Step | Hyp | Ref
| Expression |
1 | | lmghm 20293 |
. . 3
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
2 | | lmghm 20293 |
. . 3
⊢ (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝐺 ∈ (𝑆 GrpHom 𝑇)) |
3 | | ghmeql 18857 |
. . 3
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → dom (𝐹 ∩ 𝐺) ∈ (SubGrp‘𝑆)) |
4 | 1, 2, 3 | syl2an 596 |
. 2
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) → dom (𝐹 ∩ 𝐺) ∈ (SubGrp‘𝑆)) |
5 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑧 = (𝑥( ·𝑠
‘𝑆)𝑦) → (𝐹‘𝑧) = (𝐹‘(𝑥( ·𝑠
‘𝑆)𝑦))) |
6 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑧 = (𝑥( ·𝑠
‘𝑆)𝑦) → (𝐺‘𝑧) = (𝐺‘(𝑥( ·𝑠
‘𝑆)𝑦))) |
7 | 5, 6 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑧 = (𝑥( ·𝑠
‘𝑆)𝑦) → ((𝐹‘𝑧) = (𝐺‘𝑧) ↔ (𝐹‘(𝑥( ·𝑠
‘𝑆)𝑦)) = (𝐺‘(𝑥( ·𝑠
‘𝑆)𝑦)))) |
8 | | lmhmlmod1 20295 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod) |
9 | 8 | adantr 481 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) → 𝑆 ∈ LMod) |
10 | 9 | ad2antrr 723 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹‘𝑦) = (𝐺‘𝑦))) → 𝑆 ∈ LMod) |
11 | | simplr 766 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹‘𝑦) = (𝐺‘𝑦))) → 𝑥 ∈ (Base‘(Scalar‘𝑆))) |
12 | | simprl 768 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹‘𝑦) = (𝐺‘𝑦))) → 𝑦 ∈ (Base‘𝑆)) |
13 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝑆) =
(Base‘𝑆) |
14 | | eqid 2738 |
. . . . . . . . 9
⊢
(Scalar‘𝑆) =
(Scalar‘𝑆) |
15 | | eqid 2738 |
. . . . . . . . 9
⊢ (
·𝑠 ‘𝑆) = ( ·𝑠
‘𝑆) |
16 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆)) |
17 | 13, 14, 15, 16 | lmodvscl 20140 |
. . . . . . . 8
⊢ ((𝑆 ∈ LMod ∧ 𝑥 ∈
(Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥( ·𝑠
‘𝑆)𝑦) ∈ (Base‘𝑆)) |
18 | 10, 11, 12, 17 | syl3anc 1370 |
. . . . . . 7
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹‘𝑦) = (𝐺‘𝑦))) → (𝑥( ·𝑠
‘𝑆)𝑦) ∈ (Base‘𝑆)) |
19 | | oveq2 7283 |
. . . . . . . . 9
⊢ ((𝐹‘𝑦) = (𝐺‘𝑦) → (𝑥( ·𝑠
‘𝑇)(𝐹‘𝑦)) = (𝑥( ·𝑠
‘𝑇)(𝐺‘𝑦))) |
20 | 19 | ad2antll 726 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹‘𝑦) = (𝐺‘𝑦))) → (𝑥( ·𝑠
‘𝑇)(𝐹‘𝑦)) = (𝑥( ·𝑠
‘𝑇)(𝐺‘𝑦))) |
21 | | simplll 772 |
. . . . . . . . 9
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹‘𝑦) = (𝐺‘𝑦))) → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
22 | | eqid 2738 |
. . . . . . . . . 10
⊢ (
·𝑠 ‘𝑇) = ( ·𝑠
‘𝑇) |
23 | 14, 16, 13, 15, 22 | lmhmlin 20297 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥( ·𝑠
‘𝑆)𝑦)) = (𝑥( ·𝑠
‘𝑇)(𝐹‘𝑦))) |
24 | 21, 11, 12, 23 | syl3anc 1370 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹‘𝑦) = (𝐺‘𝑦))) → (𝐹‘(𝑥( ·𝑠
‘𝑆)𝑦)) = (𝑥( ·𝑠
‘𝑇)(𝐹‘𝑦))) |
25 | | simpllr 773 |
. . . . . . . . 9
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹‘𝑦) = (𝐺‘𝑦))) → 𝐺 ∈ (𝑆 LMHom 𝑇)) |
26 | 14, 16, 13, 15, 22 | lmhmlin 20297 |
. . . . . . . . 9
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐺‘(𝑥( ·𝑠
‘𝑆)𝑦)) = (𝑥( ·𝑠
‘𝑇)(𝐺‘𝑦))) |
27 | 25, 11, 12, 26 | syl3anc 1370 |
. . . . . . . 8
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹‘𝑦) = (𝐺‘𝑦))) → (𝐺‘(𝑥( ·𝑠
‘𝑆)𝑦)) = (𝑥( ·𝑠
‘𝑇)(𝐺‘𝑦))) |
28 | 20, 24, 27 | 3eqtr4d 2788 |
. . . . . . 7
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹‘𝑦) = (𝐺‘𝑦))) → (𝐹‘(𝑥( ·𝑠
‘𝑆)𝑦)) = (𝐺‘(𝑥( ·𝑠
‘𝑆)𝑦))) |
29 | 7, 18, 28 | elrabd 3626 |
. . . . . 6
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹‘𝑦) = (𝐺‘𝑦))) → (𝑥( ·𝑠
‘𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)}) |
30 | 29 | expr 457 |
. . . . 5
⊢ ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹‘𝑦) = (𝐺‘𝑦) → (𝑥( ·𝑠
‘𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)})) |
