MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmtrclfv Structured version   Visualization version   GIF version

Theorem dmtrclfv 14729
Description: The domain of the transitive closure is equal to the domain of the relation. (Contributed by RP, 9-May-2020.)
Assertion
Ref Expression
dmtrclfv (𝑅𝑉 → dom (t+‘𝑅) = dom 𝑅)

Proof of Theorem dmtrclfv
StepHypRef Expression
1 trclfvub 14718 . . . 4 (𝑅𝑉 → (t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
2 dmss 5811 . . . 4 ((t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) → dom (t+‘𝑅) ⊆ dom (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
31, 2syl 17 . . 3 (𝑅𝑉 → dom (t+‘𝑅) ⊆ dom (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
4 dmun 5819 . . . 4 dom (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 ∪ dom (dom 𝑅 × ran 𝑅))
5 dm0rn0 5834 . . . . . . 7 (dom 𝑅 = ∅ ↔ ran 𝑅 = ∅)
6 xpeq1 5603 . . . . . . . . . 10 (dom 𝑅 = ∅ → (dom 𝑅 × ran 𝑅) = (∅ × ran 𝑅))
7 0xp 5685 . . . . . . . . . 10 (∅ × ran 𝑅) = ∅
86, 7eqtrdi 2794 . . . . . . . . 9 (dom 𝑅 = ∅ → (dom 𝑅 × ran 𝑅) = ∅)
98dmeqd 5814 . . . . . . . 8 (dom 𝑅 = ∅ → dom (dom 𝑅 × ran 𝑅) = dom ∅)
10 dm0 5829 . . . . . . . . 9 dom ∅ = ∅
1110a1i 11 . . . . . . . 8 (dom 𝑅 = ∅ → dom ∅ = ∅)
12 eqcom 2745 . . . . . . . . 9 (dom 𝑅 = ∅ ↔ ∅ = dom 𝑅)
1312biimpi 215 . . . . . . . 8 (dom 𝑅 = ∅ → ∅ = dom 𝑅)
149, 11, 133eqtrd 2782 . . . . . . 7 (dom 𝑅 = ∅ → dom (dom 𝑅 × ran 𝑅) = dom 𝑅)
155, 14sylbir 234 . . . . . 6 (ran 𝑅 = ∅ → dom (dom 𝑅 × ran 𝑅) = dom 𝑅)
16 dmxp 5838 . . . . . 6 (ran 𝑅 ≠ ∅ → dom (dom 𝑅 × ran 𝑅) = dom 𝑅)
1715, 16pm2.61ine 3028 . . . . 5 dom (dom 𝑅 × ran 𝑅) = dom 𝑅
1817uneq2i 4094 . . . 4 (dom 𝑅 ∪ dom (dom 𝑅 × ran 𝑅)) = (dom 𝑅 ∪ dom 𝑅)
19 unidm 4086 . . . 4 (dom 𝑅 ∪ dom 𝑅) = dom 𝑅
204, 18, 193eqtri 2770 . . 3 dom (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = dom 𝑅
213, 20sseqtrdi 3971 . 2 (𝑅𝑉 → dom (t+‘𝑅) ⊆ dom 𝑅)
22 trclfvlb 14719 . . 3 (𝑅𝑉𝑅 ⊆ (t+‘𝑅))
23 dmss 5811 . . 3 (𝑅 ⊆ (t+‘𝑅) → dom 𝑅 ⊆ dom (t+‘𝑅))
2422, 23syl 17 . 2 (𝑅𝑉 → dom 𝑅 ⊆ dom (t+‘𝑅))
2521, 24eqssd 3938 1 (𝑅𝑉 → dom (t+‘𝑅) = dom 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  cun 3885  wss 3887  c0 4256   × cxp 5587  dom cdm 5589  ran crn 5590  cfv 6433  t+ctcl 14696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-iota 6391  df-fun 6435  df-fv 6441  df-trcl 14698
This theorem is referenced by:  rntrclfvRP  41339
  Copyright terms: Public domain W3C validator