MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relfull Structured version   Visualization version   GIF version

Theorem relfull 17624
Description: The set of full functors is a relation. (Contributed by Mario Carneiro, 26-Jan-2017.)
Assertion
Ref Expression
relfull Rel (𝐶 Full 𝐷)

Proof of Theorem relfull
StepHypRef Expression
1 fullfunc 17622 . 2 (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷)
2 relfunc 17577 . 2 Rel (𝐶 Func 𝐷)
3 relss 5692 . 2 ((𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷) → (Rel (𝐶 Func 𝐷) → Rel (𝐶 Full 𝐷)))
41, 2, 3mp2 9 1 Rel (𝐶 Full 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wss 3887  Rel wrel 5594  (class class class)co 7275   Func cfunc 17569   Full cful 17618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-func 17573  df-full 17620
This theorem is referenced by:  fullpropd  17636  cofull  17650  thincciso  46330
  Copyright terms: Public domain W3C validator