Step | Hyp | Ref
| Expression |
1 | | ssrab2 4017 |
. . 3
⊢ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ⊆
ℕ |
2 | | breq2 5082 |
. . . . . . 7
⊢ (𝑛 = 𝑁 → ((𝑟↑2) ∥ 𝑛 ↔ (𝑟↑2) ∥ 𝑁)) |
3 | 2 | rabbidv 3412 |
. . . . . 6
⊢ (𝑛 = 𝑁 → {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛} = {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}) |
4 | 3 | supeq1d 9166 |
. . . . 5
⊢ (𝑛 = 𝑁 → sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}, ℝ, < ) = sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}, ℝ, < )) |
5 | | prmreclem1.1 |
. . . . 5
⊢ 𝑄 = (𝑛 ∈ ℕ ↦ sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}, ℝ, <
)) |
6 | | ltso 11039 |
. . . . . 6
⊢ < Or
ℝ |
7 | 6 | supex 9183 |
. . . . 5
⊢
sup({𝑟 ∈
ℕ ∣ (𝑟↑2)
∥ 𝑁}, ℝ, < )
∈ V |
8 | 4, 5, 7 | fvmpt 6869 |
. . . 4
⊢ (𝑁 ∈ ℕ → (𝑄‘𝑁) = sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}, ℝ, < )) |
9 | | nnssz 12323 |
. . . . . 6
⊢ ℕ
⊆ ℤ |
10 | 1, 9 | sstri 3934 |
. . . . 5
⊢ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ⊆
ℤ |
11 | | oveq1 7275 |
. . . . . . . . 9
⊢ (𝑟 = 1 → (𝑟↑2) = (1↑2)) |
12 | | sq1 13893 |
. . . . . . . . 9
⊢
(1↑2) = 1 |
13 | 11, 12 | eqtrdi 2795 |
. . . . . . . 8
⊢ (𝑟 = 1 → (𝑟↑2) = 1) |
14 | 13 | breq1d 5088 |
. . . . . . 7
⊢ (𝑟 = 1 → ((𝑟↑2) ∥ 𝑁 ↔ 1 ∥ 𝑁)) |
15 | | 1nn 11967 |
. . . . . . . 8
⊢ 1 ∈
ℕ |
16 | 15 | a1i 11 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → 1 ∈
ℕ) |
17 | | nnz 12325 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
18 | | 1dvds 15961 |
. . . . . . . 8
⊢ (𝑁 ∈ ℤ → 1 ∥
𝑁) |
19 | 17, 18 | syl 17 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → 1 ∥
𝑁) |
20 | 14, 16, 19 | elrabd 3627 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 1 ∈
{𝑟 ∈ ℕ ∣
(𝑟↑2) ∥ 𝑁}) |
21 | 20 | ne0d 4274 |
. . . . 5
⊢ (𝑁 ∈ ℕ → {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ≠ ∅) |
22 | | nnz 12325 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℕ → 𝑧 ∈
ℤ) |
23 | | zsqcl 13829 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℤ → (𝑧↑2) ∈
ℤ) |
24 | 22, 23 | syl 17 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ℕ → (𝑧↑2) ∈
ℤ) |
25 | | id 22 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ) |
26 | | dvdsle 16000 |
. . . . . . . . . 10
⊢ (((𝑧↑2) ∈ ℤ ∧
𝑁 ∈ ℕ) →
((𝑧↑2) ∥ 𝑁 → (𝑧↑2) ≤ 𝑁)) |
27 | 24, 25, 26 | syl2anr 596 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧↑2) ∥ 𝑁 → (𝑧↑2) ≤ 𝑁)) |
28 | | nnlesq 13903 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℕ → 𝑧 ≤ (𝑧↑2)) |
29 | 28 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → 𝑧 ≤ (𝑧↑2)) |
30 | | nnre 11963 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ℕ → 𝑧 ∈
ℝ) |
31 | 30 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → 𝑧 ∈
ℝ) |
32 | 31 | resqcld 13946 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧↑2) ∈
ℝ) |
33 | | nnre 11963 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ) |
34 | 33 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → 𝑁 ∈
ℝ) |
