MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmeql Structured version   Visualization version   GIF version

Theorem lmhmeql 19829
Description: The equalizer of two module homomorphisms is a subspace. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Hypothesis
Ref Expression
lmhmeql.u 𝑈 = (LSubSp‘𝑆)
Assertion
Ref Expression
lmhmeql ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) → dom (𝐹𝐺) ∈ 𝑈)

Proof of Theorem lmhmeql
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmghm 19805 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
2 lmghm 19805 . . 3 (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝐺 ∈ (𝑆 GrpHom 𝑇))
3 ghmeql 18383 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → dom (𝐹𝐺) ∈ (SubGrp‘𝑆))
41, 2, 3syl2an 597 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) → dom (𝐹𝐺) ∈ (SubGrp‘𝑆))
5 fveq2 6672 . . . . . . . 8 (𝑧 = (𝑥( ·𝑠𝑆)𝑦) → (𝐹𝑧) = (𝐹‘(𝑥( ·𝑠𝑆)𝑦)))
6 fveq2 6672 . . . . . . . 8 (𝑧 = (𝑥( ·𝑠𝑆)𝑦) → (𝐺𝑧) = (𝐺‘(𝑥( ·𝑠𝑆)𝑦)))
75, 6eqeq12d 2839 . . . . . . 7 (𝑧 = (𝑥( ·𝑠𝑆)𝑦) → ((𝐹𝑧) = (𝐺𝑧) ↔ (𝐹‘(𝑥( ·𝑠𝑆)𝑦)) = (𝐺‘(𝑥( ·𝑠𝑆)𝑦))))
8 lmhmlmod1 19807 . . . . . . . . . 10 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
98adantr 483 . . . . . . . . 9 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) → 𝑆 ∈ LMod)
109ad2antrr 724 . . . . . . . 8 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → 𝑆 ∈ LMod)
11 simplr 767 . . . . . . . 8 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → 𝑥 ∈ (Base‘(Scalar‘𝑆)))
12 simprl 769 . . . . . . . 8 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → 𝑦 ∈ (Base‘𝑆))
13 eqid 2823 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
14 eqid 2823 . . . . . . . . 9 (Scalar‘𝑆) = (Scalar‘𝑆)
15 eqid 2823 . . . . . . . . 9 ( ·𝑠𝑆) = ( ·𝑠𝑆)
16 eqid 2823 . . . . . . . . 9 (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆))
1713, 14, 15, 16lmodvscl 19653 . . . . . . . 8 ((𝑆 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥( ·𝑠𝑆)𝑦) ∈ (Base‘𝑆))
1810, 11, 12, 17syl3anc 1367 . . . . . . 7 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝑥( ·𝑠𝑆)𝑦) ∈ (Base‘𝑆))
19 oveq2 7166 . . . . . . . . 9 ((𝐹𝑦) = (𝐺𝑦) → (𝑥( ·𝑠𝑇)(𝐹𝑦)) = (𝑥( ·𝑠𝑇)(𝐺𝑦)))
2019ad2antll 727 . . . . . . . 8 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝑥( ·𝑠𝑇)(𝐹𝑦)) = (𝑥( ·𝑠𝑇)(𝐺𝑦)))
21 simplll 773 . . . . . . . . 9 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → 𝐹 ∈ (𝑆 LMHom 𝑇))
22 eqid 2823 . . . . . . . . . 10 ( ·𝑠𝑇) = ( ·𝑠𝑇)
2314, 16, 13, 15, 22lmhmlin 19809 . . . . . . . . 9 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥( ·𝑠𝑆)𝑦)) = (𝑥( ·𝑠𝑇)(𝐹𝑦)))
2421, 11, 12, 23syl3anc 1367 . . . . . . . 8 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝐹‘(𝑥( ·𝑠𝑆)𝑦)) = (𝑥( ·𝑠𝑇)(𝐹𝑦)))
25 simpllr 774 . . . . . . . . 9 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → 𝐺 ∈ (𝑆 LMHom 𝑇))
2614, 16, 13, 15, 22lmhmlin 19809 . . . . . . . . 9 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐺‘(𝑥( ·𝑠𝑆)𝑦)) = (𝑥( ·𝑠𝑇)(𝐺𝑦)))
2725, 11, 12, 26syl3anc 1367 . . . . . . . 8 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝐺‘(𝑥( ·𝑠𝑆)𝑦)) = (𝑥( ·𝑠𝑇)(𝐺𝑦)))
2820, 24, 273eqtr4d 2868 . . . . . . 7 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝐹‘(𝑥( ·𝑠𝑆)𝑦)) = (𝐺‘(𝑥( ·𝑠𝑆)𝑦)))
297, 18, 28elrabd 3684 . . . . . 6 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝑥( ·𝑠𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})
3029expr 459 . . . . 5 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑦) = (𝐺𝑦) → (𝑥( ·𝑠𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}))
