MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stccn Structured version   Visualization version   GIF version

Theorem 1stccn 22071
Description: A mapping 𝑋𝑌, where 𝑋 is first-countable, is continuous iff it is sequentially continuous, meaning that for any sequence 𝑓(𝑛) converging to 𝑥, its image under 𝐹 converges to 𝐹(𝑥). (Contributed by Mario Carneiro, 7-Sep-2015.)
Hypotheses
Ref Expression
1stccnp.1 (𝜑𝐽 ∈ 1stω)
1stccnp.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
1stccnp.3 (𝜑𝐾 ∈ (TopOn‘𝑌))
1stccn.7 (𝜑𝐹:𝑋𝑌)
Assertion
Ref Expression
1stccn (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))))
Distinct variable groups:   𝑥,𝑓,𝐹   𝑓,𝐽,𝑥   𝜑,𝑓,𝑥   𝑓,𝐾,𝑥   𝑓,𝑋,𝑥   𝑓,𝑌,𝑥

Proof of Theorem 1stccn
StepHypRef Expression
1 1stccn.7 . . 3 (𝜑𝐹:𝑋𝑌)
2 1stccnp.2 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 1stccnp.3 . . . 4 (𝜑𝐾 ∈ (TopOn‘𝑌))
4 cncnp 21888 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))))
52, 3, 4syl2anc 586 . . 3 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))))
61, 5mpbirand 705 . 2 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))
71adantr 483 . . . 4 ((𝜑𝑥𝑋) → 𝐹:𝑋𝑌)
8 1stccnp.1 . . . . . 6 (𝜑𝐽 ∈ 1stω)
98adantr 483 . . . . 5 ((𝜑𝑥𝑋) → 𝐽 ∈ 1stω)
102adantr 483 . . . . 5 ((𝜑𝑥𝑋) → 𝐽 ∈ (TopOn‘𝑋))
113adantr 483 . . . . 5 ((𝜑𝑥𝑋) → 𝐾 ∈ (TopOn‘𝑌))
12 simpr 487 . . . . 5 ((𝜑𝑥𝑋) → 𝑥𝑋)
139, 10, 11, 121stccnp 22070 . . . 4 ((𝜑𝑥𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))))
147, 13mpbirand 705 . . 3 ((𝜑𝑥𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
1514ralbidva 3196 . 2 (𝜑 → (∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑥𝑋𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
16 ralcom4 3235 . . 3 (∀𝑥𝑋𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ ∀𝑓𝑥𝑋 ((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))
17 impexp 453 . . . . . . 7 (((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ (𝑓:ℕ⟶𝑋 → (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
1817ralbii 3165 . . . . . 6 (∀𝑥𝑋 ((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ ∀𝑥𝑋 (𝑓:ℕ⟶𝑋 → (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
19 r19.21v 3175 . . . . . 6 (∀𝑥𝑋 (𝑓:ℕ⟶𝑋 → (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))) ↔ (𝑓:ℕ⟶𝑋 → ∀𝑥𝑋 (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
2018, 19bitri 277 . . . . 5 (∀𝑥𝑋 ((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ (𝑓:ℕ⟶𝑋 → ∀𝑥𝑋 (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
21 df-ral 3143 . . . . . . 7 (∀𝑥𝑋 (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ ∀𝑥(𝑥𝑋 → (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
22 lmcl 21905 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑋)
232, 22sylan 582 . . . . . . . . . . . 12 ((𝜑𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑋)
2423ex 415 . . . . . . . . . . 11 (𝜑 → (𝑓(⇝𝑡𝐽)𝑥𝑥𝑋))
2524pm4.71rd 565 . . . . . . . . . 10 (𝜑 → (𝑓(⇝𝑡𝐽)𝑥 ↔ (𝑥𝑋𝑓(⇝𝑡𝐽)𝑥)))
2625imbi1d 344 . . . . . . . . 9 (𝜑 → ((𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ ((𝑥𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
27 impexp 453 . . . . . . . . 9 (((𝑥𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ (𝑥𝑋 → (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
2826, 27syl6rbb 290 . . . . . . . 8 (𝜑 → ((𝑥𝑋 → (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))) ↔ (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
2928albidv 1921 . . . . . . 7 (𝜑 → (∀𝑥(𝑥𝑋 → (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))) ↔ ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
3021, 29syl5bb 285 . . . . . 6 (𝜑 → (∀𝑥𝑋 (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
3130imbi2d 343 . . . . 5 (𝜑 → ((𝑓:ℕ⟶𝑋 → ∀𝑥𝑋 (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))) ↔ (𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))))
3220, 31syl5bb 285 . . . 4 (𝜑 → (∀𝑥𝑋 ((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ (𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))))
3332albidv 1921 . . 3 (𝜑 → (∀𝑓𝑥𝑋 ((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))))
3416, 33syl5bb 285 . 2 (𝜑 → (∀𝑥𝑋𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))))
356, 15, 343bitrd 307 1 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1535  wcel 2114  wral 3138   class class class wbr 5066  ccom 5559  wf 6351  cfv 6355  (class class class)co 7156  cn 11638  TopOnctopon 21518   Cn ccn 21832   CnP ccnp 21833  𝑡clm 21834  1stωc1stc 22045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cc 9857  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-topgen 16717  df-top 21502  df-topon 21519  df-cld 21627  df-ntr 21628  df-cls 21629  df-cn 21835  df-cnp 21836  df-lm 21837  df-1stc 22047
This theorem is referenced by:  metcn4  23914
  Copyright terms: Public domain W3C validator