| Step | Hyp | Ref
| Expression |
| 1 | | ispth 29688 |
. 2
⊢ (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) =
∅)) |
| 2 | | istrl 29661 |
. . . . . . . . . . 11
⊢ (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹)) |
| 3 | | wlkcl 29580 |
. . . . . . . . . . . . 13
⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈
ℕ0) |
| 4 | | eqid 2734 |
. . . . . . . . . . . . . 14
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 5 | 4 | wlkp 29581 |
. . . . . . . . . . . . 13
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
| 6 | | ffn 6717 |
. . . . . . . . . . . . . . 15
⊢ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → 𝑃 Fn (0...(♯‘𝐹))) |
| 7 | 6 | adantl 481 |
. . . . . . . . . . . . . 14
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → 𝑃 Fn (0...(♯‘𝐹))) |
| 8 | | 0elfz 13647 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝐹)
∈ ℕ0 → 0 ∈ (0...(♯‘𝐹))) |
| 9 | 8 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → 0 ∈ (0...(♯‘𝐹))) |
| 10 | | nn0fz0 13648 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘𝐹)
∈ ℕ0 ↔ (♯‘𝐹) ∈ (0...(♯‘𝐹))) |
| 11 | 10 | biimpi 216 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝐹)
∈ ℕ0 → (♯‘𝐹) ∈ (0...(♯‘𝐹))) |
| 12 | 11 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (♯‘𝐹) ∈ (0...(♯‘𝐹))) |
| 13 | 7, 9, 12 | 3jca 1128 |
. . . . . . . . . . . . 13
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (𝑃 Fn (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ (♯‘𝐹) ∈
(0...(♯‘𝐹)))) |
| 14 | 3, 5, 13 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝐹(Walks‘𝐺)𝑃 → (𝑃 Fn (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ (♯‘𝐹) ∈
(0...(♯‘𝐹)))) |
| 15 | 14 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹) → (𝑃 Fn (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ (♯‘𝐹) ∈
(0...(♯‘𝐹)))) |
| 16 | 2, 15 | sylbi 217 |
. . . . . . . . . 10
⊢ (𝐹(Trails‘𝐺)𝑃 → (𝑃 Fn (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)) ∧ (♯‘𝐹) ∈
(0...(♯‘𝐹)))) |
| 17 | | fnimapr 6973 |
. . . . . . . . . 10
⊢ ((𝑃 Fn (0...(♯‘𝐹)) ∧ 0 ∈
(0...(♯‘𝐹))
∧ (♯‘𝐹)
∈ (0...(♯‘𝐹))) → (𝑃 “ {0, (♯‘𝐹)}) = {(𝑃‘0), (𝑃‘(♯‘𝐹))}) |
| 18 | 16, 17 | syl 17 |
. . . . . . . . 9
⊢ (𝐹(Trails‘𝐺)𝑃 → (𝑃 “ {0, (♯‘𝐹)}) = {(𝑃‘0), (𝑃‘(♯‘𝐹))}) |
| 19 | 18 | ineq1d 4201 |
. . . . . . . 8
⊢ (𝐹(Trails‘𝐺)𝑃 → ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ({(𝑃‘0), (𝑃‘(♯‘𝐹))} ∩ (𝑃 “ (1..^(♯‘𝐹))))) |
| 20 | 19 | eqeq1d 2736 |
. . . . . . 7
⊢ (𝐹(Trails‘𝐺)𝑃 → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ ↔ ({(𝑃‘0), (𝑃‘(♯‘𝐹))} ∩ (𝑃 “ (1..^(♯‘𝐹)))) =
∅)) |
| 21 | | disj 4432 |
. . . . . . . 8
⊢ (({(𝑃‘0), (𝑃‘(♯‘𝐹))} ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ ↔
∀𝑥 ∈ {(𝑃‘0), (𝑃‘(♯‘𝐹))} ¬ 𝑥 ∈ (𝑃 “ (1..^(♯‘𝐹)))) |
| 22 | | fvex 6900 |
. . . . . . . . . 10
⊢ (𝑃‘0) ∈
V |
| 23 | | fvex 6900 |
. . . . . . . . . 10
⊢ (𝑃‘(♯‘𝐹)) ∈ V |
| 24 | | eleq1 2821 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑃‘0) → (𝑥 ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ (𝑃‘0) ∈ (𝑃 “ (1..^(♯‘𝐹))))) |
