MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relfull Structured version   Visualization version   GIF version

Theorem relfull 17814
Description: The set of full functors is a relation. (Contributed by Mario Carneiro, 26-Jan-2017.)
Assertion
Ref Expression
relfull Rel (𝐶 Full 𝐷)

Proof of Theorem relfull
StepHypRef Expression
1 fullfunc 17812 . 2 (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷)
2 relfunc 17766 . 2 Rel (𝐶 Func 𝐷)
3 relss 5722 . 2 ((𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷) → (Rel (𝐶 Func 𝐷) → Rel (𝐶 Full 𝐷)))
41, 2, 3mp2 9 1 Rel (𝐶 Full 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wss 3902  Rel wrel 5621  (class class class)co 7346   Func cfunc 17758   Full cful 17808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-func 17762  df-full 17810
This theorem is referenced by:  fullpropd  17826  cofull  17840  imasubc  49182  idfullsubc  49192  fulloppf  49194  uptrlem2  49242  uptra  49246  uptrar  49247  uptr2a  49253  thincciso  49484  thincciso2  49486
  Copyright terms: Public domain W3C validator