MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ress0 Structured version   Visualization version   GIF version

Theorem ress0 17223
Description: All restrictions of the null set are trivial. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
ress0 (∅ ↾s 𝐴) = ∅

Proof of Theorem ress0
StepHypRef Expression
1 0ss 4397 . . 3 ∅ ⊆ 𝐴
2 0ex 5307 . . 3 ∅ ∈ V
3 eqid 2728 . . . 4 (∅ ↾s 𝐴) = (∅ ↾s 𝐴)
4 base0 17184 . . . 4 ∅ = (Base‘∅)
53, 4ressid2 17212 . . 3 ((∅ ⊆ 𝐴 ∧ ∅ ∈ V ∧ 𝐴 ∈ V) → (∅ ↾s 𝐴) = ∅)
61, 2, 5mp3an12 1448 . 2 (𝐴 ∈ V → (∅ ↾s 𝐴) = ∅)
7 reldmress 17210 . . 3 Rel dom ↾s
87ovprc2 7460 . 2 𝐴 ∈ V → (∅ ↾s 𝐴) = ∅)
96, 8pm2.61i 182 1 (∅ ↾s 𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  Vcvv 3471  wss 3947  c0 4323  (class class class)co 7420  s cress 17208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-1cn 11196  ax-addcl 11198
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-nn 12243  df-slot 17150  df-ndx 17162  df-base 17180  df-ress 17209
This theorem is referenced by:  ressress  17228  symgval  19322  invrfval  20327  dsmmval  21667  dsmmval2  21669  mplval  21930  ply1val  22112  resvsca  33041
  Copyright terms: Public domain W3C validator