![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ress0 | Structured version Visualization version GIF version |
Description: All restrictions of the null set are trivial. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
ress0 | ⊢ (∅ ↾s 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4117 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
2 | 0ex 4925 | . . 3 ⊢ ∅ ∈ V | |
3 | eqid 2771 | . . . 4 ⊢ (∅ ↾s 𝐴) = (∅ ↾s 𝐴) | |
4 | base0 16119 | . . . 4 ⊢ ∅ = (Base‘∅) | |
5 | 3, 4 | ressid2 16135 | . . 3 ⊢ ((∅ ⊆ 𝐴 ∧ ∅ ∈ V ∧ 𝐴 ∈ V) → (∅ ↾s 𝐴) = ∅) |
6 | 1, 2, 5 | mp3an12 1562 | . 2 ⊢ (𝐴 ∈ V → (∅ ↾s 𝐴) = ∅) |
7 | reldmress 16133 | . . 3 ⊢ Rel dom ↾s | |
8 | 7 | ovprc2 6834 | . 2 ⊢ (¬ 𝐴 ∈ V → (∅ ↾s 𝐴) = ∅) |
9 | 6, 8 | pm2.61i 176 | 1 ⊢ (∅ ↾s 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 ∈ wcel 2145 Vcvv 3351 ⊆ wss 3723 ∅c0 4063 (class class class)co 6796 ↾s cress 16065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-iota 5993 df-fun 6032 df-fv 6038 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-slot 16068 df-base 16070 df-ress 16072 |
This theorem is referenced by: ressress 16146 invrfval 18881 mplval 19643 ply1val 19779 dsmmval 20295 dsmmval2 20297 resvsca 30170 |
Copyright terms: Public domain | W3C validator |