![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ressbasssg | Structured version Visualization version GIF version |
Description: The base set of a restriction to 𝐴 is a subset of 𝐴 and the base set 𝐵 of the original structure. (Contributed by SN, 10-Jan-2025.) |
Ref | Expression |
---|---|
ressbas.r | ⊢ 𝑅 = (𝑊 ↾s 𝐴) |
ressbas.b | ⊢ 𝐵 = (Base‘𝑊) |
Ref | Expression |
---|---|
ressbasssg | ⊢ (Base‘𝑅) ⊆ (𝐴 ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressbas.r | . . . 4 ⊢ 𝑅 = (𝑊 ↾s 𝐴) | |
2 | ressbas.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
3 | 1, 2 | ressbas 17160 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
4 | ssid 3999 | . . 3 ⊢ (𝐴 ∩ 𝐵) ⊆ (𝐴 ∩ 𝐵) | |
5 | 3, 4 | eqsstrrdi 4032 | . 2 ⊢ (𝐴 ∈ V → (Base‘𝑅) ⊆ (𝐴 ∩ 𝐵)) |
6 | reldmress 17156 | . . . . . 6 ⊢ Rel dom ↾s | |
7 | 6 | ovprc2 7432 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (𝑊 ↾s 𝐴) = ∅) |
8 | 1, 7 | eqtrid 2783 | . . . 4 ⊢ (¬ 𝐴 ∈ V → 𝑅 = ∅) |
9 | 8 | fveq2d 6881 | . . 3 ⊢ (¬ 𝐴 ∈ V → (Base‘𝑅) = (Base‘∅)) |
10 | base0 17130 | . . . 4 ⊢ ∅ = (Base‘∅) | |
11 | 0ss 4391 | . . . 4 ⊢ ∅ ⊆ (𝐴 ∩ 𝐵) | |
12 | 10, 11 | eqsstrri 4012 | . . 3 ⊢ (Base‘∅) ⊆ (𝐴 ∩ 𝐵) |
13 | 9, 12 | eqsstrdi 4031 | . 2 ⊢ (¬ 𝐴 ∈ V → (Base‘𝑅) ⊆ (𝐴 ∩ 𝐵)) |
14 | 5, 13 | pm2.61i 182 | 1 ⊢ (Base‘𝑅) ⊆ (𝐴 ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2106 Vcvv 3472 ∩ cin 3942 ⊆ wss 3943 ∅c0 4317 ‘cfv 6531 (class class class)co 7392 Basecbs 17125 ↾s cress 17154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5291 ax-nul 5298 ax-pow 5355 ax-pr 5419 ax-un 7707 ax-cnex 11147 ax-1cn 11149 ax-addcl 11151 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3474 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4991 df-br 5141 df-opab 5203 df-mpt 5224 df-tr 5258 df-id 5566 df-eprel 5572 df-po 5580 df-so 5581 df-fr 5623 df-we 5625 df-xp 5674 df-rel 5675 df-cnv 5676 df-co 5677 df-dm 5678 df-rn 5679 df-res 5680 df-ima 5681 df-pred 6288 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7395 df-oprab 7396 df-mpo 7397 df-om 7838 df-2nd 7957 df-frecs 8247 df-wrecs 8278 df-recs 8352 df-rdg 8391 df-nn 12194 df-sets 17078 df-slot 17096 df-ndx 17108 df-base 17126 df-ress 17155 |
This theorem is referenced by: ressbasss 17164 ressbasss2 17166 |
Copyright terms: Public domain | W3C validator |