![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relexp0d | Structured version Visualization version GIF version |
Description: A relation composed zero times is the (restricted) identity. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.) |
Ref | Expression |
---|---|
relexp0d.1 | ⊢ (𝜑 → Rel 𝑅) |
relexp0d.2 | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
Ref | Expression |
---|---|
relexp0d | ⊢ (𝜑 → (𝑅↑𝑟0) = ( I ↾ ∪ ∪ 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relexp0d.2 | . 2 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
2 | relexp0d.1 | . 2 ⊢ (𝜑 → Rel 𝑅) | |
3 | relexp0 14969 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → (𝑅↑𝑟0) = ( I ↾ ∪ ∪ 𝑅)) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝑅↑𝑟0) = ( I ↾ ∪ ∪ 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ∪ cuni 4908 I cid 5573 ↾ cres 5678 Rel wrel 5681 (class class class)co 7408 0cc0 11109 ↑𝑟crelexp 14965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-mulcl 11171 ax-i2m1 11177 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-n0 12472 df-relexp 14966 |
This theorem is referenced by: rtrclreclem2 15005 rtrclreclem4 15007 |
Copyright terms: Public domain | W3C validator |