MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmeql Structured version   Visualization version   GIF version

Theorem ghmeql 19270
Description: The equalizer of two group homomorphisms is a subgroup. (Contributed by Stefan O'Rear, 7-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
ghmeql ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → dom (𝐹𝐺) ∈ (SubGrp‘𝑆))

Proof of Theorem ghmeql
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmmhm 19257 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 ∈ (𝑆 MndHom 𝑇))
2 ghmmhm 19257 . . 3 (𝐺 ∈ (𝑆 GrpHom 𝑇) → 𝐺 ∈ (𝑆 MndHom 𝑇))
3 mhmeql 18852 . . 3 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → dom (𝐹𝐺) ∈ (SubMnd‘𝑆))
41, 2, 3syl2an 596 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → dom (𝐹𝐺) ∈ (SubMnd‘𝑆))
5 fveq2 6907 . . . . . . . 8 (𝑦 = ((invg𝑆)‘𝑥) → (𝐹𝑦) = (𝐹‘((invg𝑆)‘𝑥)))
6 fveq2 6907 . . . . . . . 8 (𝑦 = ((invg𝑆)‘𝑥) → (𝐺𝑦) = (𝐺‘((invg𝑆)‘𝑥)))
75, 6eqeq12d 2751 . . . . . . 7 (𝑦 = ((invg𝑆)‘𝑥) → ((𝐹𝑦) = (𝐺𝑦) ↔ (𝐹‘((invg𝑆)‘𝑥)) = (𝐺‘((invg𝑆)‘𝑥))))
8 ghmgrp1 19249 . . . . . . . . . 10 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
98adantr 480 . . . . . . . . 9 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → 𝑆 ∈ Grp)
109adantr 480 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) → 𝑆 ∈ Grp)
11 simprl 771 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) → 𝑥 ∈ (Base‘𝑆))
12 eqid 2735 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
13 eqid 2735 . . . . . . . . 9 (invg𝑆) = (invg𝑆)
1412, 13grpinvcl 19018 . . . . . . . 8 ((𝑆 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑆)) → ((invg𝑆)‘𝑥) ∈ (Base‘𝑆))
1510, 11, 14syl2anc 584 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) → ((invg𝑆)‘𝑥) ∈ (Base‘𝑆))
16 simprr 773 . . . . . . . . 9 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) → (𝐹𝑥) = (𝐺𝑥))
1716fveq2d 6911 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) → ((invg𝑇)‘(𝐹𝑥)) = ((invg𝑇)‘(𝐺𝑥)))
18 eqid 2735 . . . . . . . . . 10 (invg𝑇) = (invg𝑇)
1912, 13, 18ghminv 19254 . . . . . . . . 9 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆)) → (𝐹‘((invg𝑆)‘𝑥)) = ((invg𝑇)‘(𝐹𝑥)))
2019ad2ant2r 747 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) → (𝐹‘((invg𝑆)‘𝑥)) = ((invg𝑇)‘(𝐹𝑥)))
2112, 13, 18ghminv 19254 . . . . . . . . 9 ((𝐺 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆)) → (𝐺‘((invg𝑆)‘𝑥)) = ((invg𝑇)‘(𝐺𝑥)))
2221ad2ant2lr 748 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) → (𝐺‘((invg𝑆)‘𝑥)) = ((invg𝑇)‘(𝐺𝑥)))
2317, 20, 223eqtr4d 2785 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) → (𝐹‘((invg𝑆)‘𝑥)) = (𝐺‘((invg𝑆)‘𝑥)))
247, 15, 23elrabd 3697 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹𝑥) = (𝐺𝑥))) → ((invg𝑆)‘𝑥) ∈ {𝑦 ∈ (Base‘𝑆) ∣ (𝐹𝑦) = (𝐺𝑦)})
2524expr 456 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑥 ∈ (Base‘𝑆)) → ((𝐹𝑥) = (𝐺𝑥) → ((invg𝑆)‘𝑥) ∈ {𝑦 ∈ (Base‘𝑆) ∣ (𝐹𝑦) = (𝐺𝑦)}))
