![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reltrclfv | Structured version Visualization version GIF version |
Description: The transitive closure of a relation is a relation. (Contributed by RP, 9-May-2020.) |
Ref | Expression |
---|---|
reltrclfv | ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → Rel (t+‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trclfvub 15056 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) | |
2 | 1 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → (t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) |
3 | simpr 484 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → Rel 𝑅) | |
4 | relssdmrn 6299 | . . . . 5 ⊢ (Rel 𝑅 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) | |
5 | ssequn1 4209 | . . . . . 6 ⊢ (𝑅 ⊆ (dom 𝑅 × ran 𝑅) ↔ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅)) | |
6 | 5 | biimpi 216 | . . . . 5 ⊢ (𝑅 ⊆ (dom 𝑅 × ran 𝑅) → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅)) |
7 | 3, 4, 6 | 3syl 18 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅)) |
8 | 2, 7 | sseqtrd 4049 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → (t+‘𝑅) ⊆ (dom 𝑅 × ran 𝑅)) |
9 | xpss 5716 | . . 3 ⊢ (dom 𝑅 × ran 𝑅) ⊆ (V × V) | |
10 | 8, 9 | sstrdi 4021 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → (t+‘𝑅) ⊆ (V × V)) |
11 | df-rel 5707 | . 2 ⊢ (Rel (t+‘𝑅) ↔ (t+‘𝑅) ⊆ (V × V)) | |
12 | 10, 11 | sylibr 234 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → Rel (t+‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∪ cun 3974 ⊆ wss 3976 × cxp 5698 dom cdm 5700 ran crn 5701 Rel wrel 5705 ‘cfv 6573 t+ctcl 15034 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-iota 6525 df-fun 6575 df-fv 6581 df-trcl 15036 |
This theorem is referenced by: frege124d 43723 frege129d 43725 frege133d 43727 |
Copyright terms: Public domain | W3C validator |