| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ress0 | Structured version Visualization version GIF version | ||
| Description: All restrictions of the null set are trivial. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| ress0 | ⊢ (∅ ↾s 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4347 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
| 2 | 0ex 5243 | . . 3 ⊢ ∅ ∈ V | |
| 3 | eqid 2731 | . . . 4 ⊢ (∅ ↾s 𝐴) = (∅ ↾s 𝐴) | |
| 4 | base0 17125 | . . . 4 ⊢ ∅ = (Base‘∅) | |
| 5 | 3, 4 | ressid2 17145 | . . 3 ⊢ ((∅ ⊆ 𝐴 ∧ ∅ ∈ V ∧ 𝐴 ∈ V) → (∅ ↾s 𝐴) = ∅) |
| 6 | 1, 2, 5 | mp3an12 1453 | . 2 ⊢ (𝐴 ∈ V → (∅ ↾s 𝐴) = ∅) |
| 7 | reldmress 17143 | . . 3 ⊢ Rel dom ↾s | |
| 8 | 7 | ovprc2 7386 | . 2 ⊢ (¬ 𝐴 ∈ V → (∅ ↾s 𝐴) = ∅) |
| 9 | 6, 8 | pm2.61i 182 | 1 ⊢ (∅ ↾s 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 ∅c0 4280 (class class class)co 7346 ↾s cress 17141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-1cn 11064 ax-addcl 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-nn 12126 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 |
| This theorem is referenced by: ressress 17158 symgval 19283 invrfval 20307 dsmmval 21671 dsmmval2 21673 mplval 21926 ply1val 22106 resvsca 33297 |
| Copyright terms: Public domain | W3C validator |