MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexp0d Structured version   Visualization version   GIF version

Theorem relexp0d 14663
Description: A relation composed zero times is the (restricted) identity. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.)
Hypotheses
Ref Expression
relexp0d.1 (𝜑 → Rel 𝑅)
relexp0d.2 (𝜑𝑅𝑉)
Assertion
Ref Expression
relexp0d (𝜑 → (𝑅𝑟0) = ( I ↾ 𝑅))

Proof of Theorem relexp0d
StepHypRef Expression
1 relexp0d.2 . 2 (𝜑𝑅𝑉)
2 relexp0d.1 . 2 (𝜑 → Rel 𝑅)
3 relexp0 14662 . 2 ((𝑅𝑉 ∧ Rel 𝑅) → (𝑅𝑟0) = ( I ↾ 𝑅))
41, 2, 3syl2anc 583 1 (𝜑 → (𝑅𝑟0) = ( I ↾ 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108   cuni 4836   I cid 5479  cres 5582  Rel wrel 5585  (class class class)co 7255  0cc0 10802  𝑟crelexp 14658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-mulcl 10864  ax-i2m1 10870
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-n0 12164  df-relexp 14659
This theorem is referenced by:  rtrclreclem2  14698  rtrclreclem4  14700
  Copyright terms: Public domain W3C validator