MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressbasssOLD Structured version   Visualization version   GIF version

Theorem ressbasssOLD 17285
Description: Obsolete version of ressbas 17280 as of 25-Feb-2025. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
ressbas.r 𝑅 = (𝑊s 𝐴)
ressbas.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
ressbasssOLD (Base‘𝑅) ⊆ 𝐵

Proof of Theorem ressbasssOLD
StepHypRef Expression
1 ressbas.r . . . 4 𝑅 = (𝑊s 𝐴)
2 ressbas.b . . . 4 𝐵 = (Base‘𝑊)
31, 2ressbas 17280 . . 3 (𝐴 ∈ V → (𝐴𝐵) = (Base‘𝑅))
4 inss2 4238 . . 3 (𝐴𝐵) ⊆ 𝐵
53, 4eqsstrrdi 4029 . 2 (𝐴 ∈ V → (Base‘𝑅) ⊆ 𝐵)
6 reldmress 17276 . . . . . 6 Rel dom ↾s
76ovprc2 7471 . . . . 5 𝐴 ∈ V → (𝑊s 𝐴) = ∅)
81, 7eqtrid 2789 . . . 4 𝐴 ∈ V → 𝑅 = ∅)
98fveq2d 6910 . . 3 𝐴 ∈ V → (Base‘𝑅) = (Base‘∅))
10 base0 17252 . . . 4 ∅ = (Base‘∅)
11 0ss 4400 . . . 4 ∅ ⊆ 𝐵
1210, 11eqsstrri 4031 . . 3 (Base‘∅) ⊆ 𝐵
139, 12eqsstrdi 4028 . 2 𝐴 ∈ V → (Base‘𝑅) ⊆ 𝐵)
145, 13pm2.61i 182 1 (Base‘𝑅) ⊆ 𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2108  Vcvv 3480  cin 3950  wss 3951  c0 4333  cfv 6561  (class class class)co 7431  Basecbs 17247  s cress 17274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-1cn 11213  ax-addcl 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-nn 12267  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator