| Step | Hyp | Ref
| Expression |
| 1 | | simp1 1136 |
. . . . 5
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → 𝐹:𝐴⟶𝐵) |
| 2 | | simp3 1138 |
. . . . . 6
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → 𝐶 ⊆ 𝐴) |
| 3 | | eldifi 4113 |
. . . . . . . 8
⊢ (𝑋 ∈ (𝐴 ∖ 𝐶) → 𝑋 ∈ 𝐴) |
| 4 | 3 | snssd 4791 |
. . . . . . 7
⊢ (𝑋 ∈ (𝐴 ∖ 𝐶) → {𝑋} ⊆ 𝐴) |
| 5 | 4 | 3ad2ant2 1134 |
. . . . . 6
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → {𝑋} ⊆ 𝐴) |
| 6 | 2, 5 | unssd 4174 |
. . . . 5
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → (𝐶 ∪ {𝑋}) ⊆ 𝐴) |
| 7 | 1, 6 | fssresd 6756 |
. . . 4
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})⟶𝐵) |
| 8 | 7 | adantr 480 |
. . 3
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ ((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 ∧ (𝐹‘𝑋) ∉ (𝐹 “ 𝐶))) → (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})⟶𝐵) |
| 9 | | elun 4135 |
. . . . . 6
⊢ (𝑦 ∈ (𝐶 ∪ {𝑋}) ↔ (𝑦 ∈ 𝐶 ∨ 𝑦 ∈ {𝑋})) |
| 10 | | elun 4135 |
. . . . . 6
⊢ (𝑧 ∈ (𝐶 ∪ {𝑋}) ↔ (𝑧 ∈ 𝐶 ∨ 𝑧 ∈ {𝑋})) |
| 11 | 9, 10 | anbi12i 628 |
. . . . 5
⊢ ((𝑦 ∈ (𝐶 ∪ {𝑋}) ∧ 𝑧 ∈ (𝐶 ∪ {𝑋})) ↔ ((𝑦 ∈ 𝐶 ∨ 𝑦 ∈ {𝑋}) ∧ (𝑧 ∈ 𝐶 ∨ 𝑧 ∈ {𝑋}))) |
| 12 | | dff14a 7273 |
. . . . . . . . 9
⊢ ((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 ↔ ((𝐹 ↾ 𝐶):𝐶⟶𝐵 ∧ ∀𝑤 ∈ 𝐶 ∀𝑥 ∈ 𝐶 (𝑤 ≠ 𝑥 → ((𝐹 ↾ 𝐶)‘𝑤) ≠ ((𝐹 ↾ 𝐶)‘𝑥)))) |
| 13 | | neeq1 2993 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑦 → (𝑤 ≠ 𝑥 ↔ 𝑦 ≠ 𝑥)) |
| 14 | | fveq2 6887 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 𝑦 → ((𝐹 ↾ 𝐶)‘𝑤) = ((𝐹 ↾ 𝐶)‘𝑦)) |
| 15 | 14 | neeq1d 2990 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑦 → (((𝐹 ↾ 𝐶)‘𝑤) ≠ ((𝐹 ↾ 𝐶)‘𝑥) ↔ ((𝐹 ↾ 𝐶)‘𝑦) ≠ ((𝐹 ↾ 𝐶)‘𝑥))) |
| 16 | 13, 15 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑦 → ((𝑤 ≠ 𝑥 → ((𝐹 ↾ 𝐶)‘𝑤) ≠ ((𝐹 ↾ 𝐶)‘𝑥)) ↔ (𝑦 ≠ 𝑥 → ((𝐹 ↾ 𝐶)‘𝑦) ≠ ((𝐹 ↾ 𝐶)‘𝑥)))) |
| 17 | | neeq2 2994 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → (𝑦 ≠ 𝑥 ↔ 𝑦 ≠ 𝑧)) |
| 18 | | fveq2 6887 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑧 → ((𝐹 ↾ 𝐶)‘𝑥) = ((𝐹 ↾ 𝐶)‘𝑧)) |
| 19 | 18 | neeq2d 2991 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → (((𝐹 ↾ 𝐶)‘𝑦) ≠ ((𝐹 ↾ 𝐶)‘𝑥) ↔ ((𝐹 ↾ 𝐶)‘𝑦) ≠ ((𝐹 ↾ 𝐶)‘𝑧))) |
| 20 | 17, 19 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → ((𝑦 ≠ 𝑥 → ((𝐹 ↾ 𝐶)‘𝑦) ≠ ((𝐹 ↾ 𝐶)‘𝑥)) ↔ (𝑦 ≠ 𝑧 → ((𝐹 ↾ 𝐶)‘𝑦) ≠ ((𝐹 ↾ 𝐶)‘𝑧)))) |
| 21 | 16, 20 | rspc2v 3617 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶) → (∀𝑤 ∈ 𝐶 ∀𝑥 ∈ 𝐶 (𝑤 ≠ 𝑥 → ((𝐹 ↾ 𝐶)‘𝑤) ≠ ((𝐹 ↾ 𝐶)‘𝑥)) → (𝑦 ≠ 𝑧 → ((𝐹 ↾ 𝐶)‘𝑦) ≠ ((𝐹 ↾ 𝐶)‘𝑧)))) |
| 22 | | simpl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶) → 𝑦 ∈ 𝐶) |
| 23 | 22 | fvresd 6907 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶) → ((𝐹 ↾ 𝐶)‘𝑦) = (𝐹‘𝑦)) |
