MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reltrclfv Structured version   Visualization version   GIF version

Theorem reltrclfv 14971
Description: The transitive closure of a relation is a relation. (Contributed by RP, 9-May-2020.)
Assertion
Ref Expression
reltrclfv ((𝑅𝑉 ∧ Rel 𝑅) → Rel (t+‘𝑅))

Proof of Theorem reltrclfv
StepHypRef Expression
1 trclfvub 14961 . . . . 5 (𝑅𝑉 → (t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
21adantr 480 . . . 4 ((𝑅𝑉 ∧ Rel 𝑅) → (t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
3 simpr 484 . . . . 5 ((𝑅𝑉 ∧ Rel 𝑅) → Rel 𝑅)
4 relssdmrn 6267 . . . . 5 (Rel 𝑅𝑅 ⊆ (dom 𝑅 × ran 𝑅))
5 ssequn1 4180 . . . . . 6 (𝑅 ⊆ (dom 𝑅 × ran 𝑅) ↔ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅))
65biimpi 215 . . . . 5 (𝑅 ⊆ (dom 𝑅 × ran 𝑅) → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅))
73, 4, 63syl 18 . . . 4 ((𝑅𝑉 ∧ Rel 𝑅) → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅))
82, 7sseqtrd 4022 . . 3 ((𝑅𝑉 ∧ Rel 𝑅) → (t+‘𝑅) ⊆ (dom 𝑅 × ran 𝑅))
9 xpss 5692 . . 3 (dom 𝑅 × ran 𝑅) ⊆ (V × V)
108, 9sstrdi 3994 . 2 ((𝑅𝑉 ∧ Rel 𝑅) → (t+‘𝑅) ⊆ (V × V))
11 df-rel 5683 . 2 (Rel (t+‘𝑅) ↔ (t+‘𝑅) ⊆ (V × V))
1210, 11sylibr 233 1 ((𝑅𝑉 ∧ Rel 𝑅) → Rel (t+‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  Vcvv 3473  cun 3946  wss 3948   × cxp 5674  dom cdm 5676  ran crn 5677  Rel wrel 5681  cfv 6543  t+ctcl 14939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-iota 6495  df-fun 6545  df-fv 6551  df-trcl 14941
This theorem is referenced by:  frege124d  42977  frege129d  42979  frege133d  42981
  Copyright terms: Public domain W3C validator