 | . . . . . 6 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ {𝑛, 𝑈} ∈ 𝐸) → {𝑈, 𝑛} ∈ 𝐼) |
17 | 16 | ex 411 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → ({𝑛, 𝑈} ∈ 𝐸 → {𝑈, 𝑛} ∈ 𝐼)) |
18 | 5, 17 | sylbid 239 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → (𝑛 ∈ (𝐺 NeighbVtx 𝑈) → {𝑈, 𝑛} ∈ 𝐼)) |
19 | 2, 18 | biimtrid 241 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → (𝑛 ∈ 𝑁 → {𝑈, 𝑛} ∈ 𝐼)) |
20 | 19 | ralrimiv 3135 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → ∀𝑛 ∈ 𝑁 {𝑈, 𝑛} ∈ 𝐼) |
21 | 14 | reqabi 3442 | . . . 4 ⊢ (𝑒 ∈ 𝐼 ↔ (𝑒 ∈ 𝐸 ∧ 𝑈 ∈ 𝑒)) |
22 | 3, 1 | edgnbusgreu 29303 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ (𝑒 ∈ 𝐸 ∧ 𝑈 ∈ 𝑒)) → ∃!𝑛 ∈ 𝑁 𝑒 = {𝑈, 𝑛}) |
23 | 21, 22 | sylan2b 592 | . . 3 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑒 ∈ 𝐼) → ∃!𝑛 ∈ 𝑁 𝑒 = {𝑈, 𝑛}) |
24 | 23 | ralrimiva 3136 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → ∀𝑒 ∈ 𝐼 ∃!𝑛 ∈ 𝑁 𝑒 = {𝑈, 𝑛}) |
25 | nbusgrf1o.f | . . 3 ⊢ 𝐹 = (𝑛 ∈ 𝑁 ↦ {𝑈, 𝑛}) | |
26 | 25 | f1ompt 7125 | . 2 ⊢ (𝐹:𝑁–1-1-onto→𝐼 ↔ (∀𝑛 ∈ 𝑁 {𝑈, 𝑛} ∈ 𝐼 ∧ ∀𝑒 ∈ 𝐼 ∃!𝑛 ∈ 𝑁 𝑒 = {𝑈, 𝑛})) |
27 | 20, 24, 26 | sylanbrc 581 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → 𝐹:𝑁–1-1-onto→𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∀wral 3051 ∃!wreu 3362 {crab 3419 {cpr 4635 ↦ cmpt 5236 –1-1-onto→wf1o 6553 ‘cfv 6554 (class class class)co 7424 Vtxcvtx 28932 Edgcedg 28983 USGraphcusgr 29085 NeighbVtx cnbgr 29268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-2o 8497 df-oadd 8500 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-dju 9944 df-card 9982 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-n0 12525 df-xnn0 12597 df-z 12611 df-uz 12875 df-fz 13539 df-hash 14348 df-edg 28984 df-upgr 29018 df-umgr 29019 df-uspgr 29086 df-usgr 29087 df-nbgr 29269 |
This theorem is referenced by: nbusgrf1o1 29306 |
Copyright terms: Public domain | W3C validator |