| 24 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶) → 𝑧 ∈ 𝐶) |
| 25 | 24 | fvresd 6907 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶) → ((𝐹 ↾ 𝐶)‘𝑧) = (𝐹‘𝑧)) |
| 26 | 23, 25 | neeq12d 2992 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶) → (((𝐹 ↾ 𝐶)‘𝑦) ≠ ((𝐹 ↾ 𝐶)‘𝑧) ↔ (𝐹‘𝑦) ≠ (𝐹‘𝑧))) |
| 27 | 26 | imbi2d 340 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶) → ((𝑦 ≠ 𝑧 → ((𝐹 ↾ 𝐶)‘𝑦) ≠ ((𝐹 ↾ 𝐶)‘𝑧)) ↔ (𝑦 ≠ 𝑧 → (𝐹‘𝑦) ≠ (𝐹‘𝑧)))) |
| 28 | 27 | bi23imp13 1115 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶) ∧ (𝑦 ≠ 𝑧 → ((𝐹 ↾ 𝐶)‘𝑦) ≠ ((𝐹 ↾ 𝐶)‘𝑧)) ∧ 𝑦 ≠ 𝑧) → (𝐹‘𝑦) ≠ (𝐹‘𝑧)) |
| 29 | | elun1 4164 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ 𝐶 → 𝑦 ∈ (𝐶 ∪ {𝑋})) |
| 30 | 29 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶) → 𝑦 ∈ (𝐶 ∪ {𝑋})) |
| 31 | 30 | fvresd 6907 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶) → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) = (𝐹‘𝑦)) |
| 32 | | elun1 4164 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ 𝐶 → 𝑧 ∈ (𝐶 ∪ {𝑋})) |
| 33 | 32 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶) → 𝑧 ∈ (𝐶 ∪ {𝑋})) |
| 34 | 33 | fvresd 6907 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶) → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧) = (𝐹‘𝑧)) |
| 35 | 31, 34 | neeq12d 2992 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶) → (((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧) ↔ (𝐹‘𝑦) ≠ (𝐹‘𝑧))) |
| 36 | 35 | 3ad2ant1 1133 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶) ∧ (𝑦 ≠ 𝑧 → ((𝐹 ↾ 𝐶)‘𝑦) ≠ ((𝐹 ↾ 𝐶)‘𝑧)) ∧ 𝑦 ≠ 𝑧) → (((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧) ↔ (𝐹‘𝑦) ≠ (𝐹‘𝑧))) |
| 37 | 28, 36 | mpbird 257 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶) ∧ (𝑦 ≠ 𝑧 → ((𝐹 ↾ 𝐶)‘𝑦) ≠ ((𝐹 ↾ 𝐶)‘𝑧)) ∧ 𝑦 ≠ 𝑧) → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)) |
| 38 | 37 | 3exp 1119 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶) → ((𝑦 ≠ 𝑧 → ((𝐹 ↾ 𝐶)‘𝑦) ≠ ((𝐹 ↾ 𝐶)‘𝑧)) → (𝑦 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)))) |
| 39 | 21, 38 | syldc 48 |
. . . . . . . . . . 11
⊢
(∀𝑤 ∈
𝐶 ∀𝑥 ∈ 𝐶 (𝑤 ≠ 𝑥 → ((𝐹 ↾ 𝐶)‘𝑤) ≠ ((𝐹 ↾ 𝐶)‘𝑥)) → ((𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶) → (𝑦 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)))) |
| 40 | 39 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝐹 ↾ 𝐶):𝐶⟶𝐵 ∧ ∀𝑤 ∈ 𝐶 ∀𝑥 ∈ 𝐶 (𝑤 ≠ 𝑥 → ((𝐹 ↾ 𝐶)‘𝑤) ≠ ((𝐹 ↾ 𝐶)‘𝑥))) → ((𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶) → (𝑦 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)))) |
