MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfpth2 Structured version   Visualization version   GIF version

Theorem dfpth2 29700
Description: Alternate definition for a pair of classes/functions to be a path (in an undirected graph). (Contributed by AV, 4-Oct-2025.)
Assertion
Ref Expression
dfpth2 (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1...(♯‘𝐹))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹)))))

Proof of Theorem dfpth2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ispth 29692 . 2 (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))
2 istrl 29666 . . . . . . . . . . 11 (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹))
3 wlkcl 29587 . . . . . . . . . . . . 13 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
4 eqid 2730 . . . . . . . . . . . . . 14 (Vtx‘𝐺) = (Vtx‘𝐺)
54wlkp 29588 . . . . . . . . . . . . 13 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
6 ffn 6647 . . . . . . . . . . . . . . 15 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → 𝑃 Fn (0...(♯‘𝐹)))
76adantl 481 . . . . . . . . . . . . . 14 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → 𝑃 Fn (0...(♯‘𝐹)))
8 0elfz 13516 . . . . . . . . . . . . . . 15 ((♯‘𝐹) ∈ ℕ0 → 0 ∈ (0...(♯‘𝐹)))
98adantr 480 . . . . . . . . . . . . . 14 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → 0 ∈ (0...(♯‘𝐹)))
10 nn0fz0 13517 . . . . . . . . . . . . . . . 16 ((♯‘𝐹) ∈ ℕ0 ↔ (♯‘𝐹) ∈ (0...(♯‘𝐹)))
1110biimpi 216 . . . . . . . . . . . . . . 15 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ (0...(♯‘𝐹)))
1211adantr 480 . . . . . . . . . . . . . 14 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (♯‘𝐹) ∈ (0...(♯‘𝐹)))
137, 9, 123jca 1128 . . . . . . . . . . . . 13 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (𝑃 Fn (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ (♯‘𝐹) ∈ (0...(♯‘𝐹))))
143, 5, 13syl2anc 584 . . . . . . . . . . . 12 (𝐹(Walks‘𝐺)𝑃 → (𝑃 Fn (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ (♯‘𝐹) ∈ (0...(♯‘𝐹))))
1514adantr 480 . . . . . . . . . . 11 ((𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹) → (𝑃 Fn (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ (♯‘𝐹) ∈ (0...(♯‘𝐹))))
162, 15sylbi 217 . . . . . . . . . 10 (𝐹(Trails‘𝐺)𝑃 → (𝑃 Fn (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ (♯‘𝐹) ∈ (0...(♯‘𝐹))))
17 fnimapr 6900 . . . . . . . . . 10 ((𝑃 Fn (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ (♯‘𝐹) ∈ (0...(♯‘𝐹))) → (𝑃 “ {0, (♯‘𝐹)}) = {(𝑃‘0), (𝑃‘(♯‘𝐹))})
1816, 17syl 17 . . . . . . . . 9 (𝐹(Trails‘𝐺)𝑃 → (𝑃 “ {0, (♯‘𝐹)}) = {(𝑃‘0), (𝑃‘(♯‘𝐹))})
1918ineq1d 4167 . . . . . . . 8 (𝐹(Trails‘𝐺)𝑃 → ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ({(𝑃‘0), (𝑃‘(♯‘𝐹))} ∩ (𝑃 “ (1..^(♯‘𝐹)))))
2019eqeq1d 2732 . . . . . . 7 (𝐹(Trails‘𝐺)𝑃 → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ ↔ ({(𝑃‘0), (𝑃‘(♯‘𝐹))} ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))
