![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reltrclfv | Structured version Visualization version GIF version |
Description: The transitive closure of a relation is a relation. (Contributed by RP, 9-May-2020.) |
Ref | Expression |
---|---|
reltrclfv | ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → Rel (t+‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trclfvub 14961 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) | |
2 | 1 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → (t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) |
3 | simpr 484 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → Rel 𝑅) | |
4 | relssdmrn 6267 | . . . . 5 ⊢ (Rel 𝑅 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) | |
5 | ssequn1 4180 | . . . . . 6 ⊢ (𝑅 ⊆ (dom 𝑅 × ran 𝑅) ↔ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅)) | |
6 | 5 | biimpi 215 | . . . . 5 ⊢ (𝑅 ⊆ (dom 𝑅 × ran 𝑅) → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅)) |
7 | 3, 4, 6 | 3syl 18 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅)) |
8 | 2, 7 | sseqtrd 4022 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → (t+‘𝑅) ⊆ (dom 𝑅 × ran 𝑅)) |
9 | xpss 5692 | . . 3 ⊢ (dom 𝑅 × ran 𝑅) ⊆ (V × V) | |
10 | 8, 9 | sstrdi 3994 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → (t+‘𝑅) ⊆ (V × V)) |
11 | df-rel 5683 | . 2 ⊢ (Rel (t+‘𝑅) ↔ (t+‘𝑅) ⊆ (V × V)) | |
12 | 10, 11 | sylibr 233 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → Rel (t+‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ∪ cun 3946 ⊆ wss 3948 × cxp 5674 dom cdm 5676 ran crn 5677 Rel wrel 5681 ‘cfv 6543 t+ctcl 14939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-iota 6495 df-fun 6545 df-fv 6551 df-trcl 14941 |
This theorem is referenced by: frege124d 42977 frege129d 42979 frege133d 42981 |
Copyright terms: Public domain | W3C validator |