Step | Hyp | Ref
| Expression |
1 | | ispth 29764 |
. 2
⊢ (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) =
∅)) |
2 | | istrl 29737 |
. . . . . . . . . . 11
⊢ (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹)) |
3 | | wlkcl 29656 |
. . . . . . . . . . . . 13
⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈
ℕ0) |
4 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
5 | 4 | wlkp 29657 |
. . . . . . . . . . . . 13
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
6 | | ffn 6741 |
. . . . . . . . . . . . . . 15
⊢ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → 𝑃 Fn (0...(♯‘𝐹))) |
7 | 6 | adantl 481 |
. . . . . . . . . . . . . 14
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → 𝑃 Fn (0...(♯‘𝐹))) |
8 | | 0elfz 13667 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝐹)
∈ ℕ0 → 0 ∈ (0...(♯‘𝐹))) |
9 | 8 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → 0 ∈ (0...(♯‘𝐹))) |
10 | | nn0fz0 13668 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘𝐹)
∈ ℕ0 ↔ (♯‘𝐹) ∈ (0...(♯‘𝐹))) |
11 | 10 | biimpi 216 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝐹)
∈ ℕ0 → (♯‘𝐹) ∈ (0...(♯‘𝐹))) |
12 | 11 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (♯‘𝐹) ∈ (0...(♯‘𝐹))) |
13 | 7, 9, 12 | 3jca 1128 |
. . . . . . . . . . . . 13
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (𝑃 Fn (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ (♯‘𝐹) ∈
(0...(♯‘𝐹)))) |
14 | 3, 5, 13 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝐹(Walks‘𝐺)𝑃 → (𝑃 Fn (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ (♯‘𝐹) ∈
(0...(♯‘𝐹)))) |
15 | 14 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹) → (𝑃 Fn (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ (♯‘𝐹) ∈
(0...(♯‘𝐹)))) |
16 | 2, 15 | sylbi 217 |
. . . . . . . . . 10
⊢ (𝐹(Trails‘𝐺)𝑃 → (𝑃 Fn (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ (♯‘𝐹) ∈
(0...(♯‘𝐹)))) |
17 | | fnimapr 6996 |
. . . . . . . . . 10
⊢ ((𝑃 Fn (0...(♯‘𝐹)) ∧ 0 ∈
(0...(♯‘𝐹))
∧ (♯‘𝐹)
∈ (0...(♯‘𝐹))) → (𝑃 “ {0, (♯‘𝐹)}) = {(𝑃‘0), (𝑃‘(♯‘𝐹))}) |
18 | 16, 17 | syl 17 |
. . . . . . . . 9
⊢ (𝐹(Trails‘𝐺)𝑃 → (𝑃 “ {0, (♯‘𝐹)}) = {(𝑃‘0), (𝑃‘(♯‘𝐹))}) |
19 | 18 | ineq1d 4228 |
. . . . . . . 8
⊢ (𝐹(Trails‘𝐺)𝑃 → ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ({(𝑃‘0), (𝑃‘(♯‘𝐹))} ∩ (𝑃 “ (1..^(♯‘𝐹))))) |
20 | 19 | eqeq1d 2738 |
. . . . . . 7
⊢ (𝐹(Trails‘𝐺)𝑃 → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ ↔ ({(𝑃‘0), (𝑃‘(♯‘𝐹))} ∩ (𝑃 “ (1..^(♯‘𝐹)))) =
∅)) |
21 | | disj 4457 |
. . . . . . . 8
⊢ (({(𝑃‘0), (𝑃‘(♯‘𝐹))} ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ ↔
∀𝑥 ∈ {(𝑃‘0), (𝑃‘(♯‘𝐹))} ¬ 𝑥 ∈ (𝑃 “ (1..^(♯‘𝐹)))) |
22 | | fvex 6924 |
. . . . . . . . . 10
⊢ (𝑃‘0) ∈
V |
23 | | fvex 6924 |
. . . . . . . . . 10
⊢ (𝑃‘(♯‘𝐹)) ∈ V |
24 | | eleq1 2828 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑃‘0) → (𝑥 ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ (𝑃‘0) ∈ (𝑃 “ (1..^(♯‘𝐹))))) |
