MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfpth2 Structured version   Visualization version   GIF version

Theorem dfpth2 29716
Description: Alternate definition for a pair of classes/functions to be a path (in an undirected graph). (Contributed by AV, 4-Oct-2025.)
Assertion
Ref Expression
dfpth2 (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1...(♯‘𝐹))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹)))))

Proof of Theorem dfpth2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ispth 29708 . 2 (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))
2 istrl 29681 . . . . . . . . . . 11 (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹))
3 wlkcl 29600 . . . . . . . . . . . . 13 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
4 eqid 2736 . . . . . . . . . . . . . 14 (Vtx‘𝐺) = (Vtx‘𝐺)
54wlkp 29601 . . . . . . . . . . . . 13 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
6 ffn 6711 . . . . . . . . . . . . . . 15 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → 𝑃 Fn (0...(♯‘𝐹)))
76adantl 481 . . . . . . . . . . . . . 14 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → 𝑃 Fn (0...(♯‘𝐹)))
8 0elfz 13646 . . . . . . . . . . . . . . 15 ((♯‘𝐹) ∈ ℕ0 → 0 ∈ (0...(♯‘𝐹)))
98adantr 480 . . . . . . . . . . . . . 14 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → 0 ∈ (0...(♯‘𝐹)))
10 nn0fz0 13647 . . . . . . . . . . . . . . . 16 ((♯‘𝐹) ∈ ℕ0 ↔ (♯‘𝐹) ∈ (0...(♯‘𝐹)))
1110biimpi 216 . . . . . . . . . . . . . . 15 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ (0...(♯‘𝐹)))
1211adantr 480 . . . . . . . . . . . . . 14 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (♯‘𝐹) ∈ (0...(♯‘𝐹)))
137, 9, 123jca 1128 . . . . . . . . . . . . 13 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (𝑃 Fn (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ (♯‘𝐹) ∈ (0...(♯‘𝐹))))
143, 5, 13syl2anc 584 . . . . . . . . . . . 12 (𝐹(Walks‘𝐺)𝑃 → (𝑃 Fn (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ (♯‘𝐹) ∈ (0...(♯‘𝐹))))
1514adantr 480 . . . . . . . . . . 11 ((𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹) → (𝑃 Fn (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ (♯‘𝐹) ∈ (0...(♯‘𝐹))))
162, 15sylbi 217 . . . . . . . . . 10 (𝐹(Trails‘𝐺)𝑃 → (𝑃 Fn (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ (♯‘𝐹) ∈ (0...(♯‘𝐹))))
17 fnimapr 6967 . . . . . . . . . 10 ((𝑃 Fn (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ (♯‘𝐹) ∈ (0...(♯‘𝐹))) → (𝑃 “ {0, (♯‘𝐹)}) = {(𝑃‘0), (𝑃‘(♯‘𝐹))})
1816, 17syl 17 . . . . . . . . 9 (𝐹(Trails‘𝐺)𝑃 → (𝑃 “ {0, (♯‘𝐹)}) = {(𝑃‘0), (𝑃‘(♯‘𝐹))})
1918ineq1d 4199 . . . . . . . 8 (𝐹(Trails‘𝐺)𝑃 → ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ({(𝑃‘0), (𝑃‘(♯‘𝐹))} ∩ (𝑃 “ (1..^(♯‘𝐹)))))
2019eqeq1d 2738 . . . . . . 7 (𝐹(Trails‘𝐺)𝑃 → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ ↔ ({(𝑃‘0), (𝑃‘(♯‘𝐹))} ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))
21 disj 4430 . . . . . . . 8 (({(𝑃‘0), (𝑃‘(♯‘𝐹))} ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ ↔ ∀𝑥 ∈ {(𝑃‘0), (𝑃‘(♯‘𝐹))} ¬ 𝑥 ∈ (𝑃 “ (1..^(♯‘𝐹))))
22 fvex 6894 . . . . . . . . . 10 (𝑃‘0) ∈ V
23 fvex 6894 . . . . . . . . . 10 (𝑃‘(♯‘𝐹)) ∈ V
24 eleq1 2823 . . . . . . . . . . 11 (𝑥 = (𝑃‘0) → (𝑥 ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ (𝑃‘0) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
2524notbid 318 . . . . . . . . . 10 (𝑥 = (𝑃‘0) → (¬ 𝑥 ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ ¬ (𝑃‘0) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
26 eleq1 2823 . . . . . . . . . . 11 (𝑥 = (𝑃‘(♯‘𝐹)) → (𝑥 ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
