MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resf1ext2b Structured version   Visualization version   GIF version

Theorem resf1ext2b 7940
Description: Extension of an injection which is a restriction of a function. (Contributed by AV, 3-Oct-2025.)
Assertion
Ref Expression
resf1ext2b ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → ((Fun (𝐹𝐶) ∧ (𝐹𝑋) ∉ (𝐹𝐶)) ↔ Fun (𝐹 ↾ (𝐶 ∪ {𝑋}))))

Proof of Theorem resf1ext2b
StepHypRef Expression
1 fssres 6755 . . . . 5 ((𝐹:𝐴𝐵𝐶𝐴) → (𝐹𝐶):𝐶𝐵)
213adant2 1131 . . . 4 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → (𝐹𝐶):𝐶𝐵)
3 df-f1 6547 . . . . 5 ((𝐹𝐶):𝐶1-1𝐵 ↔ ((𝐹𝐶):𝐶𝐵 ∧ Fun (𝐹𝐶)))
4 resf1extb 7939 . . . . . . 7 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → (((𝐹𝐶):𝐶1-1𝐵 ∧ (𝐹𝑋) ∉ (𝐹𝐶)) ↔ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1𝐵))
5 df-f1 6547 . . . . . . . 8 ((𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1𝐵 ↔ ((𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})⟶𝐵 ∧ Fun (𝐹 ↾ (𝐶 ∪ {𝑋}))))
65simprbi 496 . . . . . . 7 ((𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1𝐵 → Fun (𝐹 ↾ (𝐶 ∪ {𝑋})))
74, 6biimtrdi 253 . . . . . 6 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → (((𝐹𝐶):𝐶1-1𝐵 ∧ (𝐹𝑋) ∉ (𝐹𝐶)) → Fun (𝐹 ↾ (𝐶 ∪ {𝑋}))))
87expd 415 . . . . 5 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → ((𝐹𝐶):𝐶1-1𝐵 → ((𝐹𝑋) ∉ (𝐹𝐶) → Fun (𝐹 ↾ (𝐶 ∪ {𝑋})))))
93, 8biimtrrid 243 . . . 4 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → (((𝐹𝐶):𝐶𝐵 ∧ Fun (𝐹𝐶)) → ((𝐹𝑋) ∉ (𝐹𝐶) → Fun (𝐹 ↾ (𝐶 ∪ {𝑋})))))
102, 9mpand 695 . . 3 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → (Fun (𝐹𝐶) → ((𝐹𝑋) ∉ (𝐹𝐶) → Fun (𝐹 ↾ (𝐶 ∪ {𝑋})))))
1110impd 410 . 2 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → ((Fun (𝐹𝐶) ∧ (𝐹𝑋) ∉ (𝐹𝐶)) → Fun (𝐹 ↾ (𝐶 ∪ {𝑋}))))
12 simp1 1136 . . . 4 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → 𝐹:𝐴𝐵)
13 simp3 1138 . . . . 5 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → 𝐶𝐴)
14 eldifi 4113 . . . . . . 7 (𝑋 ∈ (𝐴𝐶) → 𝑋𝐴)
1514snssd 4791 . . . . . 6 (𝑋 ∈ (𝐴𝐶) → {𝑋} ⊆ 𝐴)
16153ad2ant2 1134 . . . . 5 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → {𝑋} ⊆ 𝐴)
1713, 16unssd 4174 . . . 4 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → (𝐶 ∪ {𝑋}) ⊆ 𝐴)
1812, 17fssresd 6756 . . 3 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})⟶𝐵)
193simprbi 496 . . . . . 6 ((𝐹𝐶):𝐶1-1𝐵 → Fun (𝐹𝐶))
2019anim1i 615 . . . . 5 (((𝐹𝐶):𝐶1-1𝐵 ∧ (𝐹𝑋) ∉ (𝐹𝐶)) → (Fun (𝐹𝐶) ∧ (𝐹𝑋) ∉ (𝐹𝐶)))
214, 20biimtrrdi 254 . . . 4 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → ((𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1𝐵 → (Fun (𝐹𝐶) ∧ (𝐹𝑋) ∉ (𝐹𝐶))))
225, 21biimtrrid 243 . . 3 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → (((𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})⟶𝐵 ∧ Fun (𝐹 ↾ (𝐶 ∪ {𝑋}))) → (Fun (𝐹𝐶) ∧ (𝐹𝑋) ∉ (𝐹𝐶))))
2318, 22mpand 695 . 2 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → (Fun (𝐹 ↾ (𝐶 ∪ {𝑋})) → (Fun (𝐹𝐶) ∧ (𝐹𝑋) ∉ (𝐹𝐶))))
2411, 23impbid 212 1 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → ((Fun (𝐹𝐶) ∧ (𝐹𝑋) ∉ (𝐹𝐶)) ↔ Fun (𝐹 ↾ (𝐶 ∪ {𝑋}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2107  wnel 3035  cdif 3930  cun 3931  wss 3933  {csn 4608  ccnv 5666  cres 5669  cima 5670  Fun wfun 6536  wf 6538  1-1wf1 6539  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fv 6550
This theorem is referenced by:  dfpth2  29696
  Copyright terms: Public domain W3C validator