Proof of Theorem resf1ext2b
Step | Hyp | Ref
| Expression |
1 | | fssres 6779 |
. . . . 5
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
2 | 1 | 3adant2 1131 |
. . . 4
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
3 | | df-f1 6571 |
. . . . 5
⊢ ((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 ↔ ((𝐹 ↾ 𝐶):𝐶⟶𝐵 ∧ Fun ◡(𝐹 ↾ 𝐶))) |
4 | | resf1extb 7961 |
. . . . . . 7
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → (((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 ∧ (𝐹‘𝑋) ∉ (𝐹 “ 𝐶)) ↔ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1→𝐵)) |
5 | | df-f1 6571 |
. . . . . . . 8
⊢ ((𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1→𝐵 ↔ ((𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})⟶𝐵 ∧ Fun ◡(𝐹 ↾ (𝐶 ∪ {𝑋})))) |
6 | 5 | simprbi 496 |
. . . . . . 7
⊢ ((𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1→𝐵 → Fun ◡(𝐹 ↾ (𝐶 ∪ {𝑋}))) |
7 | 4, 6 | biimtrdi 253 |
. . . . . 6
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → (((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 ∧ (𝐹‘𝑋) ∉ (𝐹 “ 𝐶)) → Fun ◡(𝐹 ↾ (𝐶 ∪ {𝑋})))) |
8 | 7 | expd 415 |
. . . . 5
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → ((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 → ((𝐹‘𝑋) ∉ (𝐹 “ 𝐶) → Fun ◡(𝐹 ↾ (𝐶 ∪ {𝑋}))))) |
9 | 3, 8 | biimtrrid 243 |
. . . 4
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → (((𝐹 ↾ 𝐶):𝐶⟶𝐵 ∧ Fun ◡(𝐹 ↾ 𝐶)) → ((𝐹‘𝑋) ∉ (𝐹 “ 𝐶) → Fun ◡(𝐹 ↾ (𝐶 ∪ {𝑋}))))) |
10 | 2, 9 | mpand 695 |
. . 3
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → (Fun ◡(𝐹 ↾ 𝐶) → ((𝐹‘𝑋) ∉ (𝐹 “ 𝐶) → Fun ◡(𝐹 ↾ (𝐶 ∪ {𝑋}))))) |
11 | 10 | impd 410 |
. 2
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → ((Fun ◡(𝐹 ↾ 𝐶) ∧ (𝐹‘𝑋) ∉ (𝐹 “ 𝐶)) → Fun ◡(𝐹 ↾ (𝐶 ∪ {𝑋})))) |
12 | | simp1 1136 |
. . . 4
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → 𝐹:𝐴⟶𝐵) |
13 | | simp3 1138 |
. . . . 5
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → 𝐶 ⊆ 𝐴) |
14 | | eldifi 4142 |
. . . . . . 7
⊢ (𝑋 ∈ (𝐴 ∖ 𝐶) → 𝑋 ∈ 𝐴) |
15 | 14 | snssd 4815 |
. . . . . 6
⊢ (𝑋 ∈ (𝐴 ∖ 𝐶) → {𝑋} ⊆ 𝐴) |
16 | 15 | 3ad2ant2 1134 |
. . . . 5
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → {𝑋} ⊆ 𝐴) |
17 | 13, 16 | unssd 4203 |
. . . 4
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → (𝐶 ∪ {𝑋}) ⊆ 𝐴) |
18 | 12, 17 | fssresd 6780 |
. . 3
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})⟶𝐵) |
19 | 3 | simprbi 496 |
. . . . . 6
⊢ ((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 → Fun ◡(𝐹 ↾ 𝐶)) |
20 | 19 | anim1i 615 |
. . . . 5
⊢ (((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 ∧ (𝐹‘𝑋) ∉ (𝐹 “ 𝐶)) → (Fun ◡(𝐹 ↾ 𝐶) ∧ (𝐹‘𝑋) ∉ (𝐹 “ 𝐶))) |
21 | 4, 20 | biimtrrdi 254 |
. . . 4
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → ((𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1→𝐵 → (Fun ◡(𝐹 ↾ 𝐶) ∧ (𝐹‘𝑋) ∉ (𝐹 “ 𝐶)))) |
22 | 5, 21 | biimtrrid 243 |
. . 3
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → (((𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})⟶𝐵 ∧ Fun ◡(𝐹 ↾ (𝐶 ∪ {𝑋}))) → (Fun ◡(𝐹 ↾ 𝐶) ∧ (𝐹‘𝑋) ∉ (𝐹 “ 𝐶)))) |
23 | 18, 22 | mpand 695 |
. 2
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → (Fun ◡(𝐹 ↾ (𝐶 ∪ {𝑋})) → (Fun ◡(𝐹 ↾ 𝐶) ∧ (𝐹‘𝑋) ∉ (𝐹 “ 𝐶)))) |
24 | 11, 23 | impbid 212 |
1
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → ((Fun ◡(𝐹 ↾ 𝐶) ∧ (𝐹‘𝑋) ∉ (𝐹 “ 𝐶)) ↔ Fun ◡(𝐹 ↾ (𝐶 ∪ {𝑋})))) |