35 | | letr 11052 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℝ ∧ (𝑧↑2) ∈ ℝ ∧
𝑁 ∈ ℝ) →
((𝑧 ≤ (𝑧↑2) ∧ (𝑧↑2) ≤ 𝑁) → 𝑧 ≤ 𝑁)) |
36 | 31, 32, 34, 35 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧 ≤ (𝑧↑2) ∧ (𝑧↑2) ≤ 𝑁) → 𝑧 ≤ 𝑁)) |
37 | 29, 36 | mpand 691 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧↑2) ≤ 𝑁 → 𝑧 ≤ 𝑁)) |
38 | 27, 37 | syld 47 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧↑2) ∥ 𝑁 → 𝑧 ≤ 𝑁)) |
39 | 38 | ralrimiva 3109 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ →
∀𝑧 ∈ ℕ
((𝑧↑2) ∥ 𝑁 → 𝑧 ≤ 𝑁)) |
40 | | oveq1 7275 |
. . . . . . . . 9
⊢ (𝑟 = 𝑧 → (𝑟↑2) = (𝑧↑2)) |
41 | 40 | breq1d 5088 |
. . . . . . . 8
⊢ (𝑟 = 𝑧 → ((𝑟↑2) ∥ 𝑁 ↔ (𝑧↑2) ∥ 𝑁)) |
42 | 41 | ralrab 3631 |
. . . . . . 7
⊢
(∀𝑧 ∈
{𝑟 ∈ ℕ ∣
(𝑟↑2) ∥ 𝑁}𝑧 ≤ 𝑁 ↔ ∀𝑧 ∈ ℕ ((𝑧↑2) ∥ 𝑁 → 𝑧 ≤ 𝑁)) |
43 | 39, 42 | sylibr 233 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧 ≤ 𝑁) |
44 | | brralrspcev 5138 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧
∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧 ≤ 𝑁) → ∃𝑥 ∈ ℤ ∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧 ≤ 𝑥) |
45 | 17, 43, 44 | syl2anc 583 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
∃𝑥 ∈ ℤ
∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧 ≤ 𝑥) |
46 | | suprzcl2 12660 |
. . . . 5
⊢ (({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ⊆ ℤ ∧ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ≠ ∅ ∧
∃𝑥 ∈ ℤ
∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧 ≤ 𝑥) → sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}, ℝ, < ) ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}) |
47 | 10, 21, 45, 46 | mp3an2i 1464 |
. . . 4
⊢ (𝑁 ∈ ℕ →
sup({𝑟 ∈ ℕ
∣ (𝑟↑2) ∥
𝑁}, ℝ, < ) ∈
{𝑟 ∈ ℕ ∣
(𝑟↑2) ∥ 𝑁}) |
48 | 8, 47 | eqeltrd 2840 |
. . 3
⊢ (𝑁 ∈ ℕ → (𝑄‘𝑁) ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}) |
49 | 1, 48 | sselid 3923 |
. 2
⊢ (𝑁 ∈ ℕ → (𝑄‘𝑁) ∈ ℕ) |
50 | | oveq1 7275 |
. . . . . 6
⊢ (𝑧 = (𝑄‘𝑁) → (𝑧↑2) = ((𝑄‘𝑁)↑2)) |
51 | 50 | breq1d 5088 |
. . . . 5
⊢ (𝑧 = (𝑄‘𝑁) → ((𝑧↑2) ∥ 𝑁 ↔ ((𝑄‘𝑁)↑2) ∥ 𝑁)) |
52 | 41 | cbvrabv 3424 |
. . . . 5
⊢ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} = {𝑧 ∈ ℕ ∣ (𝑧↑2) ∥ 𝑁} |
53 | 51, 52 | elrab2 3628 |
. . . 4
⊢ ((𝑄‘𝑁) ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ↔ ((𝑄‘𝑁) ∈ ℕ ∧ ((𝑄‘𝑁)↑2) ∥ 𝑁)) |
54 | 48, 53 | sylib 217 |
. . 3
⊢ (𝑁 ∈ ℕ → ((𝑄‘𝑁) ∈ ℕ ∧ ((𝑄‘𝑁)↑2) ∥ 𝑁)) |
55 | 54 | simprd 495 |
. 2
⊢ (𝑁 ∈ ℕ → ((𝑄‘𝑁)↑2) ∥ 𝑁) |
56 | 49 | adantr 480 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) → (𝑄‘𝑁) ∈ ℕ) |
57 | 56 | nncnd 11972 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) → (𝑄‘𝑁) ∈ ℂ) |
58 | 57 | mulid1d 10976 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) → ((𝑄‘𝑁) · 1) = (𝑄‘𝑁)) |
59 | | eluz2gt1 12642 |
. . . . . . . 8
⊢ (𝐾 ∈
(ℤ≥‘2) → 1 < 𝐾) |
60 | 59 | adantl 481 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) → 1 < 𝐾) |
61 | | 1red 10960 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) → 1 ∈ ℝ) |
62 | | eluz2nn 12606 |
. . . . . . . . . 10
⊢ (𝐾 ∈
(ℤ≥‘2) → 𝐾 ∈ ℕ) |
