MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ress0 Structured version   Visualization version   GIF version

Theorem ress0 17189
Description: All restrictions of the null set are trivial. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
ress0 (∅ ↾s 𝐴) = ∅

Proof of Theorem ress0
StepHypRef Expression
1 0ss 4359 . . 3 ∅ ⊆ 𝐴
2 0ex 5257 . . 3 ∅ ∈ V
3 eqid 2729 . . . 4 (∅ ↾s 𝐴) = (∅ ↾s 𝐴)
4 base0 17160 . . . 4 ∅ = (Base‘∅)
53, 4ressid2 17180 . . 3 ((∅ ⊆ 𝐴 ∧ ∅ ∈ V ∧ 𝐴 ∈ V) → (∅ ↾s 𝐴) = ∅)
61, 2, 5mp3an12 1453 . 2 (𝐴 ∈ V → (∅ ↾s 𝐴) = ∅)
7 reldmress 17178 . . 3 Rel dom ↾s
87ovprc2 7409 . 2 𝐴 ∈ V → (∅ ↾s 𝐴) = ∅)
96, 8pm2.61i 182 1 (∅ ↾s 𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3444  wss 3911  c0 4292  (class class class)co 7369  s cress 17176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-1cn 11102  ax-addcl 11104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-nn 12163  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177
This theorem is referenced by:  ressress  17193  symgval  19277  invrfval  20274  dsmmval  21619  dsmmval2  21621  mplval  21874  ply1val  22054  resvsca  33277
  Copyright terms: Public domain W3C validator