| Step | Hyp | Ref
| Expression |
| 1 | | ghmmhm 19244 |
. . 3
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 ∈ (𝑆 MndHom 𝑇)) |
| 2 | | ghmmhm 19244 |
. . 3
⊢ (𝐺 ∈ (𝑆 GrpHom 𝑇) → 𝐺 ∈ (𝑆 MndHom 𝑇)) |
| 3 | | mhmeql 18839 |
. . 3
⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → dom (𝐹 ∩ 𝐺) ∈ (SubMnd‘𝑆)) |
| 4 | 1, 2, 3 | syl2an 596 |
. 2
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → dom (𝐹 ∩ 𝐺) ∈ (SubMnd‘𝑆)) |
| 5 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑦 = ((invg‘𝑆)‘𝑥) → (𝐹‘𝑦) = (𝐹‘((invg‘𝑆)‘𝑥))) |
| 6 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑦 = ((invg‘𝑆)‘𝑥) → (𝐺‘𝑦) = (𝐺‘((invg‘𝑆)‘𝑥))) |
| 7 | 5, 6 | eqeq12d 2753 |
. . . . . . 7
⊢ (𝑦 = ((invg‘𝑆)‘𝑥) → ((𝐹‘𝑦) = (𝐺‘𝑦) ↔ (𝐹‘((invg‘𝑆)‘𝑥)) = (𝐺‘((invg‘𝑆)‘𝑥)))) |
| 8 | | ghmgrp1 19236 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) |
| 9 | 8 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → 𝑆 ∈ Grp) |
| 10 | 9 | adantr 480 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹‘𝑥) = (𝐺‘𝑥))) → 𝑆 ∈ Grp) |
| 11 | | simprl 771 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹‘𝑥) = (𝐺‘𝑥))) → 𝑥 ∈ (Base‘𝑆)) |
| 12 | | eqid 2737 |
. . . . . . . . 9
⊢
(Base‘𝑆) =
(Base‘𝑆) |
| 13 | | eqid 2737 |
. . . . . . . . 9
⊢
(invg‘𝑆) = (invg‘𝑆) |
| 14 | 12, 13 | grpinvcl 19005 |
. . . . . . . 8
⊢ ((𝑆 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑆)) →
((invg‘𝑆)‘𝑥) ∈ (Base‘𝑆)) |
| 15 | 10, 11, 14 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹‘𝑥) = (𝐺‘𝑥))) → ((invg‘𝑆)‘𝑥) ∈ (Base‘𝑆)) |
| 16 | | simprr 773 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹‘𝑥) = (𝐺‘𝑥))) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
| 17 | 16 | fveq2d 6910 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹‘𝑥) = (𝐺‘𝑥))) → ((invg‘𝑇)‘(𝐹‘𝑥)) = ((invg‘𝑇)‘(𝐺‘𝑥))) |
| 18 | | eqid 2737 |
. . . . . . . . . 10
⊢
(invg‘𝑇) = (invg‘𝑇) |
| 19 | 12, 13, 18 | ghminv 19241 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆)) → (𝐹‘((invg‘𝑆)‘𝑥)) = ((invg‘𝑇)‘(𝐹‘𝑥))) |
| 20 | 19 | ad2ant2r 747 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹‘𝑥) = (𝐺‘𝑥))) → (𝐹‘((invg‘𝑆)‘𝑥)) = ((invg‘𝑇)‘(𝐹‘𝑥))) |
| 21 | 12, 13, 18 | ghminv 19241 |
. . . . . . . . 9
⊢ ((𝐺 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆)) → (𝐺‘((invg‘𝑆)‘𝑥)) = ((invg‘𝑇)‘(𝐺‘𝑥))) |
| 22 | 21 | ad2ant2lr 748 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹‘𝑥) = (𝐺‘𝑥))) → (𝐺‘((invg‘𝑆)‘𝑥)) = ((invg‘𝑇)‘(𝐺‘𝑥))) |
| 23 | 17, 20, 22 | 3eqtr4d 2787 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹‘𝑥) = (𝐺‘𝑥))) → (𝐹‘((invg‘𝑆)‘𝑥)) = (𝐺‘((invg‘𝑆)‘𝑥))) |
| 24 | 7, 15, 23 | elrabd 3694 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ (𝐹‘𝑥) = (𝐺‘𝑥))) → ((invg‘𝑆)‘𝑥) ∈ {𝑦 ∈ (Base‘𝑆) ∣ (𝐹‘𝑦) = (𝐺‘𝑦)}) |
| 25 | 24 | expr 456 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) ∧ 𝑥 ∈ (Base‘𝑆)) → ((𝐹‘𝑥) = (𝐺‘𝑥) → ((invg‘𝑆)‘𝑥) ∈ {𝑦 ∈ (Base‘𝑆) ∣ (𝐹‘𝑦) = (𝐺‘𝑦)})) |