2625ralrimiva 3144 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → ∀𝑥 ∈ (Base‘𝑆)((𝐹𝑥) = (𝐺𝑥) → ((invg𝑆)‘𝑥) ∈ {𝑦 ∈ (Base‘𝑆) ∣ (𝐹𝑦) = (𝐺𝑦)}))
27 fveq2 6907 . . . . . 6 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
28 fveq2 6907 . . . . . 6 (𝑦 = 𝑥 → (𝐺𝑦) = (𝐺𝑥))
2927, 28eqeq12d 2751 . . . . 5 (𝑦 = 𝑥 → ((𝐹𝑦) = (𝐺𝑦) ↔ (𝐹𝑥) = (𝐺𝑥)))
3029ralrab 3702 . . . 4 (∀𝑥 ∈ {𝑦 ∈ (Base‘𝑆) ∣ (𝐹𝑦) = (𝐺𝑦)} ((invg𝑆)‘𝑥) ∈ {𝑦 ∈ (Base‘𝑆) ∣ (𝐹𝑦) = (𝐺𝑦)} ↔ ∀𝑥 ∈ (Base‘𝑆)((𝐹𝑥) = (𝐺𝑥) → ((invg𝑆)‘𝑥) ∈ {𝑦 ∈ (Base‘𝑆) ∣ (𝐹𝑦) = (𝐺𝑦)}))
3126, 30sylibr 234 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → ∀𝑥 ∈ {𝑦 ∈ (Base‘𝑆) ∣ (𝐹𝑦) = (𝐺𝑦)} ((invg𝑆)‘𝑥) ∈ {𝑦 ∈ (Base‘𝑆) ∣ (𝐹𝑦) = (𝐺𝑦)})
32 eqid 2735 . . . . . . . 8 (Base‘𝑇) = (Base‘𝑇)
3312, 32ghmf 19251 . . . . . . 7 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
3433adantr 480 . . . . . 6 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
3534ffnd 6738 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → 𝐹 Fn (Base‘𝑆))
3612, 32ghmf 19251 . . . . . . 7 (𝐺 ∈ (𝑆 GrpHom 𝑇) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇))
3736adantl 481 . . . . . 6 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇))
3837ffnd 6738 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → 𝐺 Fn (Base‘𝑆))
39 fndmin 7065 . . . . 5 ((𝐹 Fn (Base‘𝑆) ∧ 𝐺 Fn (Base‘𝑆)) → dom (𝐹𝐺) = {𝑦 ∈ (Base‘𝑆) ∣ (𝐹𝑦) = (𝐺𝑦)})
4035, 38, 39syl2anc 584 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → dom (𝐹𝐺) = {𝑦 ∈ (Base‘𝑆) ∣ (𝐹𝑦) = (𝐺𝑦)})
41 eleq2 2828 . . . . 5 (dom (𝐹𝐺) = {𝑦 ∈ (Base‘𝑆) ∣ (𝐹𝑦) = (𝐺𝑦)} → (((invg𝑆)‘𝑥) ∈ dom (𝐹𝐺) ↔ ((invg𝑆)‘𝑥) ∈ {𝑦 ∈ (Base‘𝑆) ∣ (𝐹𝑦) = (𝐺𝑦)}))
4241raleqbi1dv 3336 . . . 4 (dom (𝐹𝐺) = {𝑦 ∈ (Base‘𝑆) ∣ (𝐹𝑦) = (𝐺𝑦)} → (∀𝑥 ∈ dom (𝐹𝐺)((invg𝑆)‘𝑥) ∈ dom (𝐹𝐺) ↔ ∀𝑥 ∈ {𝑦 ∈ (Base‘𝑆) ∣ (𝐹𝑦) = (𝐺𝑦)} ((invg𝑆)‘𝑥) ∈ {𝑦 ∈ (Base‘𝑆) ∣ (𝐹𝑦) = (𝐺𝑦)}))
4340, 42syl 17 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (∀𝑥 ∈ dom (𝐹𝐺)((invg𝑆)‘𝑥) ∈ dom (𝐹𝐺) ↔ ∀𝑥 ∈ {𝑦 ∈ (Base‘𝑆) ∣ (𝐹𝑦) = (𝐺𝑦)} ((invg𝑆)‘𝑥) ∈ {𝑦 ∈ (Base‘𝑆) ∣ (𝐹𝑦) = (𝐺𝑦)}))
4431, 43mpbird 257 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → ∀𝑥 ∈ dom (𝐹𝐺)((invg𝑆)‘𝑥) ∈ dom (𝐹𝐺))
4513issubg3 19175 . . 3 (𝑆 ∈ Grp → (dom (𝐹𝐺) ∈ (SubGrp‘𝑆) ↔ (dom (𝐹𝐺) ∈ (SubMnd‘𝑆) ∧ ∀𝑥 ∈ dom (𝐹𝐺)((invg𝑆)‘𝑥) ∈ dom (𝐹𝐺))))
469, 45syl 17 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (dom (𝐹𝐺) ∈ (SubGrp‘𝑆) ↔ (dom (𝐹𝐺) ∈ (SubMnd‘𝑆) ∧ ∀𝑥 ∈ dom (𝐹𝐺)((invg𝑆)‘𝑥) ∈ dom (𝐹𝐺))))
474, 44, 46mpbir2and 713 1 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → dom (𝐹𝐺) ∈ (SubGrp‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  {crab 3433  cin 3962  dom cdm 5689   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  Basecbs 17245   MndHom cmhm 18807  SubMndcsubmnd 18808  Grpcgrp 18964  invgcminusg 18965  SubGrpcsubg 19151   GrpHom cghm 19243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-subg 19154  df-ghm 19244
This theorem is referenced by:  rhmeql  20620  lmhmeql  21072
  Copyright terms: Public domain W3C validator