2726notbid 318 . . . . . . . . . 10 (𝑥 = (𝑃‘(♯‘𝐹)) → (¬ 𝑥 ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
2822, 23, 25, 27ralpr 4681 . . . . . . . . 9 (∀𝑥 ∈ {(𝑃‘0), (𝑃‘(♯‘𝐹))} ¬ 𝑥 ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ (¬ (𝑃‘0) ∈ (𝑃 “ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
29 df-nel 3038 . . . . . . . . . 10 ((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ↔ ¬ (𝑃‘0) ∈ (𝑃 “ (1..^(♯‘𝐹))))
3029bicomi 224 . . . . . . . . 9 (¬ (𝑃‘0) ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))))
3128, 30bianbi 627 . . . . . . . 8 (∀𝑥 ∈ {(𝑃‘0), (𝑃‘(♯‘𝐹))} ¬ 𝑥 ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ ((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
3221, 31bitri 275 . . . . . . 7 (({(𝑃‘0), (𝑃‘(♯‘𝐹))} ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ ↔ ((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
3320, 32bitrdi 287 . . . . . 6 (𝐹(Trails‘𝐺)𝑃 → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ ↔ ((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))))))
3433anbi2d 630 . . . . 5 (𝐹(Trails‘𝐺)𝑃 → ((Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ↔ (Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))))))
35 ancom 460 . . . . . . 7 (((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ (¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹)))))
3635bianass 642 . . . . . 6 ((Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))))) ↔ ((Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹)))))
3736a1i 11 . . . . 5 (𝐹(Trails‘𝐺)𝑃 → ((Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))))) ↔ ((Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))))))
38 noel 4318 . . . . . . . . . . . 12 ¬ (𝑃‘(♯‘𝐹)) ∈ ∅
3938biantru 529 . . . . . . . . . . 11 (Fun (𝑃 ↾ ∅) ↔ (Fun (𝑃 ↾ ∅) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ ∅))
4039bicomi 224 . . . . . . . . . 10 ((Fun (𝑃 ↾ ∅) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ ∅) ↔ Fun (𝑃 ↾ ∅))
4140a1i 11 . . . . . . . . 9 ((♯‘𝐹) = 0 → ((Fun (𝑃 ↾ ∅) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ ∅) ↔ Fun (𝑃 ↾ ∅)))
42 oveq2 7418 . . . . . . . . . . . . . 14 ((♯‘𝐹) = 0 → (1..^(♯‘𝐹)) = (1..^0))
43 0le1 11765 . . . . . . . . . . . . . . 15 0 ≤ 1
44 1z 12627 . . . . . . . . . . . . . . . 16 1 ∈ ℤ
45 0z 12604 . . . . . . . . . . . . . . . 16 0 ∈ ℤ
46 fzon 13702 . . . . . . . . . . . . . . . 16 ((1 ∈ ℤ ∧ 0 ∈ ℤ) → (0 ≤ 1 ↔ (1..^0) = ∅))
4744, 45, 46mp2an 692 . . . . . . . . . . . . . . 15 (0 ≤ 1 ↔ (1..^0) = ∅)
4843, 47mpbi 230 . . . . . . . . . . . . . 14 (1..^0) = ∅
4942, 48eqtrdi 2787 . . . . . . . . . . . . 13 ((♯‘𝐹) = 0 → (1..^(♯‘𝐹)) = ∅)
5049reseq2d 5971 . . . . . . . . . . . 12 ((♯‘𝐹) = 0 → (𝑃 ↾ (1..^(♯‘𝐹))) = (𝑃 ↾ ∅))
5150cnveqd 5860 . . . . . . . . . . 11 ((♯‘𝐹) = 0 → (𝑃 ↾ (1..^(♯‘𝐹))) = (𝑃 ↾ ∅))
5251funeqd 6563 . . . . . . . . . 10 ((♯‘𝐹) = 0 → (Fun (𝑃 ↾ (1..^(♯‘𝐹))) ↔ Fun (𝑃 ↾ ∅)))
5349imaeq2d 6052 . . . . . . . . . . . . 13 ((♯‘𝐹) = 0 → (𝑃 “ (1..^(♯‘𝐹))) = (𝑃 “ ∅))
54 ima0 6069 . . . . . . . . . . . . 13 (𝑃 “ ∅) = ∅
5553, 54eqtrdi 2787 . . . . . . . . . . . 12 ((♯‘𝐹) = 0 → (𝑃 “ (1..^(♯‘𝐹))) = ∅)
5655eleq2d 2821 . . . . . . . . . . 11 ((♯‘𝐹) = 0 → ((𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ (𝑃‘(♯‘𝐹)) ∈ ∅))
5756notbid 318 . . . . . . . . . 10 ((♯‘𝐹) = 0 → (¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ ¬ (𝑃‘(♯‘𝐹)) ∈ ∅))
5852, 57anbi12d 632 . . . . . . . . 9 ((♯‘𝐹) = 0 → ((Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ (Fun (𝑃 ↾ ∅) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ ∅)))
