![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nbusgrf1o0 | Structured version Visualization version GIF version |
Description: The mapping of neighbors of a vertex to edges incident to the vertex is a bijection ( 1-1 onto function) in a simple graph. (Contributed by Alexander van der Vekens, 17-Dec-2017.) (Revised by AV, 28-Oct-2020.) |
Ref | Expression |
---|---|
nbusgrf1o1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
nbusgrf1o1.e | ⊢ 𝐸 = (Edg‘𝐺) |
nbusgrf1o1.n | ⊢ 𝑁 = (𝐺 NeighbVtx 𝑈) |
nbusgrf1o1.i | ⊢ 𝐼 = {𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} |
nbusgrf1o.f | ⊢ 𝐹 = (𝑛 ∈ 𝑁 ↦ {𝑈, 𝑛}) |
Ref | Expression |
---|---|
nbusgrf1o0 | ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → 𝐹:𝑁–1-1-onto→𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbusgrf1o1.n | . . . . 5 ⊢ 𝑁 = (𝐺 NeighbVtx 𝑈) | |
2 | 1 | eleq2i 2898 | . . . 4 ⊢ (𝑛 ∈ 𝑁 ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝑈)) |
3 | nbusgrf1o1.e | . . . . . . 7 ⊢ 𝐸 = (Edg‘𝐺) | |
4 | 3 | nbusgreledg 26650 | . . . . . 6 ⊢ (𝐺 ∈ USGraph → (𝑛 ∈ (𝐺 NeighbVtx 𝑈) ↔ {𝑛, 𝑈} ∈ 𝐸)) |
5 | 4 | adantr 474 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → (𝑛 ∈ (𝐺 NeighbVtx 𝑈) ↔ {𝑛, 𝑈} ∈ 𝐸)) |
6 | prcom 4485 | . . . . . . . . . 10 ⊢ {𝑛, 𝑈} = {𝑈, 𝑛} | |
7 | 6 | eleq1i 2897 | . . . . . . . . 9 ⊢ ({𝑛, 𝑈} ∈ 𝐸 ↔ {𝑈, 𝑛} ∈ 𝐸) |
8 | 7 | biimpi 208 | . . . . . . . 8 ⊢ ({𝑛, 𝑈} ∈ 𝐸 → {𝑈, 𝑛} ∈ 𝐸) |
9 | 8 | adantl 475 | . . . . . . 7 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ {𝑛, 𝑈} ∈ 𝐸) → {𝑈, 𝑛} ∈ 𝐸) |
10 | prid1g 4513 | . . . . . . . . 9 ⊢ (𝑈 ∈ 𝑉 → 𝑈 ∈ {𝑈, 𝑛}) | |
11 | 10 | adantl 475 | . . . . . . . 8 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → 𝑈 ∈ {𝑈, 𝑛}) |
12 | 11 | adantr 474 | . . . . . . 7 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ {𝑛, 𝑈} ∈ 𝐸) → 𝑈 ∈ {𝑈, 𝑛}) |
13 | eleq2 2895 | . . . . . . . 8 ⊢ (𝑒 = {𝑈, 𝑛} → (𝑈 ∈ 𝑒 ↔ 𝑈 ∈ {𝑈, 𝑛})) | |
14 | nbusgrf1o1.i | . . . . . . . 8 ⊢ 𝐼 = {𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} | |
15 | 13, 14 | elrab2 3589 | . . . . . . 7 ⊢ ({𝑈, 𝑛} ∈ 𝐼 ↔ ({𝑈, 𝑛} ∈ 𝐸 ∧ 𝑈 ∈ {𝑈, 𝑛})) |
16 | 9, 12, 15 | sylanbrc 578 | . . . . . 6 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ {𝑛, 𝑈} ∈ 𝐸) → {𝑈, 𝑛} ∈ 𝐼) |
17 | 16 | ex 403 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → ({𝑛, 𝑈} ∈ 𝐸 → {𝑈, 𝑛} ∈ 𝐼)) |
18 | 5, 17 | sylbid 232 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → (𝑛 ∈ (𝐺 NeighbVtx 𝑈) → {𝑈, 𝑛} ∈ 𝐼)) |
19 | 2, 18 | syl5bi 234 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → (𝑛 ∈ 𝑁 → {𝑈, 𝑛} ∈ 𝐼)) |
20 | 19 | ralrimiv 3174 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → ∀𝑛 ∈ 𝑁 {𝑈, 𝑛} ∈ 𝐼) |
21 | 14 | rabeq2i 3410 | . . . 4 ⊢ (𝑒 ∈ 𝐼 ↔ (𝑒 ∈ 𝐸 ∧ 𝑈 ∈ 𝑒)) |
22 | 3, 1 | edgnbusgreu 26664 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ (𝑒 ∈ 𝐸 ∧ 𝑈 ∈ 𝑒)) → ∃!𝑛 ∈ 𝑁 𝑒 = {𝑈, 𝑛}) |
23 | 21, 22 | sylan2b 587 | . . 3 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑒 ∈ 𝐼) → ∃!𝑛 ∈ 𝑁 𝑒 = {𝑈, 𝑛}) |
24 | 23 | ralrimiva 3175 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → ∀𝑒 ∈ 𝐼 ∃!𝑛 ∈ 𝑁 𝑒 = {𝑈, 𝑛}) |
25 | nbusgrf1o.f | . . 3 ⊢ 𝐹 = (𝑛 ∈ 𝑁 ↦ {𝑈, 𝑛}) | |
26 | 25 | f1ompt 6630 | . 2 ⊢ (𝐹:𝑁–1-1-onto→𝐼 ↔ (∀𝑛 ∈ 𝑁 {𝑈, 𝑛} ∈ 𝐼 ∧ ∀𝑒 ∈ 𝐼 ∃!𝑛 ∈ 𝑁 𝑒 = {𝑈, 𝑛})) |
27 | 20, 24, 26 | sylanbrc 578 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → 𝐹:𝑁–1-1-onto→𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ∀wral 3117 ∃!wreu 3119 {crab 3121 {cpr 4399 ↦ cmpt 4952 –1-1-onto→wf1o 6122 ‘cfv 6123 (class class class)co 6905 Vtxcvtx 26294 Edgcedg 26345 USGraphcusgr 26448 NeighbVtx cnbgr 26629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-fal 1670 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-1st 7428 df-2nd 7429 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-2o 7827 df-oadd 7830 df-er 8009 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-card 9078 df-cda 9305 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-nn 11351 df-2 11414 df-n0 11619 df-xnn0 11691 df-z 11705 df-uz 11969 df-fz 12620 df-hash 13411 df-edg 26346 df-upgr 26380 df-umgr 26381 df-uspgr 26449 df-usgr 26450 df-nbgr 26630 |
This theorem is referenced by: nbusgrf1o1 26668 |
Copyright terms: Public domain | W3C validator |