25 | 24 | notbid 318 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑃‘0) → (¬ 𝑥 ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ ¬ (𝑃‘0) ∈ (𝑃 “
(1..^(♯‘𝐹))))) |
26 | | eleq1 2828 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑃‘(♯‘𝐹)) → (𝑥 ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))))) |
27 | 26 | notbid 318 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑃‘(♯‘𝐹)) → (¬ 𝑥 ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))))) |
28 | 22, 23, 25, 27 | ralpr 4706 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
{(𝑃‘0), (𝑃‘(♯‘𝐹))} ¬ 𝑥 ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ (¬ (𝑃‘0) ∈ (𝑃 “
(1..^(♯‘𝐹)))
∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))))) |
29 | | df-nel 3046 |
. . . . . . . . . 10
⊢ ((𝑃‘0) ∉ (𝑃 “
(1..^(♯‘𝐹)))
↔ ¬ (𝑃‘0)
∈ (𝑃 “
(1..^(♯‘𝐹)))) |
30 | 29 | bicomi 224 |
. . . . . . . . 9
⊢ (¬
(𝑃‘0) ∈ (𝑃 “
(1..^(♯‘𝐹)))
↔ (𝑃‘0) ∉
(𝑃 “
(1..^(♯‘𝐹)))) |
31 | 28, 30 | bianbi 627 |
. . . . . . . 8
⊢
(∀𝑥 ∈
{(𝑃‘0), (𝑃‘(♯‘𝐹))} ¬ 𝑥 ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ ((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))))) |
32 | 21, 31 | bitri 275 |
. . . . . . 7
⊢ (({(𝑃‘0), (𝑃‘(♯‘𝐹))} ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ ↔ ((𝑃‘0) ∉ (𝑃 “
(1..^(♯‘𝐹)))
∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))))) |
33 | 20, 32 | bitrdi 287 |
. . . . . 6
⊢ (𝐹(Trails‘𝐺)𝑃 → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ ↔ ((𝑃‘0) ∉ (𝑃 “
(1..^(♯‘𝐹)))
∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))))) |
34 | 33 | anbi2d 630 |
. . . . 5
⊢ (𝐹(Trails‘𝐺)𝑃 → ((Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ↔ (Fun
◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))))))) |
35 | | ancom 460 |
. . . . . . 7
⊢ (((𝑃‘0) ∉ (𝑃 “
(1..^(♯‘𝐹)))
∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ (¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))))) |
36 | 35 | bianass 642 |
. . . . . 6
⊢ ((Fun
◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))))) ↔ ((Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))))) |
37 | 36 | a1i 11 |
. . . . 5
⊢ (𝐹(Trails‘𝐺)𝑃 → ((Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))))) ↔ ((Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹)))))) |
38 | | noel 4345 |
. . . . . . . . . . . 12
⊢ ¬
(𝑃‘(♯‘𝐹)) ∈ ∅ |
39 | 38 | biantru 529 |
. . . . . . . . . . 11
⊢ (Fun
◡(𝑃 ↾ ∅) ↔ (Fun ◡(𝑃 ↾ ∅) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈
∅)) |
40 | 39 | bicomi 224 |
. . . . . . . . . 10
⊢ ((Fun
◡(𝑃 ↾ ∅) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ ∅) ↔ Fun
◡(𝑃 ↾ ∅)) |
41 | 40 | a1i 11 |
. . . . . . . . 9
⊢
((♯‘𝐹) =
0 → ((Fun ◡(𝑃 ↾ ∅) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ ∅) ↔ Fun
◡(𝑃 ↾ ∅))) |
42 | | oveq2 7443 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝐹) =
0 → (1..^(♯‘𝐹)) = (1..^0)) |
