![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nbusgrf1o0 | Structured version Visualization version GIF version |
Description: The mapping of neighbors of a vertex to edges incident to the vertex is a bijection ( 1-1 onto function) in a simple graph. (Contributed by Alexander van der Vekens, 17-Dec-2017.) (Revised by AV, 28-Oct-2020.) |
Ref | Expression |
---|---|
nbusgrf1o1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
nbusgrf1o1.e | ⊢ 𝐸 = (Edg‘𝐺) |
nbusgrf1o1.n | ⊢ 𝑁 = (𝐺 NeighbVtx 𝑈) |
nbusgrf1o1.i | ⊢ 𝐼 = {𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} |
nbusgrf1o.f | ⊢ 𝐹 = (𝑛 ∈ 𝑁 ↦ {𝑈, 𝑛}) |
Ref | Expression |
---|---|
nbusgrf1o0 | ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → 𝐹:𝑁–1-1-onto→𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbusgrf1o1.n | . . . . 5 ⊢ 𝑁 = (𝐺 NeighbVtx 𝑈) | |
2 | 1 | eleq2i 2817 | . . . 4 ⊢ (𝑛 ∈ 𝑁 ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝑈)) |
3 | nbusgrf1o1.e | . . . . . . 7 ⊢ 𝐸 = (Edg‘𝐺) | |
4 | 3 | nbusgreledg 29079 | . . . . . 6 ⊢ (𝐺 ∈ USGraph → (𝑛 ∈ (𝐺 NeighbVtx 𝑈) ↔ {𝑛, 𝑈} ∈ 𝐸)) |
5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → (𝑛 ∈ (𝐺 NeighbVtx 𝑈) ↔ {𝑛, 𝑈} ∈ 𝐸)) |
6 | prcom 4728 | . . . . . . . . . 10 ⊢ {𝑛, 𝑈} = {𝑈, 𝑛} | |
7 | 6 | eleq1i 2816 | . . . . . . . . 9 ⊢ ({𝑛, 𝑈} ∈ 𝐸 ↔ {𝑈, 𝑛} ∈ 𝐸) |
8 | 7 | biimpi 215 | . . . . . . . 8 ⊢ ({𝑛, 𝑈} ∈ 𝐸 → {𝑈, 𝑛} ∈ 𝐸) |
9 | 8 | adantl 481 | . . . . . . 7 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ {𝑛, 𝑈} ∈ 𝐸) → {𝑈, 𝑛} ∈ 𝐸) |
10 | prid1g 4756 | . . . . . . . . 9 ⊢ (𝑈 ∈ 𝑉 → 𝑈 ∈ {𝑈, 𝑛}) | |
11 | 10 | adantl 481 | . . . . . . . 8 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → 𝑈 ∈ {𝑈, 𝑛}) |
12 | 11 | adantr 480 | . . . . . . 7 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ {𝑛, 𝑈} ∈ 𝐸) → 𝑈 ∈ {𝑈, 𝑛}) |
13 | eleq2 2814 | . . . . . . . 8 ⊢ (𝑒 = {𝑈, 𝑛} → (𝑈 ∈ 𝑒 ↔ 𝑈 ∈ {𝑈, 𝑛})) | |
14 | nbusgrf1o1.i | . . . . . . . 8 ⊢ 𝐼 = {𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} | |
15 | 13, 14 | elrab2 3678 | . . . . . . 7 ⊢ ({𝑈, 𝑛} ∈ 𝐼 ↔ ({𝑈, 𝑛} ∈ 𝐸 ∧ 𝑈 ∈ {𝑈, 𝑛})) |
16 | 9, 12, 15 | sylanbrc 582 | . . . . . 6 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ {𝑛, 𝑈} ∈ 𝐸) → {𝑈, 𝑛} ∈ 𝐼) |
17 | 16 | ex 412 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → ({𝑛, 𝑈} ∈ 𝐸 → {𝑈, 𝑛} ∈ 𝐼)) |
18 | 5, 17 | sylbid 239 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → (𝑛 ∈ (𝐺 NeighbVtx 𝑈) → {𝑈, 𝑛} ∈ 𝐼)) |
19 | 2, 18 | biimtrid 241 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → (𝑛 ∈ 𝑁 → {𝑈, 𝑛} ∈ 𝐼)) |
20 | 19 | ralrimiv 3137 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → ∀𝑛 ∈ 𝑁 {𝑈, 𝑛} ∈ 𝐼) |
21 | 14 | reqabi 3446 | . . . 4 ⊢ (𝑒 ∈ 𝐼 ↔ (𝑒 ∈ 𝐸 ∧ 𝑈 ∈ 𝑒)) |
22 | 3, 1 | edgnbusgreu 29093 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ (𝑒 ∈ 𝐸 ∧ 𝑈 ∈ 𝑒)) → ∃!𝑛 ∈ 𝑁 𝑒 = {𝑈, 𝑛}) |
23 | 21, 22 | sylan2b 593 | . . 3 ⊢ (((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) ∧ 𝑒 ∈ 𝐼) → ∃!𝑛 ∈ 𝑁 𝑒 = {𝑈, 𝑛}) |
24 | 23 | ralrimiva 3138 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → ∀𝑒 ∈ 𝐼 ∃!𝑛 ∈ 𝑁 𝑒 = {𝑈, 𝑛}) |
25 | nbusgrf1o.f | . . 3 ⊢ 𝐹 = (𝑛 ∈ 𝑁 ↦ {𝑈, 𝑛}) | |
26 | 25 | f1ompt 7102 | . 2 ⊢ (𝐹:𝑁–1-1-onto→𝐼 ↔ (∀𝑛 ∈ 𝑁 {𝑈, 𝑛} ∈ 𝐼 ∧ ∀𝑒 ∈ 𝐼 ∃!𝑛 ∈ 𝑁 𝑒 = {𝑈, 𝑛})) |
27 | 20, 24, 26 | sylanbrc 582 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → 𝐹:𝑁–1-1-onto→𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3053 ∃!wreu 3366 {crab 3424 {cpr 4622 ↦ cmpt 5221 –1-1-onto→wf1o 6532 ‘cfv 6533 (class class class)co 7401 Vtxcvtx 28725 Edgcedg 28776 USGraphcusgr 28878 NeighbVtx cnbgr 29058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-oadd 8465 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-dju 9892 df-card 9930 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-2 12272 df-n0 12470 df-xnn0 12542 df-z 12556 df-uz 12820 df-fz 13482 df-hash 14288 df-edg 28777 df-upgr 28811 df-umgr 28812 df-uspgr 28879 df-usgr 28880 df-nbgr 29059 |
This theorem is referenced by: nbusgrf1o1 29096 |
Copyright terms: Public domain | W3C validator |