MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbusgrf1o0 Structured version   Visualization version   GIF version

Theorem nbusgrf1o0 29296
Description: The mapping of neighbors of a vertex to edges incident to the vertex is a bijection ( 1-1 onto function) in a simple graph. (Contributed by Alexander van der Vekens, 17-Dec-2017.) (Revised by AV, 28-Oct-2020.)
Hypotheses
Ref Expression
nbusgrf1o1.v 𝑉 = (Vtx‘𝐺)
nbusgrf1o1.e 𝐸 = (Edg‘𝐺)
nbusgrf1o1.n 𝑁 = (𝐺 NeighbVtx 𝑈)
nbusgrf1o1.i 𝐼 = {𝑒𝐸𝑈𝑒}
nbusgrf1o.f 𝐹 = (𝑛𝑁 ↦ {𝑈, 𝑛})
Assertion
Ref Expression
nbusgrf1o0 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → 𝐹:𝑁1-1-onto𝐼)
Distinct variable groups:   𝑒,𝐸   𝑈,𝑒   𝑛,𝐸   𝑒,𝐺,𝑛   𝑒,𝐼,𝑛   𝑒,𝑁,𝑛   𝑈,𝑛   𝑒,𝑉,𝑛   𝑒,𝐹
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem nbusgrf1o0
StepHypRef Expression
1 nbusgrf1o1.n . . . . 5 𝑁 = (𝐺 NeighbVtx 𝑈)
21eleq2i 2820 . . . 4 (𝑛𝑁𝑛 ∈ (𝐺 NeighbVtx 𝑈))
3 nbusgrf1o1.e . . . . . . 7 𝐸 = (Edg‘𝐺)
43nbusgreledg 29280 . . . . . 6 (𝐺 ∈ USGraph → (𝑛 ∈ (𝐺 NeighbVtx 𝑈) ↔ {𝑛, 𝑈} ∈ 𝐸))
54adantr 480 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → (𝑛 ∈ (𝐺 NeighbVtx 𝑈) ↔ {𝑛, 𝑈} ∈ 𝐸))
6 prcom 4696 . . . . . . . . . 10 {𝑛, 𝑈} = {𝑈, 𝑛}
76eleq1i 2819 . . . . . . . . 9 ({𝑛, 𝑈} ∈ 𝐸 ↔ {𝑈, 𝑛} ∈ 𝐸)
87biimpi 216 . . . . . . . 8 ({𝑛, 𝑈} ∈ 𝐸 → {𝑈, 𝑛} ∈ 𝐸)
98adantl 481 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ {𝑛, 𝑈} ∈ 𝐸) → {𝑈, 𝑛} ∈ 𝐸)
10 prid1g 4724 . . . . . . . . 9 (𝑈𝑉𝑈 ∈ {𝑈, 𝑛})
1110adantl 481 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → 𝑈 ∈ {𝑈, 𝑛})
1211adantr 480 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ {𝑛, 𝑈} ∈ 𝐸) → 𝑈 ∈ {𝑈, 𝑛})
13 eleq2 2817 . . . . . . . 8 (𝑒 = {𝑈, 𝑛} → (𝑈𝑒𝑈 ∈ {𝑈, 𝑛}))
14 nbusgrf1o1.i . . . . . . . 8 𝐼 = {𝑒𝐸𝑈𝑒}
1513, 14elrab2 3662 . . . . . . 7 ({𝑈, 𝑛} ∈ 𝐼 ↔ ({𝑈, 𝑛} ∈ 𝐸𝑈 ∈ {𝑈, 𝑛}))
169, 12, 15sylanbrc 583 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ {𝑛, 𝑈} ∈ 𝐸) → {𝑈, 𝑛} ∈ 𝐼)
1716ex 412 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → ({𝑛, 𝑈} ∈ 𝐸 → {𝑈, 𝑛} ∈ 𝐼))
185, 17sylbid 240 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → (𝑛 ∈ (𝐺 NeighbVtx 𝑈) → {𝑈, 𝑛} ∈ 𝐼))
192, 18biimtrid 242 . . 3 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → (𝑛𝑁 → {𝑈, 𝑛} ∈ 𝐼))
2019ralrimiv 3124 . 2 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → ∀𝑛𝑁 {𝑈, 𝑛} ∈ 𝐼)
2114reqabi 3429 . . . 4 (𝑒𝐼 ↔ (𝑒𝐸𝑈𝑒))
223, 1edgnbusgreu 29294 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ (𝑒𝐸𝑈𝑒)) → ∃!𝑛𝑁 𝑒 = {𝑈, 𝑛})
2321, 22sylan2b 594 . . 3 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑒𝐼) → ∃!𝑛𝑁 𝑒 = {𝑈, 𝑛})
2423ralrimiva 3125 . 2 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → ∀𝑒𝐼 ∃!𝑛𝑁 𝑒 = {𝑈, 𝑛})
25 nbusgrf1o.f . . 3 𝐹 = (𝑛𝑁 ↦ {𝑈, 𝑛})
2625f1ompt 7083 . 2 (𝐹:𝑁1-1-onto𝐼 ↔ (∀𝑛𝑁 {𝑈, 𝑛} ∈ 𝐼 ∧ ∀𝑒𝐼 ∃!𝑛𝑁 𝑒 = {𝑈, 𝑛}))
2720, 24, 26sylanbrc 583 1 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → 𝐹:𝑁1-1-onto𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  ∃!wreu 3352  {crab 3405  {cpr 4591  cmpt 5188  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  Vtxcvtx 28923  Edgcedg 28974  USGraphcusgr 29076   NeighbVtx cnbgr 29259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-fz 13469  df-hash 14296  df-edg 28975  df-upgr 29009  df-umgr 29010  df-uspgr 29077  df-usgr 29078  df-nbgr 29260
This theorem is referenced by:  nbusgrf1o1  29297
  Copyright terms: Public domain W3C validator