21 disj 4398 . . . . . . . 8 (({(𝑃‘0), (𝑃‘(♯‘𝐹))} ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ ↔ ∀𝑥 ∈ {(𝑃‘0), (𝑃‘(♯‘𝐹))} ¬ 𝑥 ∈ (𝑃 “ (1..^(♯‘𝐹))))
22 fvex 6830 . . . . . . . . . 10 (𝑃‘0) ∈ V
23 fvex 6830 . . . . . . . . . 10 (𝑃‘(♯‘𝐹)) ∈ V
24 eleq1 2817 . . . . . . . . . . 11 (𝑥 = (𝑃‘0) → (𝑥 ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ (𝑃‘0) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
2524notbid 318 . . . . . . . . . 10 (𝑥 = (𝑃‘0) → (¬ 𝑥 ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ ¬ (𝑃‘0) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
26 eleq1 2817 . . . . . . . . . . 11 (𝑥 = (𝑃‘(♯‘𝐹)) → (𝑥 ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
2726notbid 318 . . . . . . . . . 10 (𝑥 = (𝑃‘(♯‘𝐹)) → (¬ 𝑥 ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
2822, 23, 25, 27ralpr 4651 . . . . . . . . 9 (∀𝑥 ∈ {(𝑃‘0), (𝑃‘(♯‘𝐹))} ¬ 𝑥 ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ (¬ (𝑃‘0) ∈ (𝑃 “ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
29 df-nel 3031 . . . . . . . . . 10 ((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ↔ ¬ (𝑃‘0) ∈ (𝑃 “ (1..^(♯‘𝐹))))
3029bicomi 224 . . . . . . . . 9 (¬ (𝑃‘0) ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))))
3128, 30bianbi 627 . . . . . . . 8 (∀𝑥 ∈ {(𝑃‘0), (𝑃‘(♯‘𝐹))} ¬ 𝑥 ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ ((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
3221, 31bitri 275 . . . . . . 7 (({(𝑃‘0), (𝑃‘(♯‘𝐹))} ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ ↔ ((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
3320, 32bitrdi 287 . . . . . 6 (𝐹(Trails‘𝐺)𝑃 → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ ↔ ((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))))))
3433anbi2d 630 . . . . 5 (𝐹(Trails‘𝐺)𝑃 → ((Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ↔ (Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))))))
35 ancom 460 . . . . . . 7 (((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ (¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹)))))
3635bianass 642 . . . . . 6 ((Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))))) ↔ ((Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹)))))
3736a1i 11 . . . . 5 (𝐹(Trails‘𝐺)𝑃 → ((Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))))) ↔ ((Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))))))
38 noel 4286 . . . . . . . . . . . 12 ¬ (𝑃‘(♯‘𝐹)) ∈ ∅
3938biantru 529 . . . . . . . . . . 11 (Fun (𝑃 ↾ ∅) ↔ (Fun (𝑃 ↾ ∅) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ ∅))
4039bicomi 224 . . . . . . . . . 10 ((Fun (𝑃 ↾ ∅) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ ∅) ↔ Fun (𝑃 ↾ ∅))
4140a1i 11 . . . . . . . . 9 ((♯‘𝐹) = 0 → ((Fun (𝑃 ↾ ∅) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ ∅) ↔ Fun (𝑃 ↾ ∅)))
