MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reltrclfv Structured version   Visualization version   GIF version

Theorem reltrclfv 15041
Description: The transitive closure of a relation is a relation. (Contributed by RP, 9-May-2020.)
Assertion
Ref Expression
reltrclfv ((𝑅𝑉 ∧ Rel 𝑅) → Rel (t+‘𝑅))

Proof of Theorem reltrclfv
StepHypRef Expression
1 trclfvub 15031 . . . . 5 (𝑅𝑉 → (t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
21adantr 480 . . . 4 ((𝑅𝑉 ∧ Rel 𝑅) → (t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
3 simpr 484 . . . . 5 ((𝑅𝑉 ∧ Rel 𝑅) → Rel 𝑅)
4 relssdmrn 6262 . . . . 5 (Rel 𝑅𝑅 ⊆ (dom 𝑅 × ran 𝑅))
5 ssequn1 4166 . . . . . 6 (𝑅 ⊆ (dom 𝑅 × ran 𝑅) ↔ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅))
65biimpi 216 . . . . 5 (𝑅 ⊆ (dom 𝑅 × ran 𝑅) → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅))
73, 4, 63syl 18 . . . 4 ((𝑅𝑉 ∧ Rel 𝑅) → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅))
82, 7sseqtrd 4000 . . 3 ((𝑅𝑉 ∧ Rel 𝑅) → (t+‘𝑅) ⊆ (dom 𝑅 × ran 𝑅))
9 xpss 5675 . . 3 (dom 𝑅 × ran 𝑅) ⊆ (V × V)
108, 9sstrdi 3976 . 2 ((𝑅𝑉 ∧ Rel 𝑅) → (t+‘𝑅) ⊆ (V × V))
11 df-rel 5666 . 2 (Rel (t+‘𝑅) ↔ (t+‘𝑅) ⊆ (V × V))
1210, 11sylibr 234 1 ((𝑅𝑉 ∧ Rel 𝑅) → Rel (t+‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  cun 3929  wss 3931   × cxp 5657  dom cdm 5659  ran crn 5660  Rel wrel 5664  cfv 6536  t+ctcl 15009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-iota 6489  df-fun 6538  df-fv 6544  df-trcl 15011
This theorem is referenced by:  frege124d  43752  frege129d  43754  frege133d  43756
  Copyright terms: Public domain W3C validator