MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmreclem1 Structured version   Visualization version   GIF version

Theorem prmreclem1 16598
Description: Lemma for prmrec 16604. Properties of the "square part" function, which extracts the 𝑚 of the decomposition 𝑁 = 𝑟𝑚↑2, with 𝑚 maximal and 𝑟 squarefree. (Contributed by Mario Carneiro, 5-Aug-2014.)
Hypothesis
Ref Expression
prmreclem1.1 𝑄 = (𝑛 ∈ ℕ ↦ sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}, ℝ, < ))
Assertion
Ref Expression
prmreclem1 (𝑁 ∈ ℕ → ((𝑄𝑁) ∈ ℕ ∧ ((𝑄𝑁)↑2) ∥ 𝑁 ∧ (𝐾 ∈ (ℤ‘2) → ¬ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2)))))
Distinct variable groups:   𝐾,𝑟   𝑛,𝑟,𝑁   𝑄,𝑟
Allowed substitution hints:   𝑄(𝑛)   𝐾(𝑛)

Proof of Theorem prmreclem1
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4017 . . 3 {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ⊆ ℕ
2 breq2 5082 . . . . . . 7 (𝑛 = 𝑁 → ((𝑟↑2) ∥ 𝑛 ↔ (𝑟↑2) ∥ 𝑁))
32rabbidv 3412 . . . . . 6 (𝑛 = 𝑁 → {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛} = {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁})
43supeq1d 9166 . . . . 5 (𝑛 = 𝑁 → sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}, ℝ, < ) = sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}, ℝ, < ))
5 prmreclem1.1 . . . . 5 𝑄 = (𝑛 ∈ ℕ ↦ sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}, ℝ, < ))
6 ltso 11039 . . . . . 6 < Or ℝ
76supex 9183 . . . . 5 sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}, ℝ, < ) ∈ V
84, 5, 7fvmpt 6869 . . . 4 (𝑁 ∈ ℕ → (𝑄𝑁) = sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}, ℝ, < ))
9 nnssz 12323 . . . . . 6 ℕ ⊆ ℤ
101, 9sstri 3934 . . . . 5 {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ⊆ ℤ
11 oveq1 7275 . . . . . . . . 9 (𝑟 = 1 → (𝑟↑2) = (1↑2))
12 sq1 13893 . . . . . . . . 9 (1↑2) = 1
1311, 12eqtrdi 2795 . . . . . . . 8 (𝑟 = 1 → (𝑟↑2) = 1)
1413breq1d 5088 . . . . . . 7 (𝑟 = 1 → ((𝑟↑2) ∥ 𝑁 ↔ 1 ∥ 𝑁))
15 1nn 11967 . . . . . . . 8 1 ∈ ℕ
1615a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 1 ∈ ℕ)
17 nnz 12325 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
18 1dvds 15961 . . . . . . . 8 (𝑁 ∈ ℤ → 1 ∥ 𝑁)
1917, 18syl 17 . . . . . . 7 (𝑁 ∈ ℕ → 1 ∥ 𝑁)
2014, 16, 19elrabd 3627 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁})
2120ne0d 4274 . . . . 5 (𝑁 ∈ ℕ → {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ≠ ∅)
22 nnz 12325 . . . . . . . . . . 11 (𝑧 ∈ ℕ → 𝑧 ∈ ℤ)
23 zsqcl 13829 . . . . . . . . . . 11 (𝑧 ∈ ℤ → (𝑧↑2) ∈ ℤ)
2422, 23syl 17 . . . . . . . . . 10 (𝑧 ∈ ℕ → (𝑧↑2) ∈ ℤ)
25 id 22 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
26 dvdsle 16000 . . . . . . . . . 10 (((𝑧↑2) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑧↑2) ∥ 𝑁 → (𝑧↑2) ≤ 𝑁))
2724, 25, 26syl2anr 596 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧↑2) ∥ 𝑁 → (𝑧↑2) ≤ 𝑁))
28 nnlesq 13903 . . . . . . . . . . 11 (𝑧 ∈ ℕ → 𝑧 ≤ (𝑧↑2))
2928adantl 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → 𝑧 ≤ (𝑧↑2))
30 nnre 11963 . . . . . . . . . . . 12 (𝑧 ∈ ℕ → 𝑧 ∈ ℝ)
