MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resf1ext2b Structured version   Visualization version   GIF version

Theorem resf1ext2b 7936
Description: Extension of an injection which is a restriction of a function. (Contributed by AV, 3-Oct-2025.)
Assertion
Ref Expression
resf1ext2b ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → ((Fun (𝐹𝐶) ∧ (𝐹𝑋) ∉ (𝐹𝐶)) ↔ Fun (𝐹 ↾ (𝐶 ∪ {𝑋}))))

Proof of Theorem resf1ext2b
StepHypRef Expression
1 fssres 6749 . . . . 5 ((𝐹:𝐴𝐵𝐶𝐴) → (𝐹𝐶):𝐶𝐵)
213adant2 1131 . . . 4 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → (𝐹𝐶):𝐶𝐵)
3 df-f1 6541 . . . . 5 ((𝐹𝐶):𝐶1-1𝐵 ↔ ((𝐹𝐶):𝐶𝐵 ∧ Fun (𝐹𝐶)))
4 resf1extb 7935 . . . . . . 7 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → (((𝐹𝐶):𝐶1-1𝐵 ∧ (𝐹𝑋) ∉ (𝐹𝐶)) ↔ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1𝐵))
5 df-f1 6541 . . . . . . . 8 ((𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1𝐵 ↔ ((𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})⟶𝐵 ∧ Fun (𝐹 ↾ (𝐶 ∪ {𝑋}))))
65simprbi 496 . . . . . . 7 ((𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1𝐵 → Fun (𝐹 ↾ (𝐶 ∪ {𝑋})))
74, 6biimtrdi 253 . . . . . 6 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → (((𝐹𝐶):𝐶1-1𝐵 ∧ (𝐹𝑋) ∉ (𝐹𝐶)) → Fun (𝐹 ↾ (𝐶 ∪ {𝑋}))))
87expd 415 . . . . 5 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → ((𝐹𝐶):𝐶1-1𝐵 → ((𝐹𝑋) ∉ (𝐹𝐶) → Fun (𝐹 ↾ (𝐶 ∪ {𝑋})))))
93, 8biimtrrid 243 . . . 4 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → (((𝐹𝐶):𝐶𝐵 ∧ Fun (𝐹𝐶)) → ((𝐹𝑋) ∉ (𝐹𝐶) → Fun (𝐹 ↾ (𝐶 ∪ {𝑋})))))
102, 9mpand 695 . . 3 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → (Fun (𝐹𝐶) → ((𝐹𝑋) ∉ (𝐹𝐶) → Fun (𝐹 ↾ (𝐶 ∪ {𝑋})))))
1110impd 410 . 2 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → ((Fun (𝐹𝐶) ∧ (𝐹𝑋) ∉ (𝐹𝐶)) → Fun (𝐹 ↾ (𝐶 ∪ {𝑋}))))
12 simp1 1136 . . . 4 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → 𝐹:𝐴𝐵)
13 simp3 1138 . . . . 5 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → 𝐶𝐴)
14 eldifi 4111 . . . . . . 7 (𝑋 ∈ (𝐴𝐶) → 𝑋𝐴)
1514snssd 4790 . . . . . 6 (𝑋 ∈ (𝐴𝐶) → {𝑋} ⊆ 𝐴)
16153ad2ant2 1134 . . . . 5 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → {𝑋} ⊆ 𝐴)
1713, 16unssd 4172 . . . 4 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → (𝐶 ∪ {𝑋}) ⊆ 𝐴)
1812, 17fssresd 6750 . . 3 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})⟶𝐵)
193simprbi 496 . . . . . 6 ((𝐹𝐶):𝐶1-1𝐵 → Fun (𝐹𝐶))
2019anim1i 615 . . . . 5 (((𝐹𝐶):𝐶1-1𝐵 ∧ (𝐹𝑋) ∉ (𝐹𝐶)) → (Fun (𝐹𝐶) ∧ (𝐹𝑋) ∉ (𝐹𝐶)))
214, 20biimtrrdi 254 . . . 4 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → ((𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1𝐵 → (Fun (𝐹𝐶) ∧ (𝐹𝑋) ∉ (𝐹𝐶))))
225, 21biimtrrid 243 . . 3 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → (((𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})⟶𝐵 ∧ Fun (𝐹 ↾ (𝐶 ∪ {𝑋}))) → (Fun (𝐹𝐶) ∧ (𝐹𝑋) ∉ (𝐹𝐶))))
2318, 22mpand 695 . 2 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → (Fun (𝐹 ↾ (𝐶 ∪ {𝑋})) → (Fun (𝐹𝐶) ∧ (𝐹𝑋) ∉ (𝐹𝐶))))
2411, 23impbid 212 1 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → ((Fun (𝐹𝐶) ∧ (𝐹𝑋) ∉ (𝐹𝐶)) ↔ Fun (𝐹 ↾ (𝐶 ∪ {𝑋}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wnel 3037  cdif 3928  cun 3929  wss 3931  {csn 4606  ccnv 5658  cres 5661  cima 5662  Fun wfun 6530  wf 6532  1-1wf1 6533  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fv 6544
This theorem is referenced by:  dfpth2  29716
  Copyright terms: Public domain W3C validator