Step | Hyp | Ref
| Expression |
1 | | ghmmhm 19142 |
. . 3
β’ (πΉ β (π GrpHom π) β πΉ β (π MndHom π)) |
2 | | ghmmhm 19142 |
. . 3
β’ (πΊ β (π GrpHom π) β πΊ β (π MndHom π)) |
3 | | mhmeql 18745 |
. . 3
β’ ((πΉ β (π MndHom π) β§ πΊ β (π MndHom π)) β dom (πΉ β© πΊ) β (SubMndβπ)) |
4 | 1, 2, 3 | syl2an 594 |
. 2
β’ ((πΉ β (π GrpHom π) β§ πΊ β (π GrpHom π)) β dom (πΉ β© πΊ) β (SubMndβπ)) |
5 | | fveq2 6892 |
. . . . . . . 8
β’ (π¦ = ((invgβπ)βπ₯) β (πΉβπ¦) = (πΉβ((invgβπ)βπ₯))) |
6 | | fveq2 6892 |
. . . . . . . 8
β’ (π¦ = ((invgβπ)βπ₯) β (πΊβπ¦) = (πΊβ((invgβπ)βπ₯))) |
7 | 5, 6 | eqeq12d 2746 |
. . . . . . 7
β’ (π¦ = ((invgβπ)βπ₯) β ((πΉβπ¦) = (πΊβπ¦) β (πΉβ((invgβπ)βπ₯)) = (πΊβ((invgβπ)βπ₯)))) |
8 | | ghmgrp1 19134 |
. . . . . . . . . 10
β’ (πΉ β (π GrpHom π) β π β Grp) |
9 | 8 | adantr 479 |
. . . . . . . . 9
β’ ((πΉ β (π GrpHom π) β§ πΊ β (π GrpHom π)) β π β Grp) |
10 | 9 | adantr 479 |
. . . . . . . 8
β’ (((πΉ β (π GrpHom π) β§ πΊ β (π GrpHom π)) β§ (π₯ β (Baseβπ) β§ (πΉβπ₯) = (πΊβπ₯))) β π β Grp) |
11 | | simprl 767 |
. . . . . . . 8
β’ (((πΉ β (π GrpHom π) β§ πΊ β (π GrpHom π)) β§ (π₯ β (Baseβπ) β§ (πΉβπ₯) = (πΊβπ₯))) β π₯ β (Baseβπ)) |
12 | | eqid 2730 |
. . . . . . . . 9
β’
(Baseβπ) =
(Baseβπ) |
13 | | eqid 2730 |
. . . . . . . . 9
β’
(invgβπ) = (invgβπ) |
14 | 12, 13 | grpinvcl 18910 |
. . . . . . . 8
β’ ((π β Grp β§ π₯ β (Baseβπ)) β
((invgβπ)βπ₯) β (Baseβπ)) |
15 | 10, 11, 14 | syl2anc 582 |
. . . . . . 7
β’ (((πΉ β (π GrpHom π) β§ πΊ β (π GrpHom π)) β§ (π₯ β (Baseβπ) β§ (πΉβπ₯) = (πΊβπ₯))) β ((invgβπ)βπ₯) β (Baseβπ)) |
16 | | simprr 769 |
. . . . . . . . 9
β’ (((πΉ β (π GrpHom π) β§ πΊ β (π GrpHom π)) β§ (π₯ β (Baseβπ) β§ (πΉβπ₯) = (πΊβπ₯))) β (πΉβπ₯) = (πΊβπ₯)) |
17 | 16 | fveq2d 6896 |
. . . . . . . 8
β’ (((πΉ β (π GrpHom π) β§ πΊ β (π GrpHom π)) β§ (π₯ β (Baseβπ) β§ (πΉβπ₯) = (πΊβπ₯))) β ((invgβπ)β(πΉβπ₯)) = ((invgβπ)β(πΊβπ₯))) |
18 | | eqid 2730 |
. . . . . . . . . 10
β’
(invgβπ) = (invgβπ) |
19 | 12, 13, 18 | ghminv 19139 |
. . . . . . . . 9
