| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressbasssg | Structured version Visualization version GIF version | ||
| Description: The base set of a restriction to 𝐴 is a subset of 𝐴 and the base set 𝐵 of the original structure. (Contributed by SN, 10-Jan-2025.) |
| Ref | Expression |
|---|---|
| ressbas.r | ⊢ 𝑅 = (𝑊 ↾s 𝐴) |
| ressbas.b | ⊢ 𝐵 = (Base‘𝑊) |
| Ref | Expression |
|---|---|
| ressbasssg | ⊢ (Base‘𝑅) ⊆ (𝐴 ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressbas.r | . . . 4 ⊢ 𝑅 = (𝑊 ↾s 𝐴) | |
| 2 | ressbas.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
| 3 | 1, 2 | ressbas 17153 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
| 4 | ssid 3952 | . . 3 ⊢ (𝐴 ∩ 𝐵) ⊆ (𝐴 ∩ 𝐵) | |
| 5 | 3, 4 | eqsstrrdi 3975 | . 2 ⊢ (𝐴 ∈ V → (Base‘𝑅) ⊆ (𝐴 ∩ 𝐵)) |
| 6 | reldmress 17149 | . . . . . 6 ⊢ Rel dom ↾s | |
| 7 | 6 | ovprc2 7392 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (𝑊 ↾s 𝐴) = ∅) |
| 8 | 1, 7 | eqtrid 2778 | . . . 4 ⊢ (¬ 𝐴 ∈ V → 𝑅 = ∅) |
| 9 | 8 | fveq2d 6832 | . . 3 ⊢ (¬ 𝐴 ∈ V → (Base‘𝑅) = (Base‘∅)) |
| 10 | base0 17131 | . . . 4 ⊢ ∅ = (Base‘∅) | |
| 11 | 0ss 4349 | . . . 4 ⊢ ∅ ⊆ (𝐴 ∩ 𝐵) | |
| 12 | 10, 11 | eqsstrri 3977 | . . 3 ⊢ (Base‘∅) ⊆ (𝐴 ∩ 𝐵) |
| 13 | 9, 12 | eqsstrdi 3974 | . 2 ⊢ (¬ 𝐴 ∈ V → (Base‘𝑅) ⊆ (𝐴 ∩ 𝐵)) |
| 14 | 5, 13 | pm2.61i 182 | 1 ⊢ (Base‘𝑅) ⊆ (𝐴 ∩ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 ∅c0 4282 ‘cfv 6487 (class class class)co 7352 Basecbs 17126 ↾s cress 17147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-1cn 11070 ax-addcl 11072 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-nn 12132 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17127 df-ress 17148 |
| This theorem is referenced by: ressbasss 17156 ressbasss2 17158 unitscyglem5 42298 |
| Copyright terms: Public domain | W3C validator |