63 | 62 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) → 𝐾 ∈ ℕ) |
64 | 63 | nnred 11971 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) → 𝐾 ∈ ℝ) |
65 | 56 | nnred 11971 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) → (𝑄‘𝑁) ∈ ℝ) |
66 | 56 | nngt0d 12005 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) → 0 < (𝑄‘𝑁)) |
67 | | ltmul2 11809 |
. . . . . . . 8
⊢ ((1
∈ ℝ ∧ 𝐾
∈ ℝ ∧ ((𝑄‘𝑁) ∈ ℝ ∧ 0 < (𝑄‘𝑁))) → (1 < 𝐾 ↔ ((𝑄‘𝑁) · 1) < ((𝑄‘𝑁) · 𝐾))) |
68 | 61, 64, 65, 66, 67 | syl112anc 1372 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) → (1 < 𝐾 ↔ ((𝑄‘𝑁) · 1) < ((𝑄‘𝑁) · 𝐾))) |
69 | 60, 68 | mpbid 231 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) → ((𝑄‘𝑁) · 1) < ((𝑄‘𝑁) · 𝐾)) |
70 | 58, 69 | eqbrtrrd 5102 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) → (𝑄‘𝑁) < ((𝑄‘𝑁) · 𝐾)) |
71 | | nnmulcl 11980 |
. . . . . . . 8
⊢ (((𝑄‘𝑁) ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((𝑄‘𝑁) · 𝐾) ∈ ℕ) |
72 | 49, 62, 71 | syl2an 595 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) → ((𝑄‘𝑁) · 𝐾) ∈ ℕ) |
73 | 72 | nnred 11971 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) → ((𝑄‘𝑁) · 𝐾) ∈ ℝ) |
74 | 65, 73 | ltnled 11105 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) → ((𝑄‘𝑁) < ((𝑄‘𝑁) · 𝐾) ↔ ¬ ((𝑄‘𝑁) · 𝐾) ≤ (𝑄‘𝑁))) |
75 | 70, 74 | mpbid 231 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) → ¬ ((𝑄‘𝑁) · 𝐾) ≤ (𝑄‘𝑁)) |
76 | 45 | ad2antrr 722 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → ∃𝑥 ∈ ℤ ∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧 ≤ 𝑥) |
77 | | oveq1 7275 |
. . . . . . . 8
⊢ (𝑟 = ((𝑄‘𝑁) · 𝐾) → (𝑟↑2) = (((𝑄‘𝑁) · 𝐾)↑2)) |
78 | 77 | breq1d 5088 |
. . . . . . 7
⊢ (𝑟 = ((𝑄‘𝑁) · 𝐾) → ((𝑟↑2) ∥ 𝑁 ↔ (((𝑄‘𝑁) · 𝐾)↑2) ∥ 𝑁)) |
79 | 72 | adantr 480 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → ((𝑄‘𝑁) · 𝐾) ∈ ℕ) |
80 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) |
81 | 63 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → 𝐾 ∈ ℕ) |
82 | 81 | nnsqcld 13940 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → (𝐾↑2) ∈ ℕ) |
83 | | nnz 12325 |
. . . . . . . . . . 11
⊢ ((𝐾↑2) ∈ ℕ →
(𝐾↑2) ∈
ℤ) |
84 | 82, 83 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → (𝐾↑2) ∈ ℤ) |
85 | 49 | nnsqcld 13940 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ → ((𝑄‘𝑁)↑2) ∈ ℕ) |
86 | 9, 85 | sselid 3923 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ → ((𝑄‘𝑁)↑2) ∈ ℤ) |
87 | 85 | nnne0d 12006 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ → ((𝑄‘𝑁)↑2) ≠ 0) |
88 | | dvdsval2 15947 |
. . . . . . . . . . . . 13
⊢ ((((𝑄‘𝑁)↑2) ∈ ℤ ∧ ((𝑄‘𝑁)↑2) ≠ 0 ∧ 𝑁 ∈ ℤ) → (((𝑄‘𝑁)↑2) ∥ 𝑁 ↔ (𝑁 / ((𝑄‘𝑁)↑2)) ∈ ℤ)) |
89 | 86, 87, 17, 88 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → (((𝑄‘𝑁)↑2) ∥ 𝑁 ↔ (𝑁 / ((𝑄‘𝑁)↑2)) ∈ ℤ)) |
90 | 55, 89 | mpbid 231 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → (𝑁 / ((𝑄‘𝑁)↑2)) ∈ ℤ) |
91 | 90 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → (𝑁 / ((𝑄‘𝑁)↑2)) ∈ ℤ) |
92 | 86 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → ((𝑄‘𝑁)↑2) ∈ ℤ) |