43 | | 0le1 11790 |
. . . . . . . . . . . . . . 15
⊢ 0 ≤
1 |
44 | | 1z 12651 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℤ |
45 | | 0z 12628 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
ℤ |
46 | | fzon 13723 |
. . . . . . . . . . . . . . . 16
⊢ ((1
∈ ℤ ∧ 0 ∈ ℤ) → (0 ≤ 1 ↔ (1..^0) =
∅)) |
47 | 44, 45, 46 | mp2an 692 |
. . . . . . . . . . . . . . 15
⊢ (0 ≤ 1
↔ (1..^0) = ∅) |
48 | 43, 47 | mpbi 230 |
. . . . . . . . . . . . . 14
⊢ (1..^0) =
∅ |
49 | 42, 48 | eqtrdi 2792 |
. . . . . . . . . . . . 13
⊢
((♯‘𝐹) =
0 → (1..^(♯‘𝐹)) = ∅) |
50 | 49 | reseq2d 6001 |
. . . . . . . . . . . 12
⊢
((♯‘𝐹) =
0 → (𝑃 ↾
(1..^(♯‘𝐹))) =
(𝑃 ↾
∅)) |
51 | 50 | cnveqd 5890 |
. . . . . . . . . . 11
⊢
((♯‘𝐹) =
0 → ◡(𝑃 ↾ (1..^(♯‘𝐹))) = ◡(𝑃 ↾ ∅)) |
52 | 51 | funeqd 6593 |
. . . . . . . . . 10
⊢
((♯‘𝐹) =
0 → (Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ↔ Fun ◡(𝑃 ↾ ∅))) |
53 | 49 | imaeq2d 6082 |
. . . . . . . . . . . . 13
⊢
((♯‘𝐹) =
0 → (𝑃 “
(1..^(♯‘𝐹))) =
(𝑃 “
∅)) |
54 | | ima0 6099 |
. . . . . . . . . . . . 13
⊢ (𝑃 “ ∅) =
∅ |
55 | 53, 54 | eqtrdi 2792 |
. . . . . . . . . . . 12
⊢
((♯‘𝐹) =
0 → (𝑃 “
(1..^(♯‘𝐹))) =
∅) |
56 | 55 | eleq2d 2826 |
. . . . . . . . . . 11
⊢
((♯‘𝐹) =
0 → ((𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ (𝑃‘(♯‘𝐹)) ∈ ∅)) |
57 | 56 | notbid 318 |
. . . . . . . . . 10
⊢
((♯‘𝐹) =
0 → (¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ ¬ (𝑃‘(♯‘𝐹)) ∈
∅)) |
58 | 52, 57 | anbi12d 632 |
. . . . . . . . 9
⊢
((♯‘𝐹) =
0 → ((Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ (Fun ◡(𝑃 ↾ ∅) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈
∅))) |
59 | | oveq2 7443 |
. . . . . . . . . . . . 13
⊢
((♯‘𝐹) =
0 → (1...(♯‘𝐹)) = (1...0)) |
60 | | fz10 13588 |
. . . . . . . . . . . . 13
⊢ (1...0) =
∅ |
61 | 59, 60 | eqtrdi 2792 |
. . . . . . . . . . . 12
⊢
((♯‘𝐹) =
0 → (1...(♯‘𝐹)) = ∅) |
62 | 61 | reseq2d 6001 |
. . . . . . . . . . 11
⊢
((♯‘𝐹) =
0 → (𝑃 ↾
(1...(♯‘𝐹))) =
(𝑃 ↾
∅)) |
63 | 62 | cnveqd 5890 |
. . . . . . . . . 10
⊢
((♯‘𝐹) =
0 → ◡(𝑃 ↾ (1...(♯‘𝐹))) = ◡(𝑃 ↾ ∅)) |
64 | 63 | funeqd 6593 |
. . . . . . . . 9
⊢
((♯‘𝐹) =
0 → (Fun ◡(𝑃 ↾ (1...(♯‘𝐹))) ↔ Fun ◡(𝑃 ↾ ∅))) |
65 | 41, 58, 64 | 3bitr4d 311 |
. . . . . . . 8
⊢
((♯‘𝐹) =
0 → ((Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ Fun ◡(𝑃 ↾ (1...(♯‘𝐹))))) |
66 | 65 | a1d 25 |
. . . . . . 7
⊢
((♯‘𝐹) =
0 → (𝐹(Trails‘𝐺)𝑃 → ((Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ Fun ◡(𝑃 ↾ (1...(♯‘𝐹)))))) |
67 | | df-nel 3046 |
. . . . . . . . . . . . 13
⊢ ((𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹))) ↔ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) |
68 | 67 | bicomi 224 |
. . . . . . . . . . . 12
⊢ (¬
(𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹)))) |
69 | 68 | anbi2i 623 |
. . . . . . . . . . 11
⊢ ((Fun
◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ (Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹))))) |