42 oveq2 7349 . . . . . . . . . . . . . 14 ((♯‘𝐹) = 0 → (1..^(♯‘𝐹)) = (1..^0))
43 0le1 11632 . . . . . . . . . . . . . . 15 0 ≤ 1
44 1z 12494 . . . . . . . . . . . . . . . 16 1 ∈ ℤ
45 0z 12471 . . . . . . . . . . . . . . . 16 0 ∈ ℤ
46 fzon 13572 . . . . . . . . . . . . . . . 16 ((1 ∈ ℤ ∧ 0 ∈ ℤ) → (0 ≤ 1 ↔ (1..^0) = ∅))
4744, 45, 46mp2an 692 . . . . . . . . . . . . . . 15 (0 ≤ 1 ↔ (1..^0) = ∅)
4843, 47mpbi 230 . . . . . . . . . . . . . 14 (1..^0) = ∅
4942, 48eqtrdi 2781 . . . . . . . . . . . . 13 ((♯‘𝐹) = 0 → (1..^(♯‘𝐹)) = ∅)
5049reseq2d 5925 . . . . . . . . . . . 12 ((♯‘𝐹) = 0 → (𝑃 ↾ (1..^(♯‘𝐹))) = (𝑃 ↾ ∅))
5150cnveqd 5813 . . . . . . . . . . 11 ((♯‘𝐹) = 0 → (𝑃 ↾ (1..^(♯‘𝐹))) = (𝑃 ↾ ∅))
5251funeqd 6499 . . . . . . . . . 10 ((♯‘𝐹) = 0 → (Fun (𝑃 ↾ (1..^(♯‘𝐹))) ↔ Fun (𝑃 ↾ ∅)))
5349imaeq2d 6006 . . . . . . . . . . . . 13 ((♯‘𝐹) = 0 → (𝑃 “ (1..^(♯‘𝐹))) = (𝑃 “ ∅))
54 ima0 6023 . . . . . . . . . . . . 13 (𝑃 “ ∅) = ∅
5553, 54eqtrdi 2781 . . . . . . . . . . . 12 ((♯‘𝐹) = 0 → (𝑃 “ (1..^(♯‘𝐹))) = ∅)
5655eleq2d 2815 . . . . . . . . . . 11 ((♯‘𝐹) = 0 → ((𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ (𝑃‘(♯‘𝐹)) ∈ ∅))
5756notbid 318 . . . . . . . . . 10 ((♯‘𝐹) = 0 → (¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ ¬ (𝑃‘(♯‘𝐹)) ∈ ∅))
5852, 57anbi12d 632 . . . . . . . . 9 ((♯‘𝐹) = 0 → ((Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ (Fun (𝑃 ↾ ∅) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ ∅)))
59 oveq2 7349 . . . . . . . . . . . . 13 ((♯‘𝐹) = 0 → (1...(♯‘𝐹)) = (1...0))
60 fz10 13437 . . . . . . . . . . . . 13 (1...0) = ∅
6159, 60eqtrdi 2781 . . . . . . . . . . . 12 ((♯‘𝐹) = 0 → (1...(♯‘𝐹)) = ∅)
6261reseq2d 5925 . . . . . . . . . . 11 ((♯‘𝐹) = 0 → (𝑃 ↾ (1...(♯‘𝐹))) = (𝑃 ↾ ∅))
6362cnveqd 5813 . . . . . . . . . 10 ((♯‘𝐹) = 0 → (𝑃 ↾ (1...(♯‘𝐹))) = (𝑃 ↾ ∅))
6463funeqd 6499 . . . . . . . . 9 ((♯‘𝐹) = 0 → (Fun (𝑃 ↾ (1...(♯‘𝐹))) ↔ Fun (𝑃 ↾ ∅)))
6541, 58, 643bitr4d 311 . . . . . . . 8 ((♯‘𝐹) = 0 → ((Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ Fun (𝑃 ↾ (1...(♯‘𝐹)))))
6665a1d 25 . . . . . . 7 ((♯‘𝐹) = 0 → (𝐹(Trails‘𝐺)𝑃 → ((Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ Fun (𝑃 ↾ (1...(♯‘𝐹))))))
67 df-nel 3031 . . . . . . . . . . . . 13 ((𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹))) ↔ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))))
6867bicomi 224 . . . . . . . . . . . 12 (¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹))))
6968anbi2i 623 . . . . . . . . . . 11 ((Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ (Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹)))))
70 trliswlk 29667 . . . . . . . . . . . 12 (𝐹(Trails‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
713, 10sylib 218 . . . . . . . . . . . . . 14 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ (0...(♯‘𝐹)))
72 fzonel 13565 . . . . . . . . . . . . . . 15 ¬ (♯‘𝐹) ∈ (1..^(♯‘𝐹))