| 41 | 40 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → (((𝐹 ↾ 𝐶):𝐶⟶𝐵 ∧ ∀𝑤 ∈ 𝐶 ∀𝑥 ∈ 𝐶 (𝑤 ≠ 𝑥 → ((𝐹 ↾ 𝐶)‘𝑤) ≠ ((𝐹 ↾ 𝐶)‘𝑥))) → ((𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶) → (𝑦 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))))) |
| 42 | 12, 41 | biimtrid 242 |
. . . . . . . 8
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → ((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 → ((𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶) → (𝑦 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))))) |
| 43 | 42 | a1dd 50 |
. . . . . . 7
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → ((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 → ((𝐹‘𝑋) ∉ (𝐹 “ 𝐶) → ((𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶) → (𝑦 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)))))) |
| 44 | 43 | imp32 418 |
. . . . . 6
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ ((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 ∧ (𝐹‘𝑋) ∉ (𝐹 “ 𝐶))) → ((𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶) → (𝑦 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)))) |
| 45 | | ffn 6717 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) |
| 46 | 45 | 3ad2ant1 1133 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → 𝐹 Fn 𝐴) |
| 47 | 46, 2 | fvelimabd 6963 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → ((𝐹‘𝑋) ∈ (𝐹 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 (𝐹‘𝑥) = (𝐹‘𝑋))) |
| 48 | 47 | notbid 318 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → (¬ (𝐹‘𝑋) ∈ (𝐹 “ 𝐶) ↔ ¬ ∃𝑥 ∈ 𝐶 (𝐹‘𝑥) = (𝐹‘𝑋))) |
| 49 | | df-nel 3036 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑋) ∉ (𝐹 “ 𝐶) ↔ ¬ (𝐹‘𝑋) ∈ (𝐹 “ 𝐶)) |
| 50 | | ralnex 3061 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝐶 ¬ (𝐹‘𝑥) = (𝐹‘𝑋) ↔ ¬ ∃𝑥 ∈ 𝐶 (𝐹‘𝑥) = (𝐹‘𝑋)) |
| 51 | 48, 49, 50 | 3bitr4g 314 |
. . . . . . . . 9
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → ((𝐹‘𝑋) ∉ (𝐹 “ 𝐶) ↔ ∀𝑥 ∈ 𝐶 ¬ (𝐹‘𝑥) = (𝐹‘𝑋))) |
| 52 | | df-ne 2932 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑥) ≠ (𝐹‘𝑋) ↔ ¬ (𝐹‘𝑥) = (𝐹‘𝑋)) |
| 53 | | fveq2 6887 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) |
| 54 | 53 | neeq1d 2990 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥) ≠ (𝐹‘𝑋) ↔ (𝐹‘𝑧) ≠ (𝐹‘𝑋))) |
| 55 | 52, 54 | bitr3id 285 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑧 → (¬ (𝐹‘𝑥) = (𝐹‘𝑋) ↔ (𝐹‘𝑧) ≠ (𝐹‘𝑋))) |
| 56 | 55 | rspcv 3602 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ 𝐶 → (∀𝑥 ∈ 𝐶 ¬ (𝐹‘𝑥) = (𝐹‘𝑋) → (𝐹‘𝑧) ≠ (𝐹‘𝑋))) |
| 57 | 56 | ad2antll 729 |
. . . . . . . . . . . . 13
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝑦 ∈ {𝑋} ∧ 𝑧 ∈ 𝐶)) → (∀𝑥 ∈ 𝐶 ¬ (𝐹‘𝑥) = (𝐹‘𝑋) → (𝐹‘𝑧) ≠ (𝐹‘𝑋))) |