93 | | dvdscmul 15973 |
. . . . . . . . . 10
⊢ (((𝐾↑2) ∈ ℤ ∧
(𝑁 / ((𝑄‘𝑁)↑2)) ∈ ℤ ∧ ((𝑄‘𝑁)↑2) ∈ ℤ) → ((𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2)) → (((𝑄‘𝑁)↑2) · (𝐾↑2)) ∥ (((𝑄‘𝑁)↑2) · (𝑁 / ((𝑄‘𝑁)↑2))))) |
94 | 84, 91, 92, 93 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → ((𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2)) → (((𝑄‘𝑁)↑2) · (𝐾↑2)) ∥ (((𝑄‘𝑁)↑2) · (𝑁 / ((𝑄‘𝑁)↑2))))) |
95 | 80, 94 | mpd 15 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → (((𝑄‘𝑁)↑2) · (𝐾↑2)) ∥ (((𝑄‘𝑁)↑2) · (𝑁 / ((𝑄‘𝑁)↑2)))) |
96 | 57 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → (𝑄‘𝑁) ∈ ℂ) |
97 | 81 | nncnd 11972 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → 𝐾 ∈ ℂ) |
98 | 96, 97 | sqmuld 13857 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → (((𝑄‘𝑁) · 𝐾)↑2) = (((𝑄‘𝑁)↑2) · (𝐾↑2))) |
99 | 98 | eqcomd 2745 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → (((𝑄‘𝑁)↑2) · (𝐾↑2)) = (((𝑄‘𝑁) · 𝐾)↑2)) |
100 | | nncn 11964 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) |
101 | 100 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → 𝑁 ∈ ℂ) |
102 | 85 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → ((𝑄‘𝑁)↑2) ∈ ℕ) |
103 | 102 | nncnd 11972 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → ((𝑄‘𝑁)↑2) ∈ ℂ) |
104 | 87 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → ((𝑄‘𝑁)↑2) ≠ 0) |
105 | 101, 103,
104 | divcan2d 11736 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → (((𝑄‘𝑁)↑2) · (𝑁 / ((𝑄‘𝑁)↑2))) = 𝑁) |
106 | 95, 99, 105 | 3brtr3d 5109 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → (((𝑄‘𝑁) · 𝐾)↑2) ∥ 𝑁) |
107 | 78, 79, 106 | elrabd 3627 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → ((𝑄‘𝑁) · 𝐾) ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}) |
108 | | suprzub 12661 |
. . . . . 6
⊢ (({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁} ⊆ ℤ ∧
∃𝑥 ∈ ℤ
∀𝑧 ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}𝑧 ≤ 𝑥 ∧ ((𝑄‘𝑁) · 𝐾) ∈ {𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}) → ((𝑄‘𝑁) · 𝐾) ≤ sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}, ℝ, < )) |
109 | 10, 76, 107, 108 | mp3an2i 1464 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → ((𝑄‘𝑁) · 𝐾) ≤ sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}, ℝ, < )) |
110 | 8 | ad2antrr 722 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → (𝑄‘𝑁) = sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑁}, ℝ, < )) |
111 | 109, 110 | breqtrrd 5106 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) ∧ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) → ((𝑄‘𝑁) · 𝐾) ≤ (𝑄‘𝑁)) |
112 | 75, 111 | mtand 812 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈
(ℤ≥‘2)) → ¬ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2))) |
113 | 112 | ex 412 |
. 2
⊢ (𝑁 ∈ ℕ → (𝐾 ∈
(ℤ≥‘2) → ¬ (𝐾↑2) ∥ (𝑁 / ((𝑄‘𝑁)↑2)))) |
114 | 49, 55, 113 | 3jca 1126 |
1
⊢ (𝑁 ∈ ℕ → ((𝑄‘𝑁) ∈ ℕ ∧ ((𝑄‘𝑁)↑2) ∥ 𝑁 ∧ (𝐾 ∈ (ℤ≥‘2)
→ ¬ (𝐾↑2)
∥ (𝑁 / ((𝑄‘𝑁)↑2))))) |