MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexp0d Structured version   Visualization version   GIF version

Theorem relexp0d 14990
Description: A relation composed zero times is the (restricted) identity. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.)
Hypotheses
Ref Expression
relexp0d.1 (𝜑 → Rel 𝑅)
relexp0d.2 (𝜑𝑅𝑉)
Assertion
Ref Expression
relexp0d (𝜑 → (𝑅𝑟0) = ( I ↾ 𝑅))

Proof of Theorem relexp0d
StepHypRef Expression
1 relexp0d.2 . 2 (𝜑𝑅𝑉)
2 relexp0d.1 . 2 (𝜑 → Rel 𝑅)
3 relexp0 14989 . 2 ((𝑅𝑉 ∧ Rel 𝑅) → (𝑅𝑟0) = ( I ↾ 𝑅))
41, 2, 3syl2anc 584 1 (𝜑 → (𝑅𝑟0) = ( I ↾ 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   cuni 4871   I cid 5532  cres 5640  Rel wrel 5643  (class class class)co 7387  0cc0 11068  𝑟crelexp 14985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-mulcl 11130  ax-i2m1 11136
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-n0 12443  df-relexp 14986
This theorem is referenced by:  rtrclreclem2  15025  rtrclreclem4  15027
  Copyright terms: Public domain W3C validator