β’ ((πΉ β (π GrpHom π) β§ π₯ β (Baseβπ)) β (πΉβ((invgβπ)βπ₯)) = ((invgβπ)β(πΉβπ₯))) |
20 | 19 | ad2ant2r 743 |
. . . . . . . 8
β’ (((πΉ β (π GrpHom π) β§ πΊ β (π GrpHom π)) β§ (π₯ β (Baseβπ) β§ (πΉβπ₯) = (πΊβπ₯))) β (πΉβ((invgβπ)βπ₯)) = ((invgβπ)β(πΉβπ₯))) |
21 | 12, 13, 18 | ghminv 19139 |
. . . . . . . . 9
β’ ((πΊ β (π GrpHom π) β§ π₯ β (Baseβπ)) β (πΊβ((invgβπ)βπ₯)) = ((invgβπ)β(πΊβπ₯))) |
22 | 21 | ad2ant2lr 744 |
. . . . . . . 8
β’ (((πΉ β (π GrpHom π) β§ πΊ β (π GrpHom π)) β§ (π₯ β (Baseβπ) β§ (πΉβπ₯) = (πΊβπ₯))) β (πΊβ((invgβπ)βπ₯)) = ((invgβπ)β(πΊβπ₯))) |
23 | 17, 20, 22 | 3eqtr4d 2780 |
. . . . . . 7
β’ (((πΉ β (π GrpHom π) β§ πΊ β (π GrpHom π)) β§ (π₯ β (Baseβπ) β§ (πΉβπ₯) = (πΊβπ₯))) β (πΉβ((invgβπ)βπ₯)) = (πΊβ((invgβπ)βπ₯))) |
24 | 7, 15, 23 | elrabd 3686 |
. . . . . 6
β’ (((πΉ β (π GrpHom π) β§ πΊ β (π GrpHom π)) β§ (π₯ β (Baseβπ) β§ (πΉβπ₯) = (πΊβπ₯))) β ((invgβπ)βπ₯) β {π¦ β (Baseβπ) β£ (πΉβπ¦) = (πΊβπ¦)}) |
25 | 24 | expr 455 |
. . . . 5
β’ (((πΉ β (π GrpHom π) β§ πΊ β (π GrpHom π)) β§ π₯ β (Baseβπ)) β ((πΉβπ₯) = (πΊβπ₯) β ((invgβπ)βπ₯) β {π¦ β (Baseβπ) β£ (πΉβπ¦) = (πΊβπ¦)})) |
26 | 25 | ralrimiva 3144 |
. . . 4
β’ ((πΉ β (π GrpHom π) β§ πΊ β (π GrpHom π)) β βπ₯ β (Baseβπ)((πΉβπ₯) = (πΊβπ₯) β ((invgβπ)βπ₯) β {π¦ β (Baseβπ) β£ (πΉβπ¦) = (πΊβπ¦)})) |
27 | | fveq2 6892 |
. . . . . 6
β’ (π¦ = π₯ β (πΉβπ¦) = (πΉβπ₯)) |
28 | | fveq2 6892 |
. . . . . 6
β’ (π¦ = π₯ β (πΊβπ¦) = (πΊβπ₯)) |
29 | 27, 28 | eqeq12d 2746 |
. . . . 5
β’ (π¦ = π₯ β ((πΉβπ¦) = (πΊβπ¦) β (πΉβπ₯) = (πΊβπ₯))) |
30 | 29 | ralrab 3690 |
. . . 4
β’
(βπ₯ β
{π¦ β (Baseβπ) β£ (πΉβπ¦) = (πΊβπ¦)} ((invgβπ)βπ₯) β {π¦ β (Baseβπ) β£ (πΉβπ¦) = (πΊβπ¦)} β βπ₯ β (Baseβπ)((πΉβπ₯) = (πΊβπ₯) β ((invgβπ)βπ₯) β {π¦ β (Baseβπ) β£ (πΉβπ¦) = (πΊβπ¦)})) |
31 | 26, 30 | sylibr 233 |
. . 3
β’ ((πΉ β (π GrpHom π) β§ πΊ β (π GrpHom π)) β βπ₯ β {π¦ β (Baseβπ) β£ (πΉβπ¦) = (πΊβπ¦)} ((invgβπ)βπ₯) β {π¦ β (Baseβπ) β£ (πΉβπ¦) = (πΊβπ¦)}) |
32 | | eqid 2730 |
. . . . . . . 8
β’
(Baseβπ) =
(Baseβπ) |
33 | 12, 32 | ghmf 19136 |
. . . . . . 7
β’ (πΉ β (π GrpHom π) β πΉ:(Baseβπ)βΆ(Baseβπ)) |