7372a1i 11 . . . . . . . . . . . . . 14 (𝐹(Walks‘𝐺)𝑃 → ¬ (♯‘𝐹) ∈ (1..^(♯‘𝐹)))
7471, 73eldifd 3911 . . . . . . . . . . . . 13 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ((0...(♯‘𝐹)) ∖ (1..^(♯‘𝐹))))
75 1eluzge0 12770 . . . . . . . . . . . . . . 15 1 ∈ (ℤ‘0)
76 fzoss1 13578 . . . . . . . . . . . . . . 15 (1 ∈ (ℤ‘0) → (1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹)))
7775, 76mp1i 13 . . . . . . . . . . . . . 14 (𝐹(Walks‘𝐺)𝑃 → (1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹)))
78 fzossfz 13570 . . . . . . . . . . . . . 14 (0..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹))
7977, 78sstrdi 3945 . . . . . . . . . . . . 13 (𝐹(Walks‘𝐺)𝑃 → (1..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹)))
805, 74, 793jca 1128 . . . . . . . . . . . 12 (𝐹(Walks‘𝐺)𝑃 → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ((0...(♯‘𝐹)) ∖ (1..^(♯‘𝐹))) ∧ (1..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹))))
81 resf1ext2b 7860 . . . . . . . . . . . 12 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ((0...(♯‘𝐹)) ∖ (1..^(♯‘𝐹))) ∧ (1..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹))) → ((Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹)))) ↔ Fun (𝑃 ↾ ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)}))))
8270, 80, 813syl 18 . . . . . . . . . . 11 (𝐹(Trails‘𝐺)𝑃 → ((Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹)))) ↔ Fun (𝑃 ↾ ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)}))))
8369, 82bitrid 283 . . . . . . . . . 10 (𝐹(Trails‘𝐺)𝑃 → ((Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ Fun (𝑃 ↾ ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)}))))
8483adantl 481 . . . . . . . . 9 (((♯‘𝐹) ≠ 0 ∧ 𝐹(Trails‘𝐺)𝑃) → ((Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ Fun (𝑃 ↾ ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)}))))
85 elnnne0 12387 . . . . . . . . . . . . . . . . . 18 ((♯‘𝐹) ∈ ℕ ↔ ((♯‘𝐹) ∈ ℕ0 ∧ (♯‘𝐹) ≠ 0))
86 elnnuz 12768 . . . . . . . . . . . . . . . . . 18 ((♯‘𝐹) ∈ ℕ ↔ (♯‘𝐹) ∈ (ℤ‘1))
8785, 86sylbb1 237 . . . . . . . . . . . . . . . . 17 (((♯‘𝐹) ∈ ℕ0 ∧ (♯‘𝐹) ≠ 0) → (♯‘𝐹) ∈ (ℤ‘1))
8887ex 412 . . . . . . . . . . . . . . . 16 ((♯‘𝐹) ∈ ℕ0 → ((♯‘𝐹) ≠ 0 → (♯‘𝐹) ∈ (ℤ‘1)))
8970, 3, 883syl 18 . . . . . . . . . . . . . . 15 (𝐹(Trails‘𝐺)𝑃 → ((♯‘𝐹) ≠ 0 → (♯‘𝐹) ∈ (ℤ‘1)))
9089impcom 407 . . . . . . . . . . . . . 14 (((♯‘𝐹) ≠ 0 ∧ 𝐹(Trails‘𝐺)𝑃) → (♯‘𝐹) ∈ (ℤ‘1))
91 fzisfzounsn 13672 . . . . . . . . . . . . . 14 ((♯‘𝐹) ∈ (ℤ‘1) → (1...(♯‘𝐹)) = ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)}))
9290, 91syl 17 . . . . . . . . . . . . 13 (((♯‘𝐹) ≠ 0 ∧ 𝐹(Trails‘𝐺)𝑃) → (1...(♯‘𝐹)) = ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)}))
9392eqcomd 2736 . . . . . . . . . . . 12 (((♯‘𝐹) ≠ 0 ∧ 𝐹(Trails‘𝐺)𝑃) → ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)}) = (1...(♯‘𝐹)))
