MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stccn Structured version   Visualization version   GIF version

Theorem 1stccn 22614
Description: A mapping 𝑋𝑌, where 𝑋 is first-countable, is continuous iff it is sequentially continuous, meaning that for any sequence 𝑓(𝑛) converging to 𝑥, its image under 𝐹 converges to 𝐹(𝑥). (Contributed by Mario Carneiro, 7-Sep-2015.)
Hypotheses
Ref Expression
1stccnp.1 (𝜑𝐽 ∈ 1stω)
1stccnp.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
1stccnp.3 (𝜑𝐾 ∈ (TopOn‘𝑌))
1stccn.7 (𝜑𝐹:𝑋𝑌)
Assertion
Ref Expression
1stccn (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))))
Distinct variable groups:   𝑥,𝑓,𝐹   𝑓,𝐽,𝑥   𝜑,𝑓,𝑥   𝑓,𝐾,𝑥   𝑓,𝑋,𝑥   𝑓,𝑌,𝑥

Proof of Theorem 1stccn
StepHypRef Expression
1 1stccn.7 . . 3 (𝜑𝐹:𝑋𝑌)
2 1stccnp.2 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 1stccnp.3 . . . 4 (𝜑𝐾 ∈ (TopOn‘𝑌))
4 cncnp 22431 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))))
52, 3, 4syl2anc 584 . . 3 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))))
61, 5mpbirand 704 . 2 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))
71adantr 481 . . . 4 ((𝜑𝑥𝑋) → 𝐹:𝑋𝑌)
8 1stccnp.1 . . . . . 6 (𝜑𝐽 ∈ 1stω)
98adantr 481 . . . . 5 ((𝜑𝑥𝑋) → 𝐽 ∈ 1stω)
102adantr 481 . . . . 5 ((𝜑𝑥𝑋) → 𝐽 ∈ (TopOn‘𝑋))
113adantr 481 . . . . 5 ((𝜑𝑥𝑋) → 𝐾 ∈ (TopOn‘𝑌))
12 simpr 485 . . . . 5 ((𝜑𝑥𝑋) → 𝑥𝑋)
139, 10, 11, 121stccnp 22613 . . . 4 ((𝜑𝑥𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))))
147, 13mpbirand 704 . . 3 ((𝜑𝑥𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
1514ralbidva 3111 . 2 (𝜑 → (∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑥𝑋𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
16 ralcom4 3164 . . 3 (∀𝑥𝑋𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ ∀𝑓𝑥𝑋 ((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))
17 impexp 451 . . . . . . 7 (((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ (𝑓:ℕ⟶𝑋 → (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
1817ralbii 3092 . . . . . 6 (∀𝑥𝑋 ((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ ∀𝑥𝑋 (𝑓:ℕ⟶𝑋 → (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
19 r19.21v 3113 . . . . . 6 (∀𝑥𝑋 (𝑓:ℕ⟶𝑋 → (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))) ↔ (𝑓:ℕ⟶𝑋 → ∀𝑥𝑋 (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
2018, 19bitri 274 . . . . 5 (∀𝑥𝑋 ((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ (𝑓:ℕ⟶𝑋 → ∀𝑥𝑋 (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
21 df-ral 3069 . . . . . . 7 (∀𝑥𝑋 (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ ∀𝑥(𝑥𝑋 → (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
22 lmcl 22448 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑋)
232, 22sylan 580 . . . . . . . . . . . 12 ((𝜑𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑋)
2423ex 413 . . . . . . . . . . 11 (𝜑 → (𝑓(⇝𝑡𝐽)𝑥𝑥𝑋))
2524pm4.71rd 563 . . . . . . . . . 10 (𝜑 → (𝑓(⇝𝑡𝐽)𝑥 ↔ (𝑥𝑋𝑓(⇝𝑡𝐽)𝑥)))
2625imbi1d 342 . . . . . . . . 9 (𝜑 → ((𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ ((𝑥𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
27 impexp 451 . . . . . . . . 9 (((𝑥𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ (𝑥𝑋 → (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
2826, 27bitr2di 288 . . . . . . . 8 (𝜑 → ((𝑥𝑋 → (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))) ↔ (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
2928albidv 1923 . . . . . . 7 (𝜑 → (∀𝑥(𝑥𝑋 → (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))) ↔ ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
3021, 29bitrid 282 . . . . . 6 (𝜑 → (∀𝑥𝑋 (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))))
3130imbi2d 341 . . . . 5 (𝜑 → ((𝑓:ℕ⟶𝑋 → ∀𝑥𝑋 (𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥))) ↔ (𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))))
3220, 31bitrid 282 . . . 4 (𝜑 → (∀𝑥𝑋 ((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ (𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))))
3332albidv 1923 . . 3 (𝜑 → (∀𝑓𝑥𝑋 ((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))))
3416, 33bitrid 282 . 2 (𝜑 → (∀𝑥𝑋𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑥) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))))
356, 15, 343bitrd 305 1 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∀𝑥(𝑓(⇝𝑡𝐽)𝑥 → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537  wcel 2106  wral 3064   class class class wbr 5074  ccom 5593  wf 6429  cfv 6433  (class class class)co 7275  cn 11973  TopOnctopon 22059   Cn ccn 22375   CnP ccnp 22376  𝑡clm 22377  1stωc1stc 22588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-topgen 17154  df-top 22043  df-topon 22060  df-cld 22170  df-ntr 22171  df-cls 22172  df-cn 22378  df-cnp 22379  df-lm 22380  df-1stc 22590
This theorem is referenced by:  metcn4  24475
  Copyright terms: Public domain W3C validator