34 | 33 | adantr 479 |
. . . . . 6
β’ ((πΉ β (π GrpHom π) β§ πΊ β (π GrpHom π)) β πΉ:(Baseβπ)βΆ(Baseβπ)) |
35 | 34 | ffnd 6719 |
. . . . 5
β’ ((πΉ β (π GrpHom π) β§ πΊ β (π GrpHom π)) β πΉ Fn (Baseβπ)) |
36 | 12, 32 | ghmf 19136 |
. . . . . . 7
β’ (πΊ β (π GrpHom π) β πΊ:(Baseβπ)βΆ(Baseβπ)) |
37 | 36 | adantl 480 |
. . . . . 6
β’ ((πΉ β (π GrpHom π) β§ πΊ β (π GrpHom π)) β πΊ:(Baseβπ)βΆ(Baseβπ)) |
38 | 37 | ffnd 6719 |
. . . . 5
β’ ((πΉ β (π GrpHom π) β§ πΊ β (π GrpHom π)) β πΊ Fn (Baseβπ)) |
39 | | fndmin 7047 |
. . . . 5
β’ ((πΉ Fn (Baseβπ) β§ πΊ Fn (Baseβπ)) β dom (πΉ β© πΊ) = {π¦ β (Baseβπ) β£ (πΉβπ¦) = (πΊβπ¦)}) |
40 | 35, 38, 39 | syl2anc 582 |
. . . 4
β’ ((πΉ β (π GrpHom π) β§ πΊ β (π GrpHom π)) β dom (πΉ β© πΊ) = {π¦ β (Baseβπ) β£ (πΉβπ¦) = (πΊβπ¦)}) |
41 | | eleq2 2820 |
. . . . 5
β’ (dom
(πΉ β© πΊ) = {π¦ β (Baseβπ) β£ (πΉβπ¦) = (πΊβπ¦)} β (((invgβπ)βπ₯) β dom (πΉ β© πΊ) β ((invgβπ)βπ₯) β {π¦ β (Baseβπ) β£ (πΉβπ¦) = (πΊβπ¦)})) |
42 | 41 | raleqbi1dv 3331 |
. . . 4
β’ (dom
(πΉ β© πΊ) = {π¦ β (Baseβπ) β£ (πΉβπ¦) = (πΊβπ¦)} β (βπ₯ β dom (πΉ β© πΊ)((invgβπ)βπ₯) β dom (πΉ β© πΊ) β βπ₯ β {π¦ β (Baseβπ) β£ (πΉβπ¦) = (πΊβπ¦)} ((invgβπ)βπ₯) β {π¦ β (Baseβπ) β£ (πΉβπ¦) = (πΊβπ¦)})) |
43 | 40, 42 | syl 17 |
. . 3
β’ ((πΉ β (π GrpHom π) β§ πΊ β (π GrpHom π)) β (βπ₯ β dom (πΉ β© πΊ)((invgβπ)βπ₯) β dom (πΉ β© πΊ) β βπ₯ β {π¦ β (Baseβπ) β£ (πΉβπ¦) = (πΊβπ¦)} ((invgβπ)βπ₯) β {π¦ β (Baseβπ) β£ (πΉβπ¦) = (πΊβπ¦)})) |
44 | 31, 43 | mpbird 256 |
. 2
β’ ((πΉ β (π GrpHom π) β§ πΊ β (π GrpHom π)) β βπ₯ β dom (πΉ β© πΊ)((invgβπ)βπ₯) β dom (πΉ β© πΊ)) |
45 | 13 | issubg3 19062 |
. . 3
β’ (π β Grp β (dom (πΉ β© πΊ) β (SubGrpβπ) β (dom (πΉ β© πΊ) β (SubMndβπ) β§ βπ₯ β dom (πΉ β© πΊ)((invgβπ)βπ₯) β dom (πΉ β© πΊ)))) |
46 | 9, 45 | syl 17 |
. 2
β’ ((πΉ β (π GrpHom π) β§ πΊ β (π GrpHom π)) β (dom (πΉ β© πΊ) β (SubGrpβπ) β (dom (πΉ β© πΊ) β (SubMndβπ) β§ βπ₯ β dom (πΉ β© πΊ)((invgβπ)βπ₯) β dom (πΉ β© πΊ)))) |
47 | 4, 44, 46 | mpbir2and 709 |
1
β’ ((πΉ β (π GrpHom π) β§ πΊ β (π GrpHom π)) β dom (πΉ β© πΊ) β (SubGrpβπ)) |