31 | 30 | ralrimiva 3103 |
. . . 4
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) → ∀𝑦 ∈ (Base‘𝑆)((𝐹‘𝑦) = (𝐺‘𝑦) → (𝑥( ·𝑠
‘𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)})) |
32 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝑇) =
(Base‘𝑇) |
33 | 13, 32 | lmhmf 20296 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
34 | 33 | ffnd 6601 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 Fn (Base‘𝑆)) |
35 | 13, 32 | lmhmf 20296 |
. . . . . . . 8
⊢ (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇)) |
36 | 35 | ffnd 6601 |
. . . . . . 7
⊢ (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝐺 Fn (Base‘𝑆)) |
37 | | fndmin 6922 |
. . . . . . 7
⊢ ((𝐹 Fn (Base‘𝑆) ∧ 𝐺 Fn (Base‘𝑆)) → dom (𝐹 ∩ 𝐺) = {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)}) |
38 | 34, 36, 37 | syl2an 596 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) → dom (𝐹 ∩ 𝐺) = {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)}) |
39 | 38 | adantr 481 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) → dom (𝐹 ∩ 𝐺) = {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)}) |
40 | | eleq2 2827 |
. . . . . . 7
⊢ (dom
(𝐹 ∩ 𝐺) = {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)} → ((𝑥( ·𝑠
‘𝑆)𝑦) ∈ dom (𝐹 ∩ 𝐺) ↔ (𝑥( ·𝑠
‘𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)})) |
41 | 40 | raleqbi1dv 3340 |
. . . . . 6
⊢ (dom
(𝐹 ∩ 𝐺) = {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)} → (∀𝑦 ∈ dom (𝐹 ∩ 𝐺)(𝑥( ·𝑠
‘𝑆)𝑦) ∈ dom (𝐹 ∩ 𝐺) ↔ ∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)} (𝑥( ·𝑠
‘𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)})) |
42 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑧 = 𝑦 → (𝐹‘𝑧) = (𝐹‘𝑦)) |
43 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑧 = 𝑦 → (𝐺‘𝑧) = (𝐺‘𝑦)) |
44 | 42, 43 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → ((𝐹‘𝑧) = (𝐺‘𝑧) ↔ (𝐹‘𝑦) = (𝐺‘𝑦))) |
45 | 44 | ralrab 3630 |
. . . . . 6
⊢
(∀𝑦 ∈
{𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)} (𝑥( ·𝑠
‘𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)} ↔ ∀𝑦 ∈ (Base‘𝑆)((𝐹‘𝑦) = (𝐺‘𝑦) → (𝑥( ·𝑠
‘𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)})) |
46 | 41, 45 | bitrdi 287 |
. . . . 5
⊢ (dom
(𝐹 ∩ 𝐺) = {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)} → (∀𝑦 ∈ dom (𝐹 ∩ 𝐺)(𝑥( ·𝑠
‘𝑆)𝑦) ∈ dom (𝐹 ∩ 𝐺) ↔ ∀𝑦 ∈ (Base‘𝑆)((𝐹‘𝑦) = (𝐺‘𝑦) → (𝑥( ·𝑠
‘𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)}))) |
47 | 39, 46 | syl 17 |
. . . 4
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) → (∀𝑦 ∈ dom (𝐹 ∩ 𝐺)(𝑥( ·𝑠
‘𝑆)𝑦) ∈ dom (𝐹 ∩ 𝐺) ↔ ∀𝑦 ∈ (Base‘𝑆)((𝐹‘𝑦) = (𝐺‘𝑦) → (𝑥( ·𝑠
‘𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹‘𝑧) = (𝐺‘𝑧)}))) |
48 | 31, 47 | mpbird 256 |
. . 3
⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) → ∀𝑦 ∈ dom (𝐹 ∩ 𝐺)(𝑥( ·𝑠
‘𝑆)𝑦) ∈ dom (𝐹 ∩ 𝐺)) |
49 | 48 | ralrimiva 3103 |
. 2
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) → ∀𝑥 ∈ (Base‘(Scalar‘𝑆))∀𝑦 ∈ dom (𝐹 ∩ 𝐺)(𝑥( ·𝑠
‘𝑆)𝑦) ∈ dom (𝐹 ∩ 𝐺)) |
50 | | lmhmeql.u |
. . . 4
⊢ 𝑈 = (LSubSp‘𝑆) |
51 | 14, 16, 13, 15, 50 | islss4 20224 |
. . 3
⊢ (𝑆 ∈ LMod → (dom (𝐹 ∩ 𝐺) ∈ 𝑈 ↔ (dom (𝐹 ∩ 𝐺) ∈ (SubGrp‘𝑆) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑆))∀𝑦 ∈ dom (𝐹 ∩ 𝐺)(𝑥( ·𝑠
‘𝑆)𝑦) ∈ dom (𝐹 ∩ 𝐺)))) |
52 | 9, 51 | syl 17 |
. 2
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) → (dom (𝐹 ∩ 𝐺) ∈ 𝑈 ↔ (dom (𝐹 ∩ 𝐺) ∈ (SubGrp‘𝑆) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑆))∀𝑦 ∈ dom (𝐹 ∩ 𝐺)(𝑥( ·𝑠
‘𝑆)𝑦) ∈ dom (𝐹 ∩ 𝐺)))) |
53 | 4, 49, 52 | mpbir2and 710 |
1
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) → dom (𝐹 ∩ 𝐺) ∈ 𝑈) |