| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressbasssg | Structured version Visualization version GIF version | ||
| Description: The base set of a restriction to 𝐴 is a subset of 𝐴 and the base set 𝐵 of the original structure. (Contributed by SN, 10-Jan-2025.) |
| Ref | Expression |
|---|---|
| ressbas.r | ⊢ 𝑅 = (𝑊 ↾s 𝐴) |
| ressbas.b | ⊢ 𝐵 = (Base‘𝑊) |
| Ref | Expression |
|---|---|
| ressbasssg | ⊢ (Base‘𝑅) ⊆ (𝐴 ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressbas.r | . . . 4 ⊢ 𝑅 = (𝑊 ↾s 𝐴) | |
| 2 | ressbas.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
| 3 | 1, 2 | ressbas 17139 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
| 4 | ssid 3955 | . . 3 ⊢ (𝐴 ∩ 𝐵) ⊆ (𝐴 ∩ 𝐵) | |
| 5 | 3, 4 | eqsstrrdi 3978 | . 2 ⊢ (𝐴 ∈ V → (Base‘𝑅) ⊆ (𝐴 ∩ 𝐵)) |
| 6 | reldmress 17135 | . . . . . 6 ⊢ Rel dom ↾s | |
| 7 | 6 | ovprc2 7381 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (𝑊 ↾s 𝐴) = ∅) |
| 8 | 1, 7 | eqtrid 2777 | . . . 4 ⊢ (¬ 𝐴 ∈ V → 𝑅 = ∅) |
| 9 | 8 | fveq2d 6821 | . . 3 ⊢ (¬ 𝐴 ∈ V → (Base‘𝑅) = (Base‘∅)) |
| 10 | base0 17117 | . . . 4 ⊢ ∅ = (Base‘∅) | |
| 11 | 0ss 4348 | . . . 4 ⊢ ∅ ⊆ (𝐴 ∩ 𝐵) | |
| 12 | 10, 11 | eqsstrri 3980 | . . 3 ⊢ (Base‘∅) ⊆ (𝐴 ∩ 𝐵) |
| 13 | 9, 12 | eqsstrdi 3977 | . 2 ⊢ (¬ 𝐴 ∈ V → (Base‘𝑅) ⊆ (𝐴 ∩ 𝐵)) |
| 14 | 5, 13 | pm2.61i 182 | 1 ⊢ (Base‘𝑅) ⊆ (𝐴 ∩ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2110 Vcvv 3434 ∩ cin 3899 ⊆ wss 3900 ∅c0 4281 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 ↾s cress 17133 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-1cn 11056 ax-addcl 11058 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-nn 12118 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 |
| This theorem is referenced by: ressbasss 17142 ressbasss2 17144 unitscyglem5 42211 |
| Copyright terms: Public domain | W3C validator |