3130adantl 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → 𝑧 ∈ ℝ)
3231resqcld 13946 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧↑2) ∈ ℝ)
33 nnre 11963 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
3433adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → 𝑁 ∈ ℝ)
35 letr 11052 . . . . . . . . . . 11 ((𝑧 ∈ ℝ ∧ (𝑧↑2) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑧 ≤ (𝑧↑2) ∧ (𝑧↑2) ≤ 𝑁) → 𝑧𝑁))
3631, 32, 34, 35syl3anc 1369 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧 ≤ (𝑧↑2) ∧ (𝑧↑2) ≤ 𝑁) → 𝑧𝑁))
3729, 36mpand 691 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧↑2) ≤ 𝑁𝑧𝑁))
3827, 37syld 47 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧↑2) ∥ 𝑁𝑧𝑁))
3938ralrimiva 3109 . . . . . . 7 (𝑁 ∈ ℕ → ∀𝑧 ∈ ℕ ((𝑧↑2) ∥ 𝑁𝑧𝑁))
40 oveq1 7275 . . . . . . . . 9 (𝑟 = 𝑧 → (𝑟↑2) = (𝑧↑2))
4140breq1d 5088 . . . . . . . 8 (𝑟 = 𝑧 → ((𝑟↑2) ∥ 𝑁 ↔ (𝑧↑2) ∥ 𝑁))
4241ralrab 3631 . . . . . . 7 (∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧𝑁 ↔ ∀𝑧 ∈ ℕ ((𝑧↑2) ∥ 𝑁𝑧𝑁))
4339, 42sylibr 233 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧𝑁)
44 brralrspcev 5138 . . . . . 6 ((𝑁 ∈ ℤ ∧ ∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧𝑁) → ∃𝑥 ∈ ℤ ∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧𝑥)
4517, 43, 44syl2anc 583 . . . . 5 (𝑁 ∈ ℕ → ∃𝑥 ∈ ℤ ∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧𝑥)
46 suprzcl2 12660 . . . . 5 (({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ⊆ ℤ ∧ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧𝑥) → sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}, ℝ, < ) ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁})
4710, 21, 45, 46mp3an2i 1464 . . . 4 (𝑁 ∈ ℕ → sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}, ℝ, < ) ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁})
488, 47eqeltrd 2840 . . 3 (𝑁 ∈ ℕ → (𝑄𝑁) ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁})
491, 48sselid 3923 . 2 (𝑁 ∈ ℕ → (𝑄𝑁) ∈ ℕ)
50 oveq1 7275 . . . . . 6 (𝑧 = (𝑄𝑁) → (𝑧↑2) = ((𝑄𝑁)↑2))
5150breq1d 5088 . . . . 5 (𝑧 = (𝑄𝑁) → ((𝑧↑2) ∥ 𝑁 ↔ ((𝑄𝑁)↑2) ∥ 𝑁))
5241cbvrabv 3424 . . . . 5 {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} = {𝑧 ∈ ℕ ∣ (𝑧↑2) ∥ 𝑁}
5351, 52elrab2 3628 . . . 4 ((𝑄𝑁) ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ↔ ((𝑄𝑁) ∈ ℕ ∧ ((𝑄𝑁)↑2) ∥ 𝑁))
5448, 53sylib 217 . . 3 (𝑁 ∈ ℕ → ((𝑄𝑁) ∈ ℕ ∧ ((𝑄𝑁)↑2) ∥ 𝑁))
5554simprd 495 . 2 (𝑁 ∈ ℕ → ((𝑄𝑁)↑2) ∥ 𝑁)
5649adantr 480 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → (𝑄𝑁) ∈ ℕ)
5756nncnd 11972 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → (𝑄𝑁) ∈ ℂ)
5857mulid1d 10976 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → ((𝑄𝑁) · 1) = (𝑄𝑁))
59 eluz2gt1 12642 . . . . . . . 8 (𝐾 ∈ (ℤ‘2) → 1 < 𝐾)
6059adantl 481 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → 1 < 𝐾)
61 1red 10960 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → 1 ∈ ℝ)
62 eluz2nn 12606 . . . . . . . . . 10 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℕ)
6362adantl 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → 𝐾 ∈ ℕ)
6463nnred 11971 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → 𝐾 ∈ ℝ)