70 | | trliswlk 29738 |
. . . . . . . . . . . 12
⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) |
71 | 3, 10 | sylib 218 |
. . . . . . . . . . . . . 14
⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ (0...(♯‘𝐹))) |
72 | | fzonel 13716 |
. . . . . . . . . . . . . . 15
⊢ ¬
(♯‘𝐹) ∈
(1..^(♯‘𝐹)) |
73 | 72 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝐹(Walks‘𝐺)𝑃 → ¬ (♯‘𝐹) ∈
(1..^(♯‘𝐹))) |
74 | 71, 73 | eldifd 3975 |
. . . . . . . . . . . . 13
⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ((0...(♯‘𝐹)) ∖
(1..^(♯‘𝐹)))) |
75 | | 1eluzge0 12938 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
(ℤ≥‘0) |
76 | | fzoss1 13729 |
. . . . . . . . . . . . . . 15
⊢ (1 ∈
(ℤ≥‘0) → (1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹))) |
77 | 75, 76 | mp1i 13 |
. . . . . . . . . . . . . 14
⊢ (𝐹(Walks‘𝐺)𝑃 → (1..^(♯‘𝐹)) ⊆
(0..^(♯‘𝐹))) |
78 | | fzossfz 13721 |
. . . . . . . . . . . . . 14
⊢
(0..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹)) |
79 | 77, 78 | sstrdi 4009 |
. . . . . . . . . . . . 13
⊢ (𝐹(Walks‘𝐺)𝑃 → (1..^(♯‘𝐹)) ⊆
(0...(♯‘𝐹))) |
80 | 5, 74, 79 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ (𝐹(Walks‘𝐺)𝑃 → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ((0...(♯‘𝐹)) ∖
(1..^(♯‘𝐹)))
∧ (1..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹)))) |
81 | | resf1ext2b 7962 |
. . . . . . . . . . . 12
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈
((0...(♯‘𝐹))
∖ (1..^(♯‘𝐹))) ∧ (1..^(♯‘𝐹)) ⊆
(0...(♯‘𝐹)))
→ ((Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹)))) ↔ Fun ◡(𝑃 ↾ ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)})))) |
82 | 70, 80, 81 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝐹(Trails‘𝐺)𝑃 → ((Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹)))) ↔ Fun ◡(𝑃 ↾ ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)})))) |
83 | 69, 82 | bitrid 283 |
. . . . . . . . . 10
⊢ (𝐹(Trails‘𝐺)𝑃 → ((Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ Fun ◡(𝑃 ↾ ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)})))) |
84 | 83 | adantl 481 |
. . . . . . . . 9
⊢
(((♯‘𝐹)
≠ 0 ∧ 𝐹(Trails‘𝐺)𝑃) → ((Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ Fun ◡(𝑃 ↾ ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)})))) |
85 | | elnnne0 12544 |
. . . . . . . . . . . . . . . . . 18
⊢
((♯‘𝐹)
∈ ℕ ↔ ((♯‘𝐹) ∈ ℕ0 ∧
(♯‘𝐹) ≠
0)) |
86 | | elnnuz 12926 |
. . . . . . . . . . . . . . . . . 18
⊢
((♯‘𝐹)
∈ ℕ ↔ (♯‘𝐹) ∈
(ℤ≥‘1)) |
87 | 85, 86 | sylbb1 237 |
. . . . . . . . . . . . . . . . 17
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ (♯‘𝐹) ≠ 0) → (♯‘𝐹) ∈
(ℤ≥‘1)) |
88 | 87 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘𝐹)
∈ ℕ0 → ((♯‘𝐹) ≠ 0 → (♯‘𝐹) ∈
(ℤ≥‘1))) |
89 | 70, 3, 88 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (𝐹(Trails‘𝐺)𝑃 → ((♯‘𝐹) ≠ 0 → (♯‘𝐹) ∈
(ℤ≥‘1))) |
90 | 89 | impcom 407 |
. . . . . . . . . . . . . 14
⊢
(((♯‘𝐹)