| 26 | 25 | ralrimiva 3146 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → ∀𝑥 ∈ (Base‘𝑆)((𝐹‘𝑥) = (𝐺‘𝑥) → ((invg‘𝑆)‘𝑥) ∈ {𝑦 ∈ (Base‘𝑆) ∣ (𝐹‘𝑦) = (𝐺‘𝑦)})) |
| 27 | | fveq2 6906 |
. . . . . 6
⊢ (𝑦 = 𝑥 → (𝐹‘𝑦) = (𝐹‘𝑥)) |
| 28 | | fveq2 6906 |
. . . . . 6
⊢ (𝑦 = 𝑥 → (𝐺‘𝑦) = (𝐺‘𝑥)) |
| 29 | 27, 28 | eqeq12d 2753 |
. . . . 5
⊢ (𝑦 = 𝑥 → ((𝐹‘𝑦) = (𝐺‘𝑦) ↔ (𝐹‘𝑥) = (𝐺‘𝑥))) |
| 30 | 29 | ralrab 3699 |
. . . 4
⊢
(∀𝑥 ∈
{𝑦 ∈ (Base‘𝑆) ∣ (𝐹‘𝑦) = (𝐺‘𝑦)} ((invg‘𝑆)‘𝑥) ∈ {𝑦 ∈ (Base‘𝑆) ∣ (𝐹‘𝑦) = (𝐺‘𝑦)} ↔ ∀𝑥 ∈ (Base‘𝑆)((𝐹‘𝑥) = (𝐺‘𝑥) → ((invg‘𝑆)‘𝑥) ∈ {𝑦 ∈ (Base‘𝑆) ∣ (𝐹‘𝑦) = (𝐺‘𝑦)})) |
| 31 | 26, 30 | sylibr 234 |
. . 3
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → ∀𝑥 ∈ {𝑦 ∈ (Base‘𝑆) ∣ (𝐹‘𝑦) = (𝐺‘𝑦)} ((invg‘𝑆)‘𝑥) ∈ {𝑦 ∈ (Base‘𝑆) ∣ (𝐹‘𝑦) = (𝐺‘𝑦)}) |
| 32 | | eqid 2737 |
. . . . . . . 8
⊢
(Base‘𝑇) =
(Base‘𝑇) |
| 33 | 12, 32 | ghmf 19238 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
| 34 | 33 | adantr 480 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
| 35 | 34 | ffnd 6737 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → 𝐹 Fn (Base‘𝑆)) |
| 36 | 12, 32 | ghmf 19238 |
. . . . . . 7
⊢ (𝐺 ∈ (𝑆 GrpHom 𝑇) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇)) |
| 37 | 36 | adantl 481 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇)) |
| 38 | 37 | ffnd 6737 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → 𝐺 Fn (Base‘𝑆)) |
| 39 | | fndmin 7065 |
. . . . 5
⊢ ((𝐹 Fn (Base‘𝑆) ∧ 𝐺 Fn (Base‘𝑆)) → dom (𝐹 ∩ 𝐺) = {𝑦 ∈ (Base‘𝑆) ∣ (𝐹‘𝑦) = (𝐺‘𝑦)}) |
| 40 | 35, 38, 39 | syl2anc 584 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → dom (𝐹 ∩ 𝐺) = {𝑦 ∈ (Base‘𝑆) ∣ (𝐹‘𝑦) = (𝐺‘𝑦)}) |
| 41 | | eleq2 2830 |
. . . . 5
⊢ (dom
(𝐹 ∩ 𝐺) = {𝑦 ∈ (Base‘𝑆) ∣ (𝐹‘𝑦) = (𝐺‘𝑦)} → (((invg‘𝑆)‘𝑥) ∈ dom (𝐹 ∩ 𝐺) ↔ ((invg‘𝑆)‘𝑥) ∈ {𝑦 ∈ (Base‘𝑆) ∣ (𝐹‘𝑦) = (𝐺‘𝑦)})) |
| 42 | 41 | raleqbi1dv 3338 |
. . . 4
⊢ (dom
(𝐹 ∩ 𝐺) = {𝑦 ∈ (Base‘𝑆) ∣ (𝐹‘𝑦) = (𝐺‘𝑦)} → (∀𝑥 ∈ dom (𝐹 ∩ 𝐺)((invg‘𝑆)‘𝑥) ∈ dom (𝐹 ∩ 𝐺) ↔ ∀𝑥 ∈ {𝑦 ∈ (Base‘𝑆) ∣ (𝐹‘𝑦) = (𝐺‘𝑦)} ((invg‘𝑆)‘𝑥) ∈ {𝑦 ∈ (Base‘𝑆) ∣ (𝐹‘𝑦) = (𝐺‘𝑦)})) |
| 43 | 40, 42 | syl 17 |
. . 3
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (∀𝑥 ∈ dom (𝐹 ∩ 𝐺)((invg‘𝑆)‘𝑥) ∈ dom (𝐹 ∩ 𝐺) ↔ ∀𝑥 ∈ {𝑦 ∈ (Base‘𝑆) ∣ (𝐹‘𝑦) = (𝐺‘𝑦)} ((invg‘𝑆)‘𝑥) ∈ {𝑦 ∈ (Base‘𝑆) ∣ (𝐹‘𝑦) = (𝐺‘𝑦)})) |
| 44 | 31, 43 | mpbird 257 |
. 2
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → ∀𝑥 ∈ dom (𝐹 ∩ 𝐺)((invg‘𝑆)‘𝑥) ∈ dom (𝐹 ∩ 𝐺)) |
| 45 | 13 | issubg3 19162 |
. . 3
⊢ (𝑆 ∈ Grp → (dom (𝐹 ∩ 𝐺) ∈ (SubGrp‘𝑆) ↔ (dom (𝐹 ∩ 𝐺) ∈ (SubMnd‘𝑆) ∧ ∀𝑥 ∈ dom (𝐹 ∩ 𝐺)((invg‘𝑆)‘𝑥) ∈ dom (𝐹 ∩ 𝐺)))) |
| 46 | 9, 45 | syl 17 |
. 2
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (dom (𝐹 ∩ 𝐺) ∈ (SubGrp‘𝑆) ↔ (dom (𝐹 ∩ 𝐺) ∈ (SubMnd‘𝑆) ∧ ∀𝑥 ∈ dom (𝐹 ∩ 𝐺)((invg‘𝑆)‘𝑥) ∈ dom (𝐹 ∩ 𝐺)))) |
| 47 | 4, 44, 46 | mpbir2and 713 |
1
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → dom (𝐹 ∩ 𝐺) ∈ (SubGrp‘𝑆)) |