MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stccn Structured version   Visualization version   GIF version

Theorem 1stccn 23494
Description: A mapping 𝑋𝑌, where 𝑋 is first-countable, is continuous iff it is sequentially continuous, meaning that for any sequence 𝑓(𝑛) converging to 𝑥, its image under 𝐹 converges to 𝐹(𝑥). (Contributed by Mario Carneiro, 7-Sep-2015.)
Hypotheses
Ref Expression
1stccnp.1 (𝜑𝐽 ∈ 1stω)
1stccnp.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
1stccnp.3 (𝜑𝐾 ∈ (TopOn‘𝑌))
1stccn.7 (𝜑𝐹:𝑋𝑌)
Assertion
Ref Expression
1stccn (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))))
Distinct variable groups:   𝑥,𝑓,𝐹   𝑓,𝐽,𝑥   𝜑,𝑓,𝑥   𝑓,𝐾,𝑥   𝑓,𝑋,𝑥   𝑓,𝑌,𝑥

Proof of Theorem 1stccn
StepHypRef Expression
1 1stccn.7 . . 3 (𝜑𝐹:𝑋𝑌)
2 1stccnp.2 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 1stccnp.3 . . . 4 (𝜑𝐾 ∈ (TopOn‘𝑌))
4 cncnp 23311 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))))
52, 3, 4syl2anc 583 . . 3 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))))
61, 5mpbirand 706 . 2 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))
71adantr 480 . . . 4 ((𝜑𝑥𝑋) → 𝐹:𝑋𝑌)
8 1stccnp.1 . . . . . 6 (𝜑𝐽 ∈ 1stω)
98adantr 480 . . . . 5 ((𝜑𝑥𝑋) → 𝐽 ∈ 1stω)
102adantr 480 . . . . 5 ((𝜑𝑥𝑋) → 𝐽 ∈ (TopOn‘𝑋))
113adantr 480 . . . . 5 ((𝜑𝑥𝑋) → 𝐾 ∈ (TopOn‘𝑌))
12 simpr 484 . . . . 5 ((𝜑𝑥𝑋) → 𝑥𝑋)
139, 10, 11, 121stccnp 23493 . . . 4 ((𝜑𝑥𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))))
147, 13mpbirand 706 . . 3 ((𝜑𝑥𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
1514ralbidva 3182 . 2 (𝜑 → (∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑥𝑋𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
16 ralcom4 3292 . . 3 (∀𝑥𝑋𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ ∀𝑓𝑥𝑋 ((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))
17 impexp 450 . . . . . . 7 (((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ (𝑓:ℕ⟶𝑋 → (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
1817ralbii 3099 . . . . . 6 (∀𝑥𝑋 ((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ ∀𝑥𝑋 (𝑓:ℕ⟶𝑋 → (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
19 r19.21v 3186 . . . . . 6 (∀𝑥𝑋 (𝑓:ℕ⟶𝑋 → (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))) ↔ (𝑓:ℕ⟶𝑋 → ∀𝑥𝑋 (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
2018, 19bitri 275 . . . . 5 (∀𝑥𝑋 ((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ (𝑓:ℕ⟶𝑋 → ∀𝑥𝑋 (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
21 df-ral 3068 . . . . . . 7 (∀𝑥𝑋 (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ ∀𝑥(𝑥𝑋 → (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
22 lmcl 23328 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑋)
232, 22sylan 579 . . . . . . . . . . . 12 ((𝜑𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑋)
2423ex 412 . . . . . . . . . . 11 (𝜑 → (𝑓(⇝𝑡𝐽)𝑥𝑥𝑋))
2524pm4.71rd 562 . . . . . . . . . 10 (𝜑 → (𝑓(⇝𝑡𝐽)𝑥 ↔ (𝑥𝑋𝑓(⇝𝑡𝐽)𝑥)))
2625imbi1d 341 . . . . . . . . 9 (𝜑 → ((𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ ((𝑥𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
27 impexp 450 . . . . . . . . 9 (((𝑥𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ (𝑥𝑋 → (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
2826, 27bitr2di 288 . . . . . . . 8 (𝜑 → ((𝑥𝑋 → (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))) ↔ (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
2928albidv 1919 . . . . . . 7 (𝜑 → (∀𝑥(𝑥𝑋 → (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))) ↔ ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
3021, 29bitrid 283 . . . . . 6 (𝜑 → (∀𝑥𝑋 (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
3130imbi2d 340 . . . . 5 (𝜑 → ((𝑓:ℕ⟶𝑋 → ∀𝑥𝑋 (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))) ↔ (𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))))
3220, 31bitrid 283 . . . 4 (𝜑 → (∀𝑥𝑋 ((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ (𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))))
3332albidv 1919 . . 3 (𝜑 → (∀𝑓𝑥𝑋 ((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))))
3416, 33bitrid 283 . 2 (𝜑 → (∀𝑥𝑋𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))))
356, 15, 343bitrd 305 1 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535  wcel 2108  wral 3067   class class class wbr 5166  ccom 5704  wf 6571  cfv 6575  (class class class)co 7450  cn 12295  TopOnctopon 22939   Cn ccn 23255   CnP ccnp 23256  𝑡clm 23257  1stωc1stc 23468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-inf2 9712  ax-cc 10506  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-om 7906  df-1st 8032  df-2nd 8033  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-1o 8524  df-2o 8525  df-er 8765  df-map 8888  df-pm 8889  df-en 9006  df-dom 9007  df-sdom 9008  df-fin 9009  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-nn 12296  df-n0 12556  df-z 12642  df-uz 12906  df-fz 13570  df-topgen 17505  df-top 22923  df-topon 22940  df-cld 23050  df-ntr 23051  df-cls 23052  df-cn 23258  df-cnp 23259  df-lm 23260  df-1stc 23470
This theorem is referenced by:  metcn4  25366
  Copyright terms: Public domain W3C validator