| 25 | 24 | notbid 318 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑃‘0) → (¬ 𝑥 ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ ¬ (𝑃‘0) ∈ (𝑃 “
(1..^(♯‘𝐹))))) |
| 26 | | eleq1 2821 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑃‘(♯‘𝐹)) → (𝑥 ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))))) |
| 27 | 26 | notbid 318 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑃‘(♯‘𝐹)) → (¬ 𝑥 ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))))) |
| 28 | 22, 23, 25, 27 | ralpr 4682 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
{(𝑃‘0), (𝑃‘(♯‘𝐹))} ¬ 𝑥 ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ (¬ (𝑃‘0) ∈ (𝑃 “
(1..^(♯‘𝐹)))
∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))))) |
| 29 | | df-nel 3036 |
. . . . . . . . . 10
⊢ ((𝑃‘0) ∉ (𝑃 “
(1..^(♯‘𝐹)))
↔ ¬ (𝑃‘0)
∈ (𝑃 “
(1..^(♯‘𝐹)))) |
| 30 | 29 | bicomi 224 |
. . . . . . . . 9
⊢ (¬
(𝑃‘0) ∈ (𝑃 “
(1..^(♯‘𝐹)))
↔ (𝑃‘0) ∉
(𝑃 “
(1..^(♯‘𝐹)))) |
| 31 | 28, 30 | bianbi 627 |
. . . . . . . 8
⊢
(∀𝑥 ∈
{(𝑃‘0), (𝑃‘(♯‘𝐹))} ¬ 𝑥 ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ ((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))))) |
| 32 | 21, 31 | bitri 275 |
. . . . . . 7
⊢ (({(𝑃‘0), (𝑃‘(♯‘𝐹))} ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ ↔ ((𝑃‘0) ∉ (𝑃 “
(1..^(♯‘𝐹)))
∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))))) |
| 33 | 20, 32 | bitrdi 287 |
. . . . . 6
⊢ (𝐹(Trails‘𝐺)𝑃 → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ ↔ ((𝑃‘0) ∉ (𝑃 “
(1..^(♯‘𝐹)))
∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))))) |
| 34 | 33 | anbi2d 630 |
. . . . 5
⊢ (𝐹(Trails‘𝐺)𝑃 → ((Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ↔ (Fun
◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))))))) |
| 35 | | ancom 460 |
. . . . . . 7
⊢ (((𝑃‘0) ∉ (𝑃 “
(1..^(♯‘𝐹)))
∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ (¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))))) |
| 36 | 35 | bianass 642 |
. . . . . 6
⊢ ((Fun
◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))))) ↔ ((Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))))) |
| 37 | 36 | a1i 11 |
. . . . 5
⊢ (𝐹(Trails‘𝐺)𝑃 → ((Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))))) ↔ ((Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹)))))) |
| 38 | | noel 4320 |
. . . . . . . . . . . 12
⊢ ¬
(𝑃‘(♯‘𝐹)) ∈ ∅ |
| 39 | 38 | biantru 529 |
. . . . . . . . . . 11
⊢ (Fun
◡(𝑃 ↾ ∅) ↔ (Fun ◡(𝑃 ↾ ∅) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈
∅)) |
| 40 | 39 | bicomi 224 |
. . . . . . . . . 10
⊢ ((Fun
◡(𝑃 ↾ ∅) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ ∅) ↔ Fun
◡(𝑃 ↾ ∅)) |
| 41 | 40 | a1i 11 |
. . . . . . . . 9
⊢
((♯‘𝐹) =
0 → ((Fun ◡(𝑃 ↾ ∅) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ ∅) ↔ Fun
◡(𝑃 ↾ ∅))) |
| 42 | | oveq2 7422 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝐹) =
0 → (1..^(♯‘𝐹)) = (1..^0)) |