≠ 0 ∧ 𝐹(Trails‘𝐺)𝑃) → (♯‘𝐹) ∈
(ℤ≥‘1)) |
91 | | fzisfzounsn 13821 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝐹)
∈ (ℤ≥‘1) → (1...(♯‘𝐹)) = ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)})) |
92 | 90, 91 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((♯‘𝐹)
≠ 0 ∧ 𝐹(Trails‘𝐺)𝑃) → (1...(♯‘𝐹)) = ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)})) |
93 | 92 | eqcomd 2742 |
. . . . . . . . . . . 12
⊢
(((♯‘𝐹)
≠ 0 ∧ 𝐹(Trails‘𝐺)𝑃) → ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)}) = (1...(♯‘𝐹))) |
94 | 93 | reseq2d 6001 |
. . . . . . . . . . 11
⊢
(((♯‘𝐹)
≠ 0 ∧ 𝐹(Trails‘𝐺)𝑃) → (𝑃 ↾ ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)})) = (𝑃 ↾ (1...(♯‘𝐹)))) |
95 | 94 | cnveqd 5890 |
. . . . . . . . . 10
⊢
(((♯‘𝐹)
≠ 0 ∧ 𝐹(Trails‘𝐺)𝑃) → ◡(𝑃 ↾ ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)})) = ◡(𝑃 ↾ (1...(♯‘𝐹)))) |
96 | 95 | funeqd 6593 |
. . . . . . . . 9
⊢
(((♯‘𝐹)
≠ 0 ∧ 𝐹(Trails‘𝐺)𝑃) → (Fun ◡(𝑃 ↾ ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)})) ↔ Fun ◡(𝑃 ↾ (1...(♯‘𝐹))))) |
97 | 84, 96 | bitrd 279 |
. . . . . . . 8
⊢
(((♯‘𝐹)
≠ 0 ∧ 𝐹(Trails‘𝐺)𝑃) → ((Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ Fun ◡(𝑃 ↾ (1...(♯‘𝐹))))) |
98 | 97 | ex 412 |
. . . . . . 7
⊢
((♯‘𝐹)
≠ 0 → (𝐹(Trails‘𝐺)𝑃 → ((Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ Fun ◡(𝑃 ↾ (1...(♯‘𝐹)))))) |
99 | 66, 98 | pm2.61ine 3024 |
. . . . . 6
⊢ (𝐹(Trails‘𝐺)𝑃 → ((Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ Fun ◡(𝑃 ↾ (1...(♯‘𝐹))))) |
100 | 99 | anbi1d 631 |
. . . . 5
⊢ (𝐹(Trails‘𝐺)𝑃 → (((Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹)))) ↔ (Fun ◡(𝑃 ↾ (1...(♯‘𝐹))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹)))))) |
101 | 34, 37, 100 | 3bitrd 305 |
. . . 4
⊢ (𝐹(Trails‘𝐺)𝑃 → ((Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ↔ (Fun
◡(𝑃 ↾ (1...(♯‘𝐹))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹)))))) |
102 | 101 | pm5.32i 574 |
. . 3
⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ (Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)) ↔ (𝐹(Trails‘𝐺)𝑃 ∧ (Fun ◡(𝑃 ↾ (1...(♯‘𝐹))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹)))))) |
103 | | 3anass 1094 |
. . 3
⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ↔ (𝐹(Trails‘𝐺)𝑃 ∧ (Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) =
∅))) |
104 | | 3anass 1094 |
. . 3
⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1...(♯‘𝐹))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹)))) ↔ (𝐹(Trails‘𝐺)𝑃 ∧ (Fun ◡(𝑃 ↾ (1...(♯‘𝐹))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹)))))) |
105 | 102, 103,
104 | 3bitr4i 303 |
. 2
⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1...(♯‘𝐹))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))))) |
106 | 1, 105 | bitri 275 |
1
⊢ (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1...(♯‘𝐹))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))))) |