MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbusgrf1o0 Structured version   Visualization version   GIF version

Theorem nbusgrf1o0 27137
Description: The mapping of neighbors of a vertex to edges incident to the vertex is a bijection ( 1-1 onto function) in a simple graph. (Contributed by Alexander van der Vekens, 17-Dec-2017.) (Revised by AV, 28-Oct-2020.)
Hypotheses
Ref Expression
nbusgrf1o1.v 𝑉 = (Vtx‘𝐺)
nbusgrf1o1.e 𝐸 = (Edg‘𝐺)
nbusgrf1o1.n 𝑁 = (𝐺 NeighbVtx 𝑈)
nbusgrf1o1.i 𝐼 = {𝑒𝐸𝑈𝑒}
nbusgrf1o.f 𝐹 = (𝑛𝑁 ↦ {𝑈, 𝑛})
Assertion
Ref Expression
nbusgrf1o0 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → 𝐹:𝑁1-1-onto𝐼)
Distinct variable groups:   𝑒,𝐸   𝑈,𝑒   𝑛,𝐸   𝑒,𝐺,𝑛   𝑒,𝐼,𝑛   𝑒,𝑁,𝑛   𝑈,𝑛   𝑒,𝑉,𝑛   𝑒,𝐹
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem nbusgrf1o0
StepHypRef Expression
1 nbusgrf1o1.n . . . . 5 𝑁 = (𝐺 NeighbVtx 𝑈)
21eleq2i 2903 . . . 4 (𝑛𝑁𝑛 ∈ (𝐺 NeighbVtx 𝑈))
3 nbusgrf1o1.e . . . . . . 7 𝐸 = (Edg‘𝐺)
43nbusgreledg 27121 . . . . . 6 (𝐺 ∈ USGraph → (𝑛 ∈ (𝐺 NeighbVtx 𝑈) ↔ {𝑛, 𝑈} ∈ 𝐸))
54adantr 484 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → (𝑛 ∈ (𝐺 NeighbVtx 𝑈) ↔ {𝑛, 𝑈} ∈ 𝐸))
6 prcom 4641 . . . . . . . . . 10 {𝑛, 𝑈} = {𝑈, 𝑛}
76eleq1i 2902 . . . . . . . . 9 ({𝑛, 𝑈} ∈ 𝐸 ↔ {𝑈, 𝑛} ∈ 𝐸)
87biimpi 219 . . . . . . . 8 ({𝑛, 𝑈} ∈ 𝐸 → {𝑈, 𝑛} ∈ 𝐸)
98adantl 485 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ {𝑛, 𝑈} ∈ 𝐸) → {𝑈, 𝑛} ∈ 𝐸)
10 prid1g 4669 . . . . . . . . 9 (𝑈𝑉𝑈 ∈ {𝑈, 𝑛})
1110adantl 485 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → 𝑈 ∈ {𝑈, 𝑛})
1211adantr 484 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ {𝑛, 𝑈} ∈ 𝐸) → 𝑈 ∈ {𝑈, 𝑛})
13 eleq2 2900 . . . . . . . 8 (𝑒 = {𝑈, 𝑛} → (𝑈𝑒𝑈 ∈ {𝑈, 𝑛}))
14 nbusgrf1o1.i . . . . . . . 8 𝐼 = {𝑒𝐸𝑈𝑒}
1513, 14elrab2 3660 . . . . . . 7 ({𝑈, 𝑛} ∈ 𝐼 ↔ ({𝑈, 𝑛} ∈ 𝐸𝑈 ∈ {𝑈, 𝑛}))
169, 12, 15sylanbrc 586 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ {𝑛, 𝑈} ∈ 𝐸) → {𝑈, 𝑛} ∈ 𝐼)
1716ex 416 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → ({𝑛, 𝑈} ∈ 𝐸 → {𝑈, 𝑛} ∈ 𝐼))
185, 17sylbid 243 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → (𝑛 ∈ (𝐺 NeighbVtx 𝑈) → {𝑈, 𝑛} ∈ 𝐼))
192, 18syl5bi 245 . . 3 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → (𝑛𝑁 → {𝑈, 𝑛} ∈ 𝐼))
2019ralrimiv 3169 . 2 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → ∀𝑛𝑁 {𝑈, 𝑛} ∈ 𝐼)
2114rabeq2i 3464 . . . 4 (𝑒𝐼 ↔ (𝑒𝐸𝑈𝑒))
223, 1edgnbusgreu 27135 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ (𝑒𝐸𝑈𝑒)) → ∃!𝑛𝑁 𝑒 = {𝑈, 𝑛})
2321, 22sylan2b 596 . . 3 (((𝐺 ∈ USGraph ∧ 𝑈𝑉) ∧ 𝑒𝐼) → ∃!𝑛𝑁 𝑒 = {𝑈, 𝑛})
2423ralrimiva 3170 . 2 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → ∀𝑒𝐼 ∃!𝑛𝑁 𝑒 = {𝑈, 𝑛})
25 nbusgrf1o.f . . 3 𝐹 = (𝑛𝑁 ↦ {𝑈, 𝑛})
2625f1ompt 6848 . 2 (𝐹:𝑁1-1-onto𝐼 ↔ (∀𝑛𝑁 {𝑈, 𝑛} ∈ 𝐼 ∧ ∀𝑒𝐼 ∃!𝑛𝑁 𝑒 = {𝑈, 𝑛}))
2720, 24, 26sylanbrc 586 1 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → 𝐹:𝑁1-1-onto𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wral 3126  ∃!wreu 3128  {crab 3130  {cpr 4542  cmpt 5119  1-1-ontowf1o 6327  cfv 6328  (class class class)co 7130  Vtxcvtx 26767  Edgcedg 26818  USGraphcusgr 26920   NeighbVtx cnbgr 27100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-2o 8078  df-oadd 8081  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-dju 9306  df-card 9344  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-2 11678  df-n0 11876  df-xnn0 11946  df-z 11960  df-uz 12222  df-fz 12876  df-hash 13675  df-edg 26819  df-upgr 26853  df-umgr 26854  df-uspgr 26921  df-usgr 26922  df-nbgr 27101
This theorem is referenced by:  nbusgrf1o1  27138
  Copyright terms: Public domain W3C validator