MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmtrclfv Structured version   Visualization version   GIF version

Theorem dmtrclfv 14961
Description: The domain of the transitive closure is equal to the domain of the relation. (Contributed by RP, 9-May-2020.)
Assertion
Ref Expression
dmtrclfv (𝑅𝑉 → dom (t+‘𝑅) = dom 𝑅)

Proof of Theorem dmtrclfv
StepHypRef Expression
1 trclfvub 14950 . . . 4 (𝑅𝑉 → (t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
2 dmss 5900 . . . 4 ((t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) → dom (t+‘𝑅) ⊆ dom (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
31, 2syl 17 . . 3 (𝑅𝑉 → dom (t+‘𝑅) ⊆ dom (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
4 dmun 5908 . . . 4 dom (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 ∪ dom (dom 𝑅 × ran 𝑅))
5 dm0rn0 5922 . . . . . . 7 (dom 𝑅 = ∅ ↔ ran 𝑅 = ∅)
6 xpeq1 5689 . . . . . . . . . 10 (dom 𝑅 = ∅ → (dom 𝑅 × ran 𝑅) = (∅ × ran 𝑅))
7 0xp 5772 . . . . . . . . . 10 (∅ × ran 𝑅) = ∅
86, 7eqtrdi 2788 . . . . . . . . 9 (dom 𝑅 = ∅ → (dom 𝑅 × ran 𝑅) = ∅)
98dmeqd 5903 . . . . . . . 8 (dom 𝑅 = ∅ → dom (dom 𝑅 × ran 𝑅) = dom ∅)
10 dm0 5918 . . . . . . . . 9 dom ∅ = ∅
1110a1i 11 . . . . . . . 8 (dom 𝑅 = ∅ → dom ∅ = ∅)
12 eqcom 2739 . . . . . . . . 9 (dom 𝑅 = ∅ ↔ ∅ = dom 𝑅)
1312biimpi 215 . . . . . . . 8 (dom 𝑅 = ∅ → ∅ = dom 𝑅)
149, 11, 133eqtrd 2776 . . . . . . 7 (dom 𝑅 = ∅ → dom (dom 𝑅 × ran 𝑅) = dom 𝑅)
155, 14sylbir 234 . . . . . 6 (ran 𝑅 = ∅ → dom (dom 𝑅 × ran 𝑅) = dom 𝑅)
16 dmxp 5926 . . . . . 6 (ran 𝑅 ≠ ∅ → dom (dom 𝑅 × ran 𝑅) = dom 𝑅)
1715, 16pm2.61ine 3025 . . . . 5 dom (dom 𝑅 × ran 𝑅) = dom 𝑅
1817uneq2i 4159 . . . 4 (dom 𝑅 ∪ dom (dom 𝑅 × ran 𝑅)) = (dom 𝑅 ∪ dom 𝑅)
19 unidm 4151 . . . 4 (dom 𝑅 ∪ dom 𝑅) = dom 𝑅
204, 18, 193eqtri 2764 . . 3 dom (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = dom 𝑅
213, 20sseqtrdi 4031 . 2 (𝑅𝑉 → dom (t+‘𝑅) ⊆ dom 𝑅)
22 trclfvlb 14951 . . 3 (𝑅𝑉𝑅 ⊆ (t+‘𝑅))
23 dmss 5900 . . 3 (𝑅 ⊆ (t+‘𝑅) → dom 𝑅 ⊆ dom (t+‘𝑅))
2422, 23syl 17 . 2 (𝑅𝑉 → dom 𝑅 ⊆ dom (t+‘𝑅))
2521, 24eqssd 3998 1 (𝑅𝑉 → dom (t+‘𝑅) = dom 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  cun 3945  wss 3947  c0 4321   × cxp 5673  dom cdm 5675  ran crn 5676  cfv 6540  t+ctcl 14928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-iota 6492  df-fun 6542  df-fv 6548  df-trcl 14930
This theorem is referenced by:  rntrclfvRP  42467
  Copyright terms: Public domain W3C validator