MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmeql Structured version   Visualization version   GIF version

Theorem lmhmeql 21055
Description: The equalizer of two module homomorphisms is a subspace. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Hypothesis
Ref Expression
lmhmeql.u 𝑈 = (LSubSp‘𝑆)
Assertion
Ref Expression
lmhmeql ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) → dom (𝐹𝐺) ∈ 𝑈)

Proof of Theorem lmhmeql
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmghm 21031 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
2 lmghm 21031 . . 3 (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝐺 ∈ (𝑆 GrpHom 𝑇))
3 ghmeql 19258 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → dom (𝐹𝐺) ∈ (SubGrp‘𝑆))
41, 2, 3syl2an 596 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) → dom (𝐹𝐺) ∈ (SubGrp‘𝑆))
5 fveq2 6905 . . . . . . . 8 (𝑧 = (𝑥( ·𝑠𝑆)𝑦) → (𝐹𝑧) = (𝐹‘(𝑥( ·𝑠𝑆)𝑦)))
6 fveq2 6905 . . . . . . . 8 (𝑧 = (𝑥( ·𝑠𝑆)𝑦) → (𝐺𝑧) = (𝐺‘(𝑥( ·𝑠𝑆)𝑦)))
75, 6eqeq12d 2752 . . . . . . 7 (𝑧 = (𝑥( ·𝑠𝑆)𝑦) → ((𝐹𝑧) = (𝐺𝑧) ↔ (𝐹‘(𝑥( ·𝑠𝑆)𝑦)) = (𝐺‘(𝑥( ·𝑠𝑆)𝑦))))
8 lmhmlmod1 21033 . . . . . . . . . 10 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
98adantr 480 . . . . . . . . 9 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) → 𝑆 ∈ LMod)
109ad2antrr 726 . . . . . . . 8 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → 𝑆 ∈ LMod)
11 simplr 768 . . . . . . . 8 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → 𝑥 ∈ (Base‘(Scalar‘𝑆)))
12 simprl 770 . . . . . . . 8 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → 𝑦 ∈ (Base‘𝑆))
13 eqid 2736 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
14 eqid 2736 . . . . . . . . 9 (Scalar‘𝑆) = (Scalar‘𝑆)
15 eqid 2736 . . . . . . . . 9 ( ·𝑠𝑆) = ( ·𝑠𝑆)
16 eqid 2736 . . . . . . . . 9 (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆))
1713, 14, 15, 16lmodvscl 20877 . . . . . . . 8 ((𝑆 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥( ·𝑠𝑆)𝑦) ∈ (Base‘𝑆))
1810, 11, 12, 17syl3anc 1372 . . . . . . 7 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝑥( ·𝑠𝑆)𝑦) ∈ (Base‘𝑆))
19 oveq2 7440 . . . . . . . . 9 ((𝐹𝑦) = (𝐺𝑦) → (𝑥( ·𝑠𝑇)(𝐹𝑦)) = (𝑥( ·𝑠𝑇)(𝐺𝑦)))
2019ad2antll 729 . . . . . . . 8 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝑥( ·𝑠𝑇)(𝐹𝑦)) = (𝑥( ·𝑠𝑇)(𝐺𝑦)))
21 simplll 774 . . . . . . . . 9 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → 𝐹 ∈ (𝑆 LMHom 𝑇))
22 eqid 2736 . . . . . . . . . 10 ( ·𝑠𝑇) = ( ·𝑠𝑇)
2314, 16, 13, 15, 22lmhmlin 21035 . . . . . . . . 9 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥( ·𝑠𝑆)𝑦)) = (𝑥( ·𝑠𝑇)(𝐹𝑦)))
2421, 11, 12, 23syl3anc 1372 . . . . . . . 8 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝐹‘(𝑥( ·𝑠𝑆)𝑦)) = (𝑥( ·𝑠𝑇)(𝐹𝑦)))
25 simpllr 775 . . . . . . . . 9 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → 𝐺 ∈ (𝑆 LMHom 𝑇))
2614, 16, 13, 15, 22lmhmlin 21035 . . . . . . . . 9 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐺‘(𝑥( ·𝑠𝑆)𝑦)) = (𝑥( ·𝑠𝑇)(𝐺𝑦)))
2725, 11, 12, 26syl3anc 1372 . . . . . . . 8 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝐺‘(𝑥( ·𝑠𝑆)𝑦)) = (𝑥( ·𝑠𝑇)(𝐺𝑦)))
2820, 24, 273eqtr4d 2786 . . . . . . 7 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝐹‘(𝑥( ·𝑠𝑆)𝑦)) = (𝐺‘(𝑥( ·𝑠𝑆)𝑦)))
297, 18, 28elrabd 3693 . . . . . 6 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹𝑦) = (𝐺𝑦))) → (𝑥( ·𝑠𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})
3029expr 456 . . . . 5 ((((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑦) = (𝐺𝑦) → (𝑥( ·𝑠𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}))
3130ralrimiva 3145 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) → ∀𝑦 ∈ (Base‘𝑆)((𝐹𝑦) = (𝐺𝑦) → (𝑥( ·𝑠𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}))