9493reseq2d 5925 . . . . . . . . . . 11 (((♯‘𝐹) ≠ 0 ∧ 𝐹(Trails‘𝐺)𝑃) → (𝑃 ↾ ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)})) = (𝑃 ↾ (1...(♯‘𝐹))))
9594cnveqd 5813 . . . . . . . . . 10 (((♯‘𝐹) ≠ 0 ∧ 𝐹(Trails‘𝐺)𝑃) → (𝑃 ↾ ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)})) = (𝑃 ↾ (1...(♯‘𝐹))))
9695funeqd 6499 . . . . . . . . 9 (((♯‘𝐹) ≠ 0 ∧ 𝐹(Trails‘𝐺)𝑃) → (Fun (𝑃 ↾ ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)})) ↔ Fun (𝑃 ↾ (1...(♯‘𝐹)))))
9784, 96bitrd 279 . . . . . . . 8 (((♯‘𝐹) ≠ 0 ∧ 𝐹(Trails‘𝐺)𝑃) → ((Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ Fun (𝑃 ↾ (1...(♯‘𝐹)))))
9897ex 412 . . . . . . 7 ((♯‘𝐹) ≠ 0 → (𝐹(Trails‘𝐺)𝑃 → ((Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ Fun (𝑃 ↾ (1...(♯‘𝐹))))))
9966, 98pm2.61ine 3009 . . . . . 6 (𝐹(Trails‘𝐺)𝑃 → ((Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ Fun (𝑃 ↾ (1...(♯‘𝐹)))))
10099anbi1d 631 . . . . 5 (𝐹(Trails‘𝐺)𝑃 → (((Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹)))) ↔ (Fun (𝑃 ↾ (1...(♯‘𝐹))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))))))
10134, 37, 1003bitrd 305 . . . 4 (𝐹(Trails‘𝐺)𝑃 → ((Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ↔ (Fun (𝑃 ↾ (1...(♯‘𝐹))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))))))
102101pm5.32i 574 . . 3 ((𝐹(Trails‘𝐺)𝑃 ∧ (Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)) ↔ (𝐹(Trails‘𝐺)𝑃 ∧ (Fun (𝑃 ↾ (1...(♯‘𝐹))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))))))
103 3anass 1094 . . 3 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ↔ (𝐹(Trails‘𝐺)𝑃 ∧ (Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)))
104 3anass 1094 . . 3 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1...(♯‘𝐹))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹)))) ↔ (𝐹(Trails‘𝐺)𝑃 ∧ (Fun (𝑃 ↾ (1...(♯‘𝐹))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))))))
105102, 103, 1043bitr4i 303 . 2 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1...(♯‘𝐹))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹)))))
1061, 105bitri 275 1 (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1...(♯‘𝐹))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  wne 2926  wnel 3030  wral 3045  cdif 3897  cun 3898  cin 3899  wss 3900  c0 4281  {csn 4574  {cpr 4576   class class class wbr 5089  ccnv 5613  cres 5616  cima 5617  Fun wfun 6471   Fn wfn 6472  wf 6473  cfv 6477  (class class class)co 7341  0cc0 10998  1c1 10999  cle 11139  cn 12117  0cn0 12373  cz 12460  cuz 12724  ...cfz 13399  ..^cfzo 13546  chash 14229  Vtxcvtx 28967  Walkscwlks 29568  Trailsctrls 29660  Pathscpths 29681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-n0 12374  df-z 12461  df-uz 12725  df-fz 13400  df-fzo 13547  df-hash 14230  df-word 14413  df-wlks 29571  df-trls 29662  df-pths 29685
This theorem is referenced by:  pthdifv  29701
  Copyright terms: Public domain W3C validator