| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reltrclfv | Structured version Visualization version GIF version | ||
| Description: The transitive closure of a relation is a relation. (Contributed by RP, 9-May-2020.) |
| Ref | Expression |
|---|---|
| reltrclfv | ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → Rel (t+‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trclfvub 14973 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → (t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) |
| 3 | simpr 484 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → Rel 𝑅) | |
| 4 | relssdmrn 6241 | . . . . 5 ⊢ (Rel 𝑅 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) | |
| 5 | ssequn1 4149 | . . . . . 6 ⊢ (𝑅 ⊆ (dom 𝑅 × ran 𝑅) ↔ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅)) | |
| 6 | 5 | biimpi 216 | . . . . 5 ⊢ (𝑅 ⊆ (dom 𝑅 × ran 𝑅) → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅)) |
| 7 | 3, 4, 6 | 3syl 18 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅)) |
| 8 | 2, 7 | sseqtrd 3983 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → (t+‘𝑅) ⊆ (dom 𝑅 × ran 𝑅)) |
| 9 | xpss 5654 | . . 3 ⊢ (dom 𝑅 × ran 𝑅) ⊆ (V × V) | |
| 10 | 8, 9 | sstrdi 3959 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → (t+‘𝑅) ⊆ (V × V)) |
| 11 | df-rel 5645 | . 2 ⊢ (Rel (t+‘𝑅) ↔ (t+‘𝑅) ⊆ (V × V)) | |
| 12 | 10, 11 | sylibr 234 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → Rel (t+‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∪ cun 3912 ⊆ wss 3914 × cxp 5636 dom cdm 5638 ran crn 5639 Rel wrel 5643 ‘cfv 6511 t+ctcl 14951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-iota 6464 df-fun 6513 df-fv 6519 df-trcl 14953 |
| This theorem is referenced by: frege124d 43750 frege129d 43752 frege133d 43754 |
| Copyright terms: Public domain | W3C validator |