Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relfth | Structured version Visualization version GIF version |
Description: The set of faithful functors is a relation. (Contributed by Mario Carneiro, 26-Jan-2017.) |
Ref | Expression |
---|---|
relfth | ⊢ Rel (𝐶 Faith 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fthfunc 17712 | . 2 ⊢ (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷) | |
2 | relfunc 17666 | . 2 ⊢ Rel (𝐶 Func 𝐷) | |
3 | relss 5717 | . 2 ⊢ ((𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷) → (Rel (𝐶 Func 𝐷) → Rel (𝐶 Faith 𝐷))) | |
4 | 1, 2, 3 | mp2 9 | 1 ⊢ Rel (𝐶 Faith 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3897 Rel wrel 5619 (class class class)co 7329 Func cfunc 17658 Faith cfth 17708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fv 6481 df-ov 7332 df-oprab 7333 df-mpo 7334 df-1st 7891 df-2nd 7892 df-func 17662 df-fth 17710 |
This theorem is referenced by: fthpropd 17726 fthres2 17737 cofth 17740 |
Copyright terms: Public domain | W3C validator |