| 58 | 32 | ad2antll 729 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝑦 ∈ {𝑋} ∧ 𝑧 ∈ 𝐶)) → 𝑧 ∈ (𝐶 ∪ {𝑋})) |
| 59 | 58 | fvresd 6907 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝑦 ∈ {𝑋} ∧ 𝑧 ∈ 𝐶)) → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧) = (𝐹‘𝑧)) |
| 60 | 59 | eqcomd 2740 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝑦 ∈ {𝑋} ∧ 𝑧 ∈ 𝐶)) → (𝐹‘𝑧) = ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)) |
| 61 | | elsni 4625 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ {𝑋} → 𝑦 = 𝑋) |
| 62 | 61 | eqcomd 2740 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ {𝑋} → 𝑋 = 𝑦) |
| 63 | 62 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝑦 ∈ {𝑋} ∧ 𝑧 ∈ 𝐶)) → 𝑋 = 𝑦) |
| 64 | 63 | fveq2d 6891 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝑦 ∈ {𝑋} ∧ 𝑧 ∈ 𝐶)) → (𝐹‘𝑋) = (𝐹‘𝑦)) |
| 65 | | elun2 4165 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ {𝑋} → 𝑦 ∈ (𝐶 ∪ {𝑋})) |
| 66 | 65 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝑦 ∈ {𝑋} ∧ 𝑧 ∈ 𝐶)) → 𝑦 ∈ (𝐶 ∪ {𝑋})) |
| 67 | 66 | fvresd 6907 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝑦 ∈ {𝑋} ∧ 𝑧 ∈ 𝐶)) → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) = (𝐹‘𝑦)) |
| 68 | 64, 67 | eqtr4d 2772 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝑦 ∈ {𝑋} ∧ 𝑧 ∈ 𝐶)) → (𝐹‘𝑋) = ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦)) |
| 69 | 60, 68 | neeq12d 2992 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝑦 ∈ {𝑋} ∧ 𝑧 ∈ 𝐶)) → ((𝐹‘𝑧) ≠ (𝐹‘𝑋) ↔ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦))) |
| 70 | 69 | biimpa 476 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝑦 ∈ {𝑋} ∧ 𝑧 ∈ 𝐶)) ∧ (𝐹‘𝑧) ≠ (𝐹‘𝑋)) → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦)) |
| 71 | 70 | necomd 2986 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝑦 ∈ {𝑋} ∧ 𝑧 ∈ 𝐶)) ∧ (𝐹‘𝑧) ≠ (𝐹‘𝑋)) → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)) |
| 72 | 71 | a1d 25 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝑦 ∈ {𝑋} ∧ 𝑧 ∈ 𝐶)) ∧ (𝐹‘𝑧) ≠ (𝐹‘𝑋)) → (𝑦 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))) |
| 73 | 72 | ex 412 |
. . . . . . . . . . . . 13
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝑦 ∈ {𝑋} ∧ 𝑧 ∈ 𝐶)) → ((𝐹‘𝑧) ≠ (𝐹‘𝑋) → (𝑦 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)))) |
| 74 | 57, 73 | syld 47 |
. . . . . . . . . . . 12
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝑦 ∈ {𝑋} ∧ 𝑧 ∈ 𝐶)) → (∀𝑥 ∈ 𝐶 ¬ (𝐹‘𝑥) = (𝐹‘𝑋) → (𝑦 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)))) |
| 75 | 74 | a1d 25 |
. . . . . . . . . . 11
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝑦 ∈ {𝑋} ∧ 𝑧 ∈ 𝐶)) → ((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 → (