59 oveq2 7418 . . . . . . . . . . . . 13 ((♯‘𝐹) = 0 → (1...(♯‘𝐹)) = (1...0))
60 fz10 13567 . . . . . . . . . . . . 13 (1...0) = ∅
6159, 60eqtrdi 2787 . . . . . . . . . . . 12 ((♯‘𝐹) = 0 → (1...(♯‘𝐹)) = ∅)
6261reseq2d 5971 . . . . . . . . . . 11 ((♯‘𝐹) = 0 → (𝑃 ↾ (1...(♯‘𝐹))) = (𝑃 ↾ ∅))
6362cnveqd 5860 . . . . . . . . . 10 ((♯‘𝐹) = 0 → (𝑃 ↾ (1...(♯‘𝐹))) = (𝑃 ↾ ∅))
6463funeqd 6563 . . . . . . . . 9 ((♯‘𝐹) = 0 → (Fun (𝑃 ↾ (1...(♯‘𝐹))) ↔ Fun (𝑃 ↾ ∅)))
6541, 58, 643bitr4d 311 . . . . . . . 8 ((♯‘𝐹) = 0 → ((Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ Fun (𝑃 ↾ (1...(♯‘𝐹)))))
6665a1d 25 . . . . . . 7 ((♯‘𝐹) = 0 → (𝐹(Trails‘𝐺)𝑃 → ((Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ Fun (𝑃 ↾ (1...(♯‘𝐹))))))
67 df-nel 3038 . . . . . . . . . . . . 13 ((𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹))) ↔ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))))
6867bicomi 224 . . . . . . . . . . . 12 (¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹))))
6968anbi2i 623 . . . . . . . . . . 11 ((Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ (Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹)))))
70 trliswlk 29682 . . . . . . . . . . . 12 (𝐹(Trails‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
713, 10sylib 218 . . . . . . . . . . . . . 14 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ (0...(♯‘𝐹)))
72 fzonel 13695 . . . . . . . . . . . . . . 15 ¬ (♯‘𝐹) ∈ (1..^(♯‘𝐹))
7372a1i 11 . . . . . . . . . . . . . 14 (𝐹(Walks‘𝐺)𝑃 → ¬ (♯‘𝐹) ∈ (1..^(♯‘𝐹)))
7471, 73eldifd 3942 . . . . . . . . . . . . 13 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ((0...(♯‘𝐹)) ∖ (1..^(♯‘𝐹))))
75 1eluzge0 12913 . . . . . . . . . . . . . . 15 1 ∈ (ℤ‘0)
76 fzoss1 13708 . . . . . . . . . . . . . . 15 (1 ∈ (ℤ‘0) → (1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹)))
7775, 76mp1i 13 . . . . . . . . . . . . . 14 (𝐹(Walks‘𝐺)𝑃 → (1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹)))
78 fzossfz 13700 . . . . . . . . . . . . . 14 (0..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹))
7977, 78sstrdi 3976 . . . . . . . . . . . . 13 (𝐹(Walks‘𝐺)𝑃 → (1..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹)))
805, 74, 793jca 1128 . . . . . . . . . . . 12 (𝐹(Walks‘𝐺)𝑃 → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ((0...(♯‘𝐹)) ∖ (1..^(♯‘𝐹))) ∧ (1..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹))))
81 resf1ext2b 7936 . . . . . . . . . . . 12 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ((0...(♯‘𝐹)) ∖ (1..^(♯‘𝐹))) ∧ (1..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹))) → ((Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹)))) ↔ Fun (𝑃 ↾ ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)}))))
8270, 80, 813syl 18 . . . . . . . . . . 11 (𝐹(Trails‘𝐺)𝑃 → ((Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹)))) ↔ Fun (𝑃 ↾ ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)}))))
8369, 82bitrid 283 . . . . . . . . . 10 (𝐹(Trails‘𝐺)𝑃 → ((Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ Fun (𝑃 ↾ ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)}))))
8483adantl 481 . . . . . . . . 9 (((♯‘𝐹) ≠ 0 ∧ 𝐹(Trails‘𝐺)𝑃) → ((Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ Fun (𝑃 ↾ ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)}))))
85 elnnne0 12520 . . . . . . . . . . . . . . . . . 18 ((♯‘𝐹) ∈ ℕ ↔ ((♯‘𝐹) ∈ ℕ0 ∧ (♯‘𝐹) ≠ 0))
86 elnnuz 12901 . . . . . . . . . . . . . . . . . 18 ((♯‘𝐹) ∈ ℕ ↔ (♯‘𝐹) ∈ (ℤ‘1))