| 43 | | 0le1 11769 |
. . . . . . . . . . . . . . 15
⊢ 0 ≤
1 |
| 44 | | 1z 12631 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℤ |
| 45 | | 0z 12608 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
ℤ |
| 46 | | fzon 13703 |
. . . . . . . . . . . . . . . 16
⊢ ((1
∈ ℤ ∧ 0 ∈ ℤ) → (0 ≤ 1 ↔ (1..^0) =
∅)) |
| 47 | 44, 45, 46 | mp2an 692 |
. . . . . . . . . . . . . . 15
⊢ (0 ≤ 1
↔ (1..^0) = ∅) |
| 48 | 43, 47 | mpbi 230 |
. . . . . . . . . . . . . 14
⊢ (1..^0) =
∅ |
| 49 | 42, 48 | eqtrdi 2785 |
. . . . . . . . . . . . 13
⊢
((♯‘𝐹) =
0 → (1..^(♯‘𝐹)) = ∅) |
| 50 | 49 | reseq2d 5979 |
. . . . . . . . . . . 12
⊢
((♯‘𝐹) =
0 → (𝑃 ↾
(1..^(♯‘𝐹))) =
(𝑃 ↾
∅)) |
| 51 | 50 | cnveqd 5868 |
. . . . . . . . . . 11
⊢
((♯‘𝐹) =
0 → ◡(𝑃 ↾ (1..^(♯‘𝐹))) = ◡(𝑃 ↾ ∅)) |
| 52 | 51 | funeqd 6569 |
. . . . . . . . . 10
⊢
((♯‘𝐹) =
0 → (Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ↔ Fun ◡(𝑃 ↾ ∅))) |
| 53 | 49 | imaeq2d 6060 |
. . . . . . . . . . . . 13
⊢
((♯‘𝐹) =
0 → (𝑃 “
(1..^(♯‘𝐹))) =
(𝑃 “
∅)) |
| 54 | | ima0 6077 |
. . . . . . . . . . . . 13
⊢ (𝑃 “ ∅) =
∅ |
| 55 | 53, 54 | eqtrdi 2785 |
. . . . . . . . . . . 12
⊢
((♯‘𝐹) =
0 → (𝑃 “
(1..^(♯‘𝐹))) =
∅) |
| 56 | 55 | eleq2d 2819 |
. . . . . . . . . . 11
⊢
((♯‘𝐹) =
0 → ((𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ (𝑃‘(♯‘𝐹)) ∈ ∅)) |
| 57 | 56 | notbid 318 |
. . . . . . . . . 10
⊢
((♯‘𝐹) =
0 → (¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ ¬ (𝑃‘(♯‘𝐹)) ∈
∅)) |
| 58 | 52, 57 | anbi12d 632 |
. . . . . . . . 9
⊢
((♯‘𝐹) =
0 → ((Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ (Fun ◡(𝑃 ↾ ∅) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈
∅))) |
| 59 | | oveq2 7422 |
. . . . . . . . . . . . 13
⊢
((♯‘𝐹) =
0 → (1...(♯‘𝐹)) = (1...0)) |
| 60 | | fz10 13568 |
. . . . . . . . . . . . 13
⊢ (1...0) =
∅ |
| 61 | 59, 60 | eqtrdi 2785 |
. . . . . . . . . . . 12
⊢
((♯‘𝐹) =
0 → (1...(♯‘𝐹)) = ∅) |
| 62 | 61 | reseq2d 5979 |
. . . . . . . . . . 11
⊢
((♯‘𝐹) =
0 → (𝑃 ↾
(1...(♯‘𝐹))) =
(𝑃 ↾
∅)) |
| 63 | 62 | cnveqd 5868 |
. . . . . . . . . 10
⊢
((♯‘𝐹) =
0 → ◡(𝑃 ↾ (1...(♯‘𝐹))) = ◡(𝑃 ↾ ∅)) |
| 64 | 63 | funeqd 6569 |
. . . . . . . . 9
⊢
((♯‘𝐹) =
0 → (Fun ◡(𝑃 ↾ (1...(♯‘𝐹))) ↔ Fun ◡(𝑃 ↾ ∅))) |
| 65 | 41, 58, 64 | 3bitr4d 311 |
. . . . . . . 8
⊢
((♯‘𝐹) =
0 → ((Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ Fun ◡(𝑃 ↾ (1...(♯‘𝐹))))) |
| 66 | 65 | a1d 25 |
. . . . . . 7
⊢
((♯‘𝐹) =
0 → (𝐹(Trails‘𝐺)𝑃 → ((Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ Fun ◡(𝑃 ↾ (1...(♯‘𝐹)))))) |
| 67 | | df-nel 3036 |
. . . . . . . . . . . . 13
⊢ ((𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹))) ↔ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) |
| 68 | 67 | bicomi 224 |
. . . . . . . . . . . 12
⊢ (¬
(𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹)))) |
| 69 | 68 | anbi2i 623 |
. . . . . . . . . . 11
⊢ ((Fun
◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ (Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹))))) |
