MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressbasssg Structured version   Visualization version   GIF version

Theorem ressbasssg 17207
Description: The base set of a restriction to 𝐴 is a subset of 𝐴 and the base set 𝐵 of the original structure. (Contributed by SN, 10-Jan-2025.)
Hypotheses
Ref Expression
ressbas.r 𝑅 = (𝑊s 𝐴)
ressbas.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
ressbasssg (Base‘𝑅) ⊆ (𝐴𝐵)

Proof of Theorem ressbasssg
StepHypRef Expression
1 ressbas.r . . . 4 𝑅 = (𝑊s 𝐴)
2 ressbas.b . . . 4 𝐵 = (Base‘𝑊)
31, 2ressbas 17206 . . 3 (𝐴 ∈ V → (𝐴𝐵) = (Base‘𝑅))
4 ssid 3969 . . 3 (𝐴𝐵) ⊆ (𝐴𝐵)
53, 4eqsstrrdi 3992 . 2 (𝐴 ∈ V → (Base‘𝑅) ⊆ (𝐴𝐵))
6 reldmress 17202 . . . . . 6 Rel dom ↾s
76ovprc2 7427 . . . . 5 𝐴 ∈ V → (𝑊s 𝐴) = ∅)
81, 7eqtrid 2776 . . . 4 𝐴 ∈ V → 𝑅 = ∅)
98fveq2d 6862 . . 3 𝐴 ∈ V → (Base‘𝑅) = (Base‘∅))
10 base0 17184 . . . 4 ∅ = (Base‘∅)
11 0ss 4363 . . . 4 ∅ ⊆ (𝐴𝐵)
1210, 11eqsstrri 3994 . . 3 (Base‘∅) ⊆ (𝐴𝐵)
139, 12eqsstrdi 3991 . 2 𝐴 ∈ V → (Base‘𝑅) ⊆ (𝐴𝐵))
145, 13pm2.61i 182 1 (Base‘𝑅) ⊆ (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3447  cin 3913  wss 3914  c0 4296  cfv 6511  (class class class)co 7387  Basecbs 17179  s cress 17200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-1cn 11126  ax-addcl 11128
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-nn 12187  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201
This theorem is referenced by:  ressbasss  17209  ressbasss2  17211  unitscyglem5  42187
  Copyright terms: Public domain W3C validator