6556nnred 11971 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → (𝑄𝑁) ∈ ℝ)
6656nngt0d 12005 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → 0 < (𝑄𝑁))
67 ltmul2 11809 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ ((𝑄𝑁) ∈ ℝ ∧ 0 < (𝑄𝑁))) → (1 < 𝐾 ↔ ((𝑄𝑁) · 1) < ((𝑄𝑁) · 𝐾)))
6861, 64, 65, 66, 67syl112anc 1372 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → (1 < 𝐾 ↔ ((𝑄𝑁) · 1) < ((𝑄𝑁) · 𝐾)))
6960, 68mpbid 231 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → ((𝑄𝑁) · 1) < ((𝑄𝑁) · 𝐾))
7058, 69eqbrtrrd 5102 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → (𝑄𝑁) < ((𝑄𝑁) · 𝐾))
71 nnmulcl 11980 . . . . . . . 8 (((𝑄𝑁) ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((𝑄𝑁) · 𝐾) ∈ ℕ)
7249, 62, 71syl2an 595 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → ((𝑄𝑁) · 𝐾) ∈ ℕ)
7372nnred 11971 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → ((𝑄𝑁) · 𝐾) ∈ ℝ)
7465, 73ltnled 11105 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → ((𝑄𝑁) < ((𝑄𝑁) · 𝐾) ↔ ¬ ((𝑄𝑁) · 𝐾) ≤ (𝑄𝑁)))
7570, 74mpbid 231 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → ¬ ((𝑄𝑁) · 𝐾) ≤ (𝑄𝑁))
7645ad2antrr 722 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → ∃𝑥 ∈ ℤ ∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧𝑥)
77 oveq1 7275 . . . . . . . 8 (𝑟 = ((𝑄𝑁) · 𝐾) → (𝑟↑2) = (((𝑄𝑁) · 𝐾)↑2))
7877breq1d 5088 . . . . . . 7 (𝑟 = ((𝑄𝑁) · 𝐾) → ((𝑟↑2) ∥ 𝑁 ↔ (((𝑄𝑁) · 𝐾)↑2) ∥ 𝑁))
7972adantr 480 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → ((𝑄𝑁) · 𝐾) ∈ ℕ)
80 simpr 484 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2)))
8163adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → 𝐾 ∈ ℕ)
8281nnsqcld 13940 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → (𝐾↑2) ∈ ℕ)
83 nnz 12325 . . . . . . . . . . 11 ((𝐾↑2) ∈ ℕ → (𝐾↑2) ∈ ℤ)
8482, 83syl 17 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → (𝐾↑2) ∈ ℤ)
8549nnsqcld 13940 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → ((𝑄𝑁)↑2) ∈ ℕ)
869, 85sselid 3923 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑄𝑁)↑2) ∈ ℤ)
8785nnne0d 12006 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((𝑄𝑁)↑2) ≠ 0)
88 dvdsval2 15947 . . . . . . . . . . . . 13 ((((𝑄𝑁)↑2) ∈ ℤ ∧ ((𝑄𝑁)↑2) ≠ 0 ∧ 𝑁 ∈ ℤ) → (((𝑄𝑁)↑2) ∥ 𝑁 ↔ (𝑁 / ((𝑄𝑁)↑2)) ∈ ℤ))
8986, 87, 17, 88syl3anc 1369 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((𝑄𝑁)↑2) ∥ 𝑁 ↔ (𝑁 / ((𝑄𝑁)↑2)) ∈ ℤ))
9055, 89mpbid 231 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 / ((𝑄𝑁)↑2)) ∈ ℤ)
9190ad2antrr 722 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → (𝑁 / ((𝑄𝑁)↑2)) ∈ ℤ)
9286ad2antrr 722 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → ((𝑄𝑁)↑2) ∈ ℤ)
93 dvdscmul 15973 . . . . . . . . . 10 (((𝐾↑2) ∈ ℤ ∧ (𝑁 / ((𝑄𝑁)↑2)) ∈ ℤ ∧ ((𝑄𝑁)↑2) ∈ ℤ) → ((𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2)) → (((𝑄𝑁)↑2) · (𝐾↑2)) ∥ (((𝑄𝑁)↑2) · (𝑁 / ((𝑄𝑁)↑2)))))
9484, 91, 92, 93syl3anc 1369 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → ((𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2)) → (((𝑄𝑁)↑2) · (𝐾↑2)) ∥ (((𝑄𝑁)↑2) · (𝑁 / ((𝑄𝑁)↑2)))))
