MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmtrclfv Structured version   Visualization version   GIF version

Theorem dmtrclfv 15067
Description: The domain of the transitive closure is equal to the domain of the relation. (Contributed by RP, 9-May-2020.)
Assertion
Ref Expression
dmtrclfv (𝑅𝑉 → dom (t+‘𝑅) = dom 𝑅)

Proof of Theorem dmtrclfv
StepHypRef Expression
1 trclfvub 15056 . . . 4 (𝑅𝑉 → (t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
2 dmss 5927 . . . 4 ((t+‘𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) → dom (t+‘𝑅) ⊆ dom (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
31, 2syl 17 . . 3 (𝑅𝑉 → dom (t+‘𝑅) ⊆ dom (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
4 dmun 5935 . . . 4 dom (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 ∪ dom (dom 𝑅 × ran 𝑅))
5 dm0rn0 5949 . . . . . . 7 (dom 𝑅 = ∅ ↔ ran 𝑅 = ∅)
6 xpeq1 5714 . . . . . . . . . 10 (dom 𝑅 = ∅ → (dom 𝑅 × ran 𝑅) = (∅ × ran 𝑅))
7 0xp 5798 . . . . . . . . . 10 (∅ × ran 𝑅) = ∅
86, 7eqtrdi 2796 . . . . . . . . 9 (dom 𝑅 = ∅ → (dom 𝑅 × ran 𝑅) = ∅)
98dmeqd 5930 . . . . . . . 8 (dom 𝑅 = ∅ → dom (dom 𝑅 × ran 𝑅) = dom ∅)
10 dm0 5945 . . . . . . . . 9 dom ∅ = ∅
1110a1i 11 . . . . . . . 8 (dom 𝑅 = ∅ → dom ∅ = ∅)
12 eqcom 2747 . . . . . . . . 9 (dom 𝑅 = ∅ ↔ ∅ = dom 𝑅)
1312biimpi 216 . . . . . . . 8 (dom 𝑅 = ∅ → ∅ = dom 𝑅)
149, 11, 133eqtrd 2784 . . . . . . 7 (dom 𝑅 = ∅ → dom (dom 𝑅 × ran 𝑅) = dom 𝑅)
155, 14sylbir 235 . . . . . 6 (ran 𝑅 = ∅ → dom (dom 𝑅 × ran 𝑅) = dom 𝑅)
16 dmxp 5953 . . . . . 6 (ran 𝑅 ≠ ∅ → dom (dom 𝑅 × ran 𝑅) = dom 𝑅)
1715, 16pm2.61ine 3031 . . . . 5 dom (dom 𝑅 × ran 𝑅) = dom 𝑅
1817uneq2i 4188 . . . 4 (dom 𝑅 ∪ dom (dom 𝑅 × ran 𝑅)) = (dom 𝑅 ∪ dom 𝑅)
19 unidm 4180 . . . 4 (dom 𝑅 ∪ dom 𝑅) = dom 𝑅
204, 18, 193eqtri 2772 . . 3 dom (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = dom 𝑅
213, 20sseqtrdi 4059 . 2 (𝑅𝑉 → dom (t+‘𝑅) ⊆ dom 𝑅)
22 trclfvlb 15057 . . 3 (𝑅𝑉𝑅 ⊆ (t+‘𝑅))
23 dmss 5927 . . 3 (𝑅 ⊆ (t+‘𝑅) → dom 𝑅 ⊆ dom (t+‘𝑅))
2422, 23syl 17 . 2 (𝑅𝑉 → dom 𝑅 ⊆ dom (t+‘𝑅))
2521, 24eqssd 4026 1 (𝑅𝑉 → dom (t+‘𝑅) = dom 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cun 3974  wss 3976  c0 4352   × cxp 5698  dom cdm 5700  ran crn 5701  cfv 6573  t+ctcl 15034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-iota 6525  df-fun 6575  df-fv 6581  df-trcl 15036
This theorem is referenced by:  rntrclfvRP  43693
  Copyright terms: Public domain W3C validator