MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexp0d Structured version   Visualization version   GIF version

Theorem relexp0d 15060
Description: A relation composed zero times is the (restricted) identity. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 12-Jul-2024.)
Hypotheses
Ref Expression
relexp0d.1 (𝜑 → Rel 𝑅)
relexp0d.2 (𝜑𝑅𝑉)
Assertion
Ref Expression
relexp0d (𝜑 → (𝑅𝑟0) = ( I ↾ 𝑅))

Proof of Theorem relexp0d
StepHypRef Expression
1 relexp0d.2 . 2 (𝜑𝑅𝑉)
2 relexp0d.1 . 2 (𝜑 → Rel 𝑅)
3 relexp0 15059 . 2 ((𝑅𝑉 ∧ Rel 𝑅) → (𝑅𝑟0) = ( I ↾ 𝑅))
41, 2, 3syl2anc 584 1 (𝜑 → (𝑅𝑟0) = ( I ↾ 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106   cuni 4912   I cid 5582  cres 5691  Rel wrel 5694  (class class class)co 7431  0cc0 11153  𝑟crelexp 15055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-mulcl 11215  ax-i2m1 11221
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-n0 12525  df-relexp 15056
This theorem is referenced by:  rtrclreclem2  15095  rtrclreclem4  15097
  Copyright terms: Public domain W3C validator