Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relexp0d | Structured version Visualization version GIF version |
Description: A relation composed zero times is the (restricted) identity. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.) |
Ref | Expression |
---|---|
relexp0d.1 | ⊢ (𝜑 → Rel 𝑅) |
relexp0d.2 | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
Ref | Expression |
---|---|
relexp0d | ⊢ (𝜑 → (𝑅↑𝑟0) = ( I ↾ ∪ ∪ 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relexp0d.2 | . 2 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
2 | relexp0d.1 | . 2 ⊢ (𝜑 → Rel 𝑅) | |
3 | relexp0 14662 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → (𝑅↑𝑟0) = ( I ↾ ∪ ∪ 𝑅)) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → (𝑅↑𝑟0) = ( I ↾ ∪ ∪ 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∪ cuni 4836 I cid 5479 ↾ cres 5582 Rel wrel 5585 (class class class)co 7255 0cc0 10802 ↑𝑟crelexp 14658 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-mulcl 10864 ax-i2m1 10870 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-n0 12164 df-relexp 14659 |
This theorem is referenced by: rtrclreclem2 14698 rtrclreclem4 14700 |
Copyright terms: Public domain | W3C validator |