| 70 | | trliswlk 29662 |
. . . . . . . . . . . 12
⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) |
| 71 | 3, 10 | sylib 218 |
. . . . . . . . . . . . . 14
⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ (0...(♯‘𝐹))) |
| 72 | | fzonel 13696 |
. . . . . . . . . . . . . . 15
⊢ ¬
(♯‘𝐹) ∈
(1..^(♯‘𝐹)) |
| 73 | 72 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝐹(Walks‘𝐺)𝑃 → ¬ (♯‘𝐹) ∈
(1..^(♯‘𝐹))) |
| 74 | 71, 73 | eldifd 3944 |
. . . . . . . . . . . . 13
⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ((0...(♯‘𝐹)) ∖
(1..^(♯‘𝐹)))) |
| 75 | | 1eluzge0 12917 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
(ℤ≥‘0) |
| 76 | | fzoss1 13709 |
. . . . . . . . . . . . . . 15
⊢ (1 ∈
(ℤ≥‘0) → (1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹))) |
| 77 | 75, 76 | mp1i 13 |
. . . . . . . . . . . . . 14
⊢ (𝐹(Walks‘𝐺)𝑃 → (1..^(♯‘𝐹)) ⊆
(0..^(♯‘𝐹))) |
| 78 | | fzossfz 13701 |
. . . . . . . . . . . . . 14
⊢
(0..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹)) |
| 79 | 77, 78 | sstrdi 3978 |
. . . . . . . . . . . . 13
⊢ (𝐹(Walks‘𝐺)𝑃 → (1..^(♯‘𝐹)) ⊆
(0...(♯‘𝐹))) |
| 80 | 5, 74, 79 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ (𝐹(Walks‘𝐺)𝑃 → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ((0...(♯‘𝐹)) ∖
(1..^(♯‘𝐹)))
∧ (1..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹)))) |
| 81 | | resf1ext2b 7940 |
. . . . . . . . . . . 12
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈
((0...(♯‘𝐹))
∖ (1..^(♯‘𝐹))) ∧ (1..^(♯‘𝐹)) ⊆
(0...(♯‘𝐹)))
→ ((Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹)))) ↔ Fun ◡(𝑃 ↾ ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)})))) |
| 82 | 70, 80, 81 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝐹(Trails‘𝐺)𝑃 → ((Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹)))) ↔ Fun ◡(𝑃 ↾ ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)})))) |
| 83 | 69, 82 | bitrid 283 |
. . . . . . . . . 10
⊢ (𝐹(Trails‘𝐺)𝑃 → ((Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ Fun ◡(𝑃 ↾ ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)})))) |
| 84 | 83 | adantl 481 |
. . . . . . . . 9
⊢
(((♯‘𝐹)
≠ 0 ∧ 𝐹(Trails‘𝐺)𝑃) → ((Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ Fun ◡(𝑃 ↾ ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)})))) |
| 85 | | elnnne0 12524 |
. . . . . . . . . . . . . . . . . 18
⊢
((♯‘𝐹)
∈ ℕ ↔ ((♯‘𝐹) ∈ ℕ0 ∧
(♯‘𝐹) ≠
0)) |
| 86 | | elnnuz 12905 |
. . . . . . . . . . . . . . . . . 18
⊢
((♯‘𝐹)
∈ ℕ ↔ (♯‘𝐹) ∈
(ℤ≥‘1)) |
| 87 | 85, 86 | sylbb1 237 |
. . . . . . . . . . . . . . . . 17
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ (♯‘𝐹) ≠ 0) → (♯‘𝐹) ∈
(ℤ≥‘1)) |
| 88 | 87 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘𝐹)
∈ ℕ0 → ((♯‘𝐹) ≠ 0 → (♯‘𝐹) ∈
(ℤ≥‘1))) |
| 89 | 70, 3, 88 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (𝐹(Trails‘𝐺)𝑃 → ((♯‘𝐹) ≠ 0 → (♯‘𝐹) ∈
(ℤ≥‘1))) |
| 90 | 89 | impcom 407 |
. . . . . . . . . . . . . 14
⊢
(((♯‘𝐹)