9580, 94mpd 15 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → (((𝑄𝑁)↑2) · (𝐾↑2)) ∥ (((𝑄𝑁)↑2) · (𝑁 / ((𝑄𝑁)↑2))))
9657adantr 480 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → (𝑄𝑁) ∈ ℂ)
9781nncnd 11972 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → 𝐾 ∈ ℂ)
9896, 97sqmuld 13857 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → (((𝑄𝑁) · 𝐾)↑2) = (((𝑄𝑁)↑2) · (𝐾↑2)))
9998eqcomd 2745 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → (((𝑄𝑁)↑2) · (𝐾↑2)) = (((𝑄𝑁) · 𝐾)↑2))
100 nncn 11964 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
101100ad2antrr 722 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → 𝑁 ∈ ℂ)
10285ad2antrr 722 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → ((𝑄𝑁)↑2) ∈ ℕ)
103102nncnd 11972 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → ((𝑄𝑁)↑2) ∈ ℂ)
10487ad2antrr 722 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → ((𝑄𝑁)↑2) ≠ 0)
105101, 103, 104divcan2d 11736 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → (((𝑄𝑁)↑2) · (𝑁 / ((𝑄𝑁)↑2))) = 𝑁)
10695, 99, 1053brtr3d 5109 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → (((𝑄𝑁) · 𝐾)↑2) ∥ 𝑁)
10778, 79, 106elrabd 3627 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → ((𝑄𝑁) · 𝐾) ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁})
108 suprzub 12661 . . . . . 6 (({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧𝑥 ∧ ((𝑄𝑁) · 𝐾) ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}) → ((𝑄𝑁) · 𝐾) ≤ sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}, ℝ, < ))
10910, 76, 107, 108mp3an2i 1464 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → ((𝑄𝑁) · 𝐾) ≤ sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}, ℝ, < ))
1108ad2antrr 722 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → (𝑄𝑁) = sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}, ℝ, < ))
111109, 110breqtrrd 5106 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))) → ((𝑄𝑁) · 𝐾) ≤ (𝑄𝑁))
11275, 111mtand 812 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (ℤ‘2)) → ¬ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2)))
113112ex 412 . 2 (𝑁 ∈ ℕ → (𝐾 ∈ (ℤ‘2) → ¬ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2))))
11449, 55, 1133jca 1126 1 (𝑁 ∈ ℕ → ((𝑄𝑁) ∈ ℕ ∧ ((𝑄𝑁)↑2) ∥ 𝑁 ∧ (𝐾 ∈ (ℤ‘2) → ¬ (𝐾↑2) ∥ (𝑁 / ((𝑄𝑁)↑2)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109  wne 2944  wral 3065  wrex 3066  {crab 3069  wss 3891  c0 4261   class class class wbr 5078  cmpt 5161  cfv 6430  (class class class)co 7268  supcsup 9160  cc 10853  cr 10854  0cc0 10855  1c1 10856   · cmul 10860   < clt 10993  cle 10994   / cdiv 11615  cn 11956  2c2 12011  cz 12302  cuz 12564  cexp 13763  cdvds 15944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-sup 9162  df-inf 9163  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-n0 12217  df-z 12303  df-uz 12565  df-seq 13703  df-exp 13764  df-dvds 15945
This theorem is referenced by:  prmreclem2  16599  prmreclem3  16600
  Copyright terms: Public domain W3C validator