Proof of Theorem 1stccn
| Step | Hyp | Ref
| Expression |
| 1 | | 1stccn.7 |
. . 3
⊢ (𝜑 → 𝐹:𝑋⟶𝑌) |
| 2 | | 1stccnp.2 |
. . . 4
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 3 | | 1stccnp.3 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| 4 | | cncnp 23234 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))) |
| 5 | 2, 3, 4 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))) |
| 6 | 1, 5 | mpbirand 707 |
. 2
⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) |
| 7 | 1 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐹:𝑋⟶𝑌) |
| 8 | | 1stccnp.1 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈
1stω) |
| 9 | 8 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐽 ∈
1stω) |
| 10 | 2 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| 11 | 3 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐾 ∈ (TopOn‘𝑌)) |
| 12 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
| 13 | 9, 10, 11, 12 | 1stccnp 23416 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))))) |
| 14 | 7, 13 | mpbirand 707 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑓((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)))) |
| 15 | 14 | ralbidva 3163 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑥 ∈ 𝑋 ∀𝑓((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)))) |
| 16 | | ralcom4 3271 |
. . 3
⊢
(∀𝑥 ∈
𝑋 ∀𝑓((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)) ↔ ∀𝑓∀𝑥 ∈ 𝑋 ((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))) |
| 17 | | impexp 450 |
. . . . . . 7
⊢ (((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)) ↔ (𝑓:ℕ⟶𝑋 → (𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)))) |
| 18 | 17 | ralbii 3081 |
. . . . . 6
⊢
(∀𝑥 ∈
𝑋 ((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)) ↔ ∀𝑥 ∈ 𝑋 (𝑓:ℕ⟶𝑋 → (𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)))) |
| 19 | | r19.21v 3167 |
. . . . . 6
⊢
(∀𝑥 ∈
𝑋 (𝑓:ℕ⟶𝑋 → (𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))) ↔ (𝑓:ℕ⟶𝑋 → ∀𝑥 ∈ 𝑋 (𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)))) |
| 20 | 18, 19 | bitri 275 |
. . . . 5
⊢
(∀𝑥 ∈
𝑋 ((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)) ↔ (𝑓:ℕ⟶𝑋 → ∀𝑥 ∈ 𝑋 (𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)))) |
| 21 | | df-ral 3051 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝑋 (𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)) ↔ ∀𝑥(𝑥 ∈ 𝑋 → (𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)))) |
| 22 | | lmcl 23251 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → 𝑥 ∈ 𝑋) |
| 23 | 2, 22 | sylan 580 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → 𝑥 ∈ 𝑋) |
| 24 | 23 | ex 412 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑓(⇝𝑡‘𝐽)𝑥 → 𝑥 ∈ 𝑋)) |
| 25 | 24 | pm4.71rd 562 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑓(⇝𝑡‘𝐽)𝑥 ↔ (𝑥 ∈ 𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥))) |
| 26 | 25 | imbi1d 341 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)) ↔ ((𝑥 ∈ 𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)))) |
| 27 | | impexp 450 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)) ↔ (𝑥 ∈ 𝑋 → (𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)))) |
| 28 | 26, 27 | bitr2di 288 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ 𝑋 → (𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))) ↔ (𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)))) |
| 29 | 28 | albidv 1919 |
. . . . . . 7
⊢ (𝜑 → (∀𝑥(𝑥 ∈ 𝑋 → (𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))) ↔ ∀𝑥(𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)))) |
| 30 | 21, 29 | bitrid 283 |
. . . . . 6
⊢ (𝜑 → (∀𝑥 ∈ 𝑋 (𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)) ↔ ∀𝑥(𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)))) |
| 31 | 30 | imbi2d 340 |
. . . . 5
⊢ (𝜑 → ((𝑓:ℕ⟶𝑋 → ∀𝑥 ∈ 𝑋 (𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))) ↔ (𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))))) |
| 32 | 20, 31 | bitrid 283 |
. . . 4
⊢ (𝜑 → (∀𝑥 ∈ 𝑋 ((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)) ↔ (𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))))) |
| 33 | 32 | albidv 1919 |
. . 3
⊢ (𝜑 → (∀𝑓∀𝑥 ∈ 𝑋 ((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))))) |
| 34 | 16, 33 | bitrid 283 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ 𝑋 ∀𝑓((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))))) |
| 35 | 6, 15, 34 | 3bitrd 305 |
1
⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))))) |