MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reltrclfv Structured version   Visualization version   GIF version

Theorem reltrclfv 14983
Description: The transitive closure of a relation is a relation. (Contributed by RP, 9-May-2020.)
Assertion
Ref Expression
reltrclfv ((𝑅𝑉 ∧ Rel 𝑅) → Rel (t+‘𝑅))

Proof of Theorem reltrclfv
StepHypRef Expression
1 trclfvub 14973 . . . . 5 (𝑅𝑉 → (t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
21adantr 480 . . . 4 ((𝑅𝑉 ∧ Rel 𝑅) → (t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
3 simpr 484 . . . . 5 ((𝑅𝑉 ∧ Rel 𝑅) → Rel 𝑅)
4 relssdmrn 6241 . . . . 5 (Rel 𝑅𝑅 ⊆ (dom 𝑅 × ran 𝑅))
5 ssequn1 4149 . . . . . 6 (𝑅 ⊆ (dom 𝑅 × ran 𝑅) ↔ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅))
65biimpi 216 . . . . 5 (𝑅 ⊆ (dom 𝑅 × ran 𝑅) → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅))
73, 4, 63syl 18 . . . 4 ((𝑅𝑉 ∧ Rel 𝑅) → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅))
82, 7sseqtrd 3983 . . 3 ((𝑅𝑉 ∧ Rel 𝑅) → (t+‘𝑅) ⊆ (dom 𝑅 × ran 𝑅))
9 xpss 5654 . . 3 (dom 𝑅 × ran 𝑅) ⊆ (V × V)
108, 9sstrdi 3959 . 2 ((𝑅𝑉 ∧ Rel 𝑅) → (t+‘𝑅) ⊆ (V × V))
11 df-rel 5645 . 2 (Rel (t+‘𝑅) ↔ (t+‘𝑅) ⊆ (V × V))
1210, 11sylibr 234 1 ((𝑅𝑉 ∧ Rel 𝑅) → Rel (t+‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cun 3912  wss 3914   × cxp 5636  dom cdm 5638  ran crn 5639  Rel wrel 5643  cfv 6511  t+ctcl 14951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-iota 6464  df-fun 6513  df-fv 6519  df-trcl 14953
This theorem is referenced by:  frege124d  43750  frege129d  43752  frege133d  43754
  Copyright terms: Public domain W3C validator