3130ralrimiva 3184 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) → ∀𝑦 ∈ (Base‘𝑆)((𝐹𝑦) = (𝐺𝑦) → (𝑥( ·𝑠𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}))
32 eqid 2823 . . . . . . . . 9 (Base‘𝑇) = (Base‘𝑇)
3313, 32lmhmf 19808 . . . . . . . 8 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
3433ffnd 6517 . . . . . . 7 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 Fn (Base‘𝑆))
3513, 32lmhmf 19808 . . . . . . . 8 (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇))
3635ffnd 6517 . . . . . . 7 (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝐺 Fn (Base‘𝑆))
37 fndmin 6817 . . . . . . 7 ((𝐹 Fn (Base‘𝑆) ∧ 𝐺 Fn (Base‘𝑆)) → dom (𝐹𝐺) = {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})
3834, 36, 37syl2an 597 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) → dom (𝐹𝐺) = {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})
3938adantr 483 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) → dom (𝐹𝐺) = {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})
40 eleq2 2903 . . . . . . 7 (dom (𝐹𝐺) = {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} → ((𝑥( ·𝑠𝑆)𝑦) ∈ dom (𝐹𝐺) ↔ (𝑥( ·𝑠𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}))
4140raleqbi1dv 3405 . . . . . 6 (dom (𝐹𝐺) = {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} → (∀𝑦 ∈ dom (𝐹𝐺)(𝑥( ·𝑠𝑆)𝑦) ∈ dom (𝐹𝐺) ↔ ∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} (𝑥( ·𝑠𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}))
42 fveq2 6672 . . . . . . . 8 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
43 fveq2 6672 . . . . . . . 8 (𝑧 = 𝑦 → (𝐺𝑧) = (𝐺𝑦))
4442, 43eqeq12d 2839 . . . . . . 7 (𝑧 = 𝑦 → ((𝐹𝑧) = (𝐺𝑧) ↔ (𝐹𝑦) = (𝐺𝑦)))
4544ralrab 3687 . . . . . 6 (∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} (𝑥( ·𝑠𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} ↔ ∀𝑦 ∈ (Base‘𝑆)((𝐹𝑦) = (𝐺𝑦) → (𝑥( ·𝑠𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}))
4641, 45syl6bb 289 . . . . 5 (dom (𝐹𝐺) = {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} → (∀𝑦 ∈ dom (𝐹𝐺)(𝑥( ·𝑠𝑆)𝑦) ∈ dom (𝐹𝐺) ↔ ∀𝑦 ∈ (Base‘𝑆)((𝐹𝑦) = (𝐺𝑦) → (𝑥( ·𝑠𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})))
4739, 46syl 17 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) → (∀𝑦 ∈ dom (𝐹𝐺)(𝑥( ·𝑠𝑆)𝑦) ∈ dom (𝐹𝐺) ↔ ∀𝑦 ∈ (Base‘𝑆)((𝐹𝑦) = (𝐺𝑦) → (𝑥( ·𝑠𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})))
4831, 47mpbird 259 . . 3 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) → ∀𝑦 ∈ dom (𝐹𝐺)(𝑥( ·𝑠𝑆)𝑦) ∈ dom (𝐹𝐺))
4948ralrimiva 3184 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) → ∀𝑥 ∈ (Base‘(Scalar‘𝑆))∀𝑦 ∈ dom (𝐹𝐺)(𝑥( ·𝑠𝑆)𝑦) ∈ dom (𝐹𝐺))
50 lmhmeql.u . . . 4 𝑈 = (LSubSp‘𝑆)
5114, 16, 13, 15, 50islss4 19736 . . 3 (𝑆 ∈ LMod → (dom (𝐹𝐺) ∈ 𝑈 ↔ (dom (𝐹𝐺) ∈ (SubGrp‘𝑆) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑆))∀𝑦 ∈ dom (𝐹𝐺)(𝑥( ·𝑠𝑆)𝑦) ∈ dom (𝐹𝐺))))
529, 51syl 17 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) → (dom (𝐹𝐺) ∈ 𝑈 ↔ (dom (𝐹𝐺) ∈ (SubGrp‘𝑆) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑆))∀𝑦 ∈ dom (𝐹𝐺)(𝑥( ·𝑠𝑆)𝑦) ∈ dom (𝐹𝐺))))
534, 49, 52mpbir2and 711 1 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) → dom (𝐹𝐺) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  {crab 3144  cin 3937  dom cdm 5557   Fn wfn 6352  cfv 6357  (class class class)co 7158  Basecbs 16485  Scalarcsca 16570   ·𝑠 cvsca 16571  SubGrpcsubg 18275   GrpHom cghm 18357  LModclmod 19636  LSubSpclss 19705   LMHom clmhm 19793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-subg 18278  df-ghm 18358  df-mgp 19242  df-ur 19254  df-ring 19301  df-lmod 19638  df-lss 19706  df-lmhm 19796
This theorem is referenced by:  lspextmo  19830
  Copyright terms: Public domain W3C validator