32 eqid 2736 . . . . . . . . 9 (Base‘𝑇) = (Base‘𝑇)
3313, 32lmhmf 21034 . . . . . . . 8 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
3433ffnd 6736 . . . . . . 7 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 Fn (Base‘𝑆))
3513, 32lmhmf 21034 . . . . . . . 8 (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇))
3635ffnd 6736 . . . . . . 7 (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝐺 Fn (Base‘𝑆))
37 fndmin 7064 . . . . . . 7 ((𝐹 Fn (Base‘𝑆) ∧ 𝐺 Fn (Base‘𝑆)) → dom (𝐹𝐺) = {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})
3834, 36, 37syl2an 596 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) → dom (𝐹𝐺) = {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})
3938adantr 480 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) → dom (𝐹𝐺) = {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})
40 eleq2 2829 . . . . . . 7 (dom (𝐹𝐺) = {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} → ((𝑥( ·𝑠𝑆)𝑦) ∈ dom (𝐹𝐺) ↔ (𝑥( ·𝑠𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}))
4140raleqbi1dv 3337 . . . . . 6 (dom (𝐹𝐺) = {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} → (∀𝑦 ∈ dom (𝐹𝐺)(𝑥( ·𝑠𝑆)𝑦) ∈ dom (𝐹𝐺) ↔ ∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} (𝑥( ·𝑠𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}))
42 fveq2 6905 . . . . . . . 8 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
43 fveq2 6905 . . . . . . . 8 (𝑧 = 𝑦 → (𝐺𝑧) = (𝐺𝑦))
4442, 43eqeq12d 2752 . . . . . . 7 (𝑧 = 𝑦 → ((𝐹𝑧) = (𝐺𝑧) ↔ (𝐹𝑦) = (𝐺𝑦)))
4544ralrab 3698 . . . . . 6 (∀𝑦 ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} (𝑥( ·𝑠𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} ↔ ∀𝑦 ∈ (Base‘𝑆)((𝐹𝑦) = (𝐺𝑦) → (𝑥( ·𝑠𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)}))
4641, 45bitrdi 287 . . . . 5 (dom (𝐹𝐺) = {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)} → (∀𝑦 ∈ dom (𝐹𝐺)(𝑥( ·𝑠𝑆)𝑦) ∈ dom (𝐹𝐺) ↔ ∀𝑦 ∈ (Base‘𝑆)((𝐹𝑦) = (𝐺𝑦) → (𝑥( ·𝑠𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})))
4739, 46syl 17 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) → (∀𝑦 ∈ dom (𝐹𝐺)(𝑥( ·𝑠𝑆)𝑦) ∈ dom (𝐹𝐺) ↔ ∀𝑦 ∈ (Base‘𝑆)((𝐹𝑦) = (𝐺𝑦) → (𝑥( ·𝑠𝑆)𝑦) ∈ {𝑧 ∈ (Base‘𝑆) ∣ (𝐹𝑧) = (𝐺𝑧)})))
4831, 47mpbird 257 . . 3 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆))) → ∀𝑦 ∈ dom (𝐹𝐺)(𝑥( ·𝑠𝑆)𝑦) ∈ dom (𝐹𝐺))
4948ralrimiva 3145 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) → ∀𝑥 ∈ (Base‘(Scalar‘𝑆))∀𝑦 ∈ dom (𝐹𝐺)(𝑥( ·𝑠𝑆)𝑦) ∈ dom (𝐹𝐺))
50 lmhmeql.u . . . 4 𝑈 = (LSubSp‘𝑆)
5114, 16, 13, 15, 50islss4 20961 . . 3 (𝑆 ∈ LMod → (dom (𝐹𝐺) ∈ 𝑈 ↔ (dom (𝐹𝐺) ∈ (SubGrp‘𝑆) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑆))∀𝑦 ∈ dom (𝐹𝐺)(𝑥( ·𝑠𝑆)𝑦) ∈ dom (𝐹𝐺))))
529, 51syl 17 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) → (dom (𝐹𝐺) ∈ 𝑈 ↔ (dom (𝐹𝐺) ∈ (SubGrp‘𝑆) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑆))∀𝑦 ∈ dom (𝐹𝐺)(𝑥( ·𝑠𝑆)𝑦) ∈ dom (𝐹𝐺))))
534, 49, 52mpbir2and 713 1 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑆 LMHom 𝑇)) → dom (𝐹𝐺) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3060  {crab 3435  cin 3949  dom cdm 5684   Fn wfn 6555  cfv 6560  (class class class)co 7432  Basecbs 17248  Scalarcsca 17301   ·𝑠 cvsca 17302  SubGrpcsubg 19139   GrpHom cghm 19231  LModclmod 20859  LSubSpclss 20930   LMHom clmhm 21019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-0g 17487  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-subg 19142  df-ghm 19232  df-mgp 20139  df-ur 20180  df-ring 20233  df-lmod 20861  df-lss 20931  df-lmhm 21022
This theorem is referenced by:  lspextmo  21056
  Copyright terms: Public domain W3C validator