8785, 86sylbb1 237 . . . . . . . . . . . . . . . . 17 (((♯‘𝐹) ∈ ℕ0 ∧ (♯‘𝐹) ≠ 0) → (♯‘𝐹) ∈ (ℤ‘1))
8887ex 412 . . . . . . . . . . . . . . . 16 ((♯‘𝐹) ∈ ℕ0 → ((♯‘𝐹) ≠ 0 → (♯‘𝐹) ∈ (ℤ‘1)))
8970, 3, 883syl 18 . . . . . . . . . . . . . . 15 (𝐹(Trails‘𝐺)𝑃 → ((♯‘𝐹) ≠ 0 → (♯‘𝐹) ∈ (ℤ‘1)))
9089impcom 407 . . . . . . . . . . . . . 14 (((♯‘𝐹) ≠ 0 ∧ 𝐹(Trails‘𝐺)𝑃) → (♯‘𝐹) ∈ (ℤ‘1))
91 fzisfzounsn 13800 . . . . . . . . . . . . . 14 ((♯‘𝐹) ∈ (ℤ‘1) → (1...(♯‘𝐹)) = ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)}))
9290, 91syl 17 . . . . . . . . . . . . 13 (((♯‘𝐹) ≠ 0 ∧ 𝐹(Trails‘𝐺)𝑃) → (1...(♯‘𝐹)) = ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)}))
9392eqcomd 2742 . . . . . . . . . . . 12 (((♯‘𝐹) ≠ 0 ∧ 𝐹(Trails‘𝐺)𝑃) → ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)}) = (1...(♯‘𝐹)))
9493reseq2d 5971 . . . . . . . . . . 11 (((♯‘𝐹) ≠ 0 ∧ 𝐹(Trails‘𝐺)𝑃) → (𝑃 ↾ ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)})) = (𝑃 ↾ (1...(♯‘𝐹))))
9594cnveqd 5860 . . . . . . . . . 10 (((♯‘𝐹) ≠ 0 ∧ 𝐹(Trails‘𝐺)𝑃) → (𝑃 ↾ ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)})) = (𝑃 ↾ (1...(♯‘𝐹))))
9695funeqd 6563 . . . . . . . . 9 (((♯‘𝐹) ≠ 0 ∧ 𝐹(Trails‘𝐺)𝑃) → (Fun (𝑃 ↾ ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)})) ↔ Fun (𝑃 ↾ (1...(♯‘𝐹)))))
9784, 96bitrd 279 . . . . . . . 8 (((♯‘𝐹) ≠ 0 ∧ 𝐹(Trails‘𝐺)𝑃) → ((Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ Fun (𝑃 ↾ (1...(♯‘𝐹)))))
9897ex 412 . . . . . . 7 ((♯‘𝐹) ≠ 0 → (𝐹(Trails‘𝐺)𝑃 → ((Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ Fun (𝑃 ↾ (1...(♯‘𝐹))))))
9966, 98pm2.61ine 3016 . . . . . 6 (𝐹(Trails‘𝐺)𝑃 → ((Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ Fun (𝑃 ↾ (1...(♯‘𝐹)))))
10099anbi1d 631 . . . . 5 (𝐹(Trails‘𝐺)𝑃 → (((Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹)))) ↔ (Fun (𝑃 ↾ (1...(♯‘𝐹))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))))))
10134, 37, 1003bitrd 305 . . . 4 (𝐹(Trails‘𝐺)𝑃 → ((Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ↔ (Fun (𝑃 ↾ (1...(♯‘𝐹))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))))))
102101pm5.32i 574 . . 3 ((𝐹(Trails‘𝐺)𝑃 ∧ (Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)) ↔ (𝐹(Trails‘𝐺)𝑃 ∧ (Fun (𝑃 ↾ (1...(♯‘𝐹))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))))))
103 3anass 1094 . . 3 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ↔ (𝐹(Trails‘𝐺)𝑃 ∧ (Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)))
104 3anass 1094 . . 3 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1...(♯‘𝐹))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹)))) ↔ (𝐹(Trails‘𝐺)𝑃 ∧ (Fun (𝑃 ↾ (1...(♯‘𝐹))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))))))
105102, 103, 1043bitr4i 303 . 2 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1...(♯‘𝐹))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹)))))
1061, 105bitri 275 1 (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1...(♯‘𝐹))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wnel 3037  wral 3052  cdif 3928  cun 3929  cin 3930  wss 3931  c0 4313  {csn 4606  {cpr 4608   class class class wbr 5124  ccnv 5658  cres 5661  cima 5662  Fun wfun 6530   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  0cc0 11134  1c1 11135  cle 11275  cn 12245  0cn0 12506  cz 12593  cuz 12857  ...cfz 13529  ..^cfzo 13676  chash 14353  Vtxcvtx 28980  Walkscwlks 29581  Trailsctrls 29675  Pathscpths 29697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-hash 14354  df-word 14537  df-wlks 29584  df-trls 29677  df-pths 29701
This theorem is referenced by:  pthdifv  29717
  Copyright terms: Public domain W3C validator