Proof of Theorem 1stccn
Step | Hyp | Ref
| Expression |
1 | | 1stccn.7 |
. . 3
⊢ (𝜑 → 𝐹:𝑋⟶𝑌) |
2 | | 1stccnp.2 |
. . . 4
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
3 | | 1stccnp.3 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
4 | | cncnp 22339 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))) |
5 | 2, 3, 4 | syl2anc 583 |
. . 3
⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))) |
6 | 1, 5 | mpbirand 703 |
. 2
⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) |
7 | 1 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐹:𝑋⟶𝑌) |
8 | | 1stccnp.1 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈
1stω) |
9 | 8 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐽 ∈
1stω) |
10 | 2 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
11 | 3 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐾 ∈ (TopOn‘𝑌)) |
12 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
13 | 9, 10, 11, 12 | 1stccnp 22521 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))))) |
14 | 7, 13 | mpbirand 703 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑓((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)))) |
15 | 14 | ralbidva 3119 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑥 ∈ 𝑋 ∀𝑓((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)))) |
16 | | ralcom4 3161 |
. . 3
⊢
(∀𝑥 ∈
𝑋 ∀𝑓((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)) ↔ ∀𝑓∀𝑥 ∈ 𝑋 ((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))) |
17 | | impexp 450 |
. . . . . . 7
⊢ (((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)) ↔ (𝑓:ℕ⟶𝑋 → (𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)))) |
18 | 17 | ralbii 3090 |
. . . . . 6
⊢
(∀𝑥 ∈
𝑋 ((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)) ↔ ∀𝑥 ∈ 𝑋 (𝑓:ℕ⟶𝑋 → (𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)))) |
19 | | r19.21v 3100 |
. . . . . 6
⊢
(∀𝑥 ∈
𝑋 (𝑓:ℕ⟶𝑋 → (𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))) ↔ (𝑓:ℕ⟶𝑋 → ∀𝑥 ∈ 𝑋 (𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)))) |
20 | 18, 19 | bitri 274 |
. . . . 5
⊢
(∀𝑥 ∈
𝑋 ((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)) ↔ (𝑓:ℕ⟶𝑋 → ∀𝑥 ∈ 𝑋 (𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)))) |
21 | | df-ral 3068 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝑋 (𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)) ↔ ∀𝑥(𝑥 ∈ 𝑋 → (𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)))) |
22 | | lmcl 22356 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → 𝑥 ∈ 𝑋) |
23 | 2, 22 | sylan 579 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → 𝑥 ∈ 𝑋) |
24 | 23 | ex 412 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑓(⇝𝑡‘𝐽)𝑥 → 𝑥 ∈ 𝑋)) |
25 | 24 | pm4.71rd 562 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑓(⇝𝑡‘𝐽)𝑥 ↔ (𝑥 ∈ 𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥))) |
26 | 25 | imbi1d 341 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)) ↔ ((𝑥 ∈ 𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)))) |
27 | | impexp 450 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)) ↔ (𝑥 ∈ 𝑋 → (𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)))) |
28 | 26, 27 | bitr2di 287 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ 𝑋 → (𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))) ↔ (𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)))) |
29 | 28 | albidv 1924 |
. . . . . . 7
⊢ (𝜑 → (∀𝑥(𝑥 ∈ 𝑋 → (𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))) ↔ ∀𝑥(𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)))) |
30 | 21, 29 | syl5bb 282 |
. . . . . 6
⊢ (𝜑 → (∀𝑥 ∈ 𝑋 (𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)) ↔ ∀𝑥(𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)))) |
31 | 30 | imbi2d 340 |
. . . . 5
⊢ (𝜑 → ((𝑓:ℕ⟶𝑋 → ∀𝑥 ∈ 𝑋 (𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))) ↔ (𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))))) |
32 | 20, 31 | syl5bb 282 |
. . . 4
⊢ (𝜑 → (∀𝑥 ∈ 𝑋 ((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)) ↔ (𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))))) |
33 | 32 | albidv 1924 |
. . 3
⊢ (𝜑 → (∀𝑓∀𝑥 ∈ 𝑋 ((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))))) |
34 | 16, 33 | syl5bb 282 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ 𝑋 ∀𝑓((𝑓:ℕ⟶𝑋 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥)) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))))) |
35 | 6, 15, 34 | 3bitrd 304 |
1
⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡‘𝐽)𝑥 → (𝐹 ∘ 𝑓)(⇝𝑡‘𝐾)(𝐹‘𝑥))))) |