≠ 0 ∧ 𝐹(Trails‘𝐺)𝑃) → (♯‘𝐹) ∈
(ℤ≥‘1)) |
| 91 | | fzisfzounsn 13801 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝐹)
∈ (ℤ≥‘1) → (1...(♯‘𝐹)) = ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)})) |
| 92 | 90, 91 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((♯‘𝐹)
≠ 0 ∧ 𝐹(Trails‘𝐺)𝑃) → (1...(♯‘𝐹)) = ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)})) |
| 93 | 92 | eqcomd 2740 |
. . . . . . . . . . . 12
⊢
(((♯‘𝐹)
≠ 0 ∧ 𝐹(Trails‘𝐺)𝑃) → ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)}) = (1...(♯‘𝐹))) |
| 94 | 93 | reseq2d 5979 |
. . . . . . . . . . 11
⊢
(((♯‘𝐹)
≠ 0 ∧ 𝐹(Trails‘𝐺)𝑃) → (𝑃 ↾ ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)})) = (𝑃 ↾ (1...(♯‘𝐹)))) |
| 95 | 94 | cnveqd 5868 |
. . . . . . . . . 10
⊢
(((♯‘𝐹)
≠ 0 ∧ 𝐹(Trails‘𝐺)𝑃) → ◡(𝑃 ↾ ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)})) = ◡(𝑃 ↾ (1...(♯‘𝐹)))) |
| 96 | 95 | funeqd 6569 |
. . . . . . . . 9
⊢
(((♯‘𝐹)
≠ 0 ∧ 𝐹(Trails‘𝐺)𝑃) → (Fun ◡(𝑃 ↾ ((1..^(♯‘𝐹)) ∪ {(♯‘𝐹)})) ↔ Fun ◡(𝑃 ↾ (1...(♯‘𝐹))))) |
| 97 | 84, 96 | bitrd 279 |
. . . . . . . 8
⊢
(((♯‘𝐹)
≠ 0 ∧ 𝐹(Trails‘𝐺)𝑃) → ((Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ Fun ◡(𝑃 ↾ (1...(♯‘𝐹))))) |
| 98 | 97 | ex 412 |
. . . . . . 7
⊢
((♯‘𝐹)
≠ 0 → (𝐹(Trails‘𝐺)𝑃 → ((Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ Fun ◡(𝑃 ↾ (1...(♯‘𝐹)))))) |
| 99 | 66, 98 | pm2.61ine 3014 |
. . . . . 6
⊢ (𝐹(Trails‘𝐺)𝑃 → ((Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ↔ Fun ◡(𝑃 ↾ (1...(♯‘𝐹))))) |
| 100 | 99 | anbi1d 631 |
. . . . 5
⊢ (𝐹(Trails‘𝐺)𝑃 → (((Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ¬ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹)))) ↔ (Fun ◡(𝑃 ↾ (1...(♯‘𝐹))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹)))))) |
| 101 | 34, 37, 100 | 3bitrd 305 |
. . . 4
⊢ (𝐹(Trails‘𝐺)𝑃 → ((Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ↔ (Fun
◡(𝑃 ↾ (1...(♯‘𝐹))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹)))))) |
| 102 | 101 | pm5.32i 574 |
. . 3
⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ (Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)) ↔ (𝐹(Trails‘𝐺)𝑃 ∧ (Fun ◡(𝑃 ↾ (1...(♯‘𝐹))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹)))))) |
| 103 | | 3anass 1094 |
. . 3
⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ↔ (𝐹(Trails‘𝐺)𝑃 ∧ (Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) =
∅))) |
| 104 | | 3anass 1094 |
. . 3
⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1...(♯‘𝐹))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹)))) ↔ (𝐹(Trails‘𝐺)𝑃 ∧ (Fun ◡(𝑃 ↾ (1...(♯‘𝐹))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹)))))) |
| 105 | 102, 103,
104 | 3bitr4i 303 |
. 2
⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1...(♯‘𝐹))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))))) |
| 106 | 1, 105 | bitri 275 |
1
⊢ (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1...(♯‘𝐹))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))))) |