MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ress0 Structured version   Visualization version   GIF version

Theorem ress0 16981
Description: All restrictions of the null set are trivial. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
ress0 (∅ ↾s 𝐴) = ∅

Proof of Theorem ress0
StepHypRef Expression
1 0ss 4333 . . 3 ∅ ⊆ 𝐴
2 0ex 5234 . . 3 ∅ ∈ V
3 eqid 2733 . . . 4 (∅ ↾s 𝐴) = (∅ ↾s 𝐴)
4 base0 16945 . . . 4 ∅ = (Base‘∅)
53, 4ressid2 16973 . . 3 ((∅ ⊆ 𝐴 ∧ ∅ ∈ V ∧ 𝐴 ∈ V) → (∅ ↾s 𝐴) = ∅)
61, 2, 5mp3an12 1449 . 2 (𝐴 ∈ V → (∅ ↾s 𝐴) = ∅)
7 reldmress 16971 . . 3 Rel dom ↾s
87ovprc2 7335 . 2 𝐴 ∈ V → (∅ ↾s 𝐴) = ∅)
96, 8pm2.61i 182 1 (∅ ↾s 𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2101  Vcvv 3434  wss 3889  c0 4259  (class class class)co 7295  s cress 16969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608  ax-cnex 10955  ax-1cn 10957  ax-addcl 10959
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-iun 4929  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-ov 7298  df-oprab 7299  df-mpo 7300  df-om 7733  df-2nd 7852  df-frecs 8117  df-wrecs 8148  df-recs 8222  df-rdg 8261  df-nn 12002  df-slot 16911  df-ndx 16923  df-base 16941  df-ress 16970
This theorem is referenced by:  ressress  16986  symgval  19004  invrfval  19943  dsmmval  20969  dsmmval2  20971  mplval  21225  ply1val  21393  resvsca  31557
  Copyright terms: Public domain W3C validator