| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressbasssg | Structured version Visualization version GIF version | ||
| Description: The base set of a restriction to 𝐴 is a subset of 𝐴 and the base set 𝐵 of the original structure. (Contributed by SN, 10-Jan-2025.) |
| Ref | Expression |
|---|---|
| ressbas.r | ⊢ 𝑅 = (𝑊 ↾s 𝐴) |
| ressbas.b | ⊢ 𝐵 = (Base‘𝑊) |
| Ref | Expression |
|---|---|
| ressbasssg | ⊢ (Base‘𝑅) ⊆ (𝐴 ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressbas.r | . . . 4 ⊢ 𝑅 = (𝑊 ↾s 𝐴) | |
| 2 | ressbas.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
| 3 | 1, 2 | ressbas 17184 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
| 4 | ssid 3966 | . . 3 ⊢ (𝐴 ∩ 𝐵) ⊆ (𝐴 ∩ 𝐵) | |
| 5 | 3, 4 | eqsstrrdi 3989 | . 2 ⊢ (𝐴 ∈ V → (Base‘𝑅) ⊆ (𝐴 ∩ 𝐵)) |
| 6 | reldmress 17180 | . . . . . 6 ⊢ Rel dom ↾s | |
| 7 | 6 | ovprc2 7410 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (𝑊 ↾s 𝐴) = ∅) |
| 8 | 1, 7 | eqtrid 2776 | . . . 4 ⊢ (¬ 𝐴 ∈ V → 𝑅 = ∅) |
| 9 | 8 | fveq2d 6845 | . . 3 ⊢ (¬ 𝐴 ∈ V → (Base‘𝑅) = (Base‘∅)) |
| 10 | base0 17162 | . . . 4 ⊢ ∅ = (Base‘∅) | |
| 11 | 0ss 4359 | . . . 4 ⊢ ∅ ⊆ (𝐴 ∩ 𝐵) | |
| 12 | 10, 11 | eqsstrri 3991 | . . 3 ⊢ (Base‘∅) ⊆ (𝐴 ∩ 𝐵) |
| 13 | 9, 12 | eqsstrdi 3988 | . 2 ⊢ (¬ 𝐴 ∈ V → (Base‘𝑅) ⊆ (𝐴 ∩ 𝐵)) |
| 14 | 5, 13 | pm2.61i 182 | 1 ⊢ (Base‘𝑅) ⊆ (𝐴 ∩ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∩ cin 3910 ⊆ wss 3911 ∅c0 4292 ‘cfv 6500 (class class class)co 7370 Basecbs 17157 ↾s cress 17178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 ax-cnex 11103 ax-1cn 11105 ax-addcl 11107 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6263 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-ov 7373 df-oprab 7374 df-mpo 7375 df-om 7824 df-2nd 7949 df-frecs 8238 df-wrecs 8269 df-recs 8318 df-rdg 8356 df-nn 12166 df-sets 17112 df-slot 17130 df-ndx 17142 df-base 17158 df-ress 17179 |
| This theorem is referenced by: ressbasss 17187 ressbasss2 17189 unitscyglem5 42182 |
| Copyright terms: Public domain | W3C validator |