![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ressbasssOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of ressbas 17218 as of 25-Feb-2025. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
ressbas.r | ⊢ 𝑅 = (𝑊 ↾s 𝐴) |
ressbas.b | ⊢ 𝐵 = (Base‘𝑊) |
Ref | Expression |
---|---|
ressbasssOLD | ⊢ (Base‘𝑅) ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressbas.r | . . . 4 ⊢ 𝑅 = (𝑊 ↾s 𝐴) | |
2 | ressbas.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
3 | 1, 2 | ressbas 17218 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
4 | inss2 4228 | . . 3 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
5 | 3, 4 | eqsstrrdi 4032 | . 2 ⊢ (𝐴 ∈ V → (Base‘𝑅) ⊆ 𝐵) |
6 | reldmress 17214 | . . . . . 6 ⊢ Rel dom ↾s | |
7 | 6 | ovprc2 7459 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (𝑊 ↾s 𝐴) = ∅) |
8 | 1, 7 | eqtrid 2777 | . . . 4 ⊢ (¬ 𝐴 ∈ V → 𝑅 = ∅) |
9 | 8 | fveq2d 6900 | . . 3 ⊢ (¬ 𝐴 ∈ V → (Base‘𝑅) = (Base‘∅)) |
10 | base0 17188 | . . . 4 ⊢ ∅ = (Base‘∅) | |
11 | 0ss 4398 | . . . 4 ⊢ ∅ ⊆ 𝐵 | |
12 | 10, 11 | eqsstrri 4012 | . . 3 ⊢ (Base‘∅) ⊆ 𝐵 |
13 | 9, 12 | eqsstrdi 4031 | . 2 ⊢ (¬ 𝐴 ∈ V → (Base‘𝑅) ⊆ 𝐵) |
14 | 5, 13 | pm2.61i 182 | 1 ⊢ (Base‘𝑅) ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1533 ∈ wcel 2098 Vcvv 3461 ∩ cin 3943 ⊆ wss 3944 ∅c0 4322 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 ↾s cress 17212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-1cn 11198 ax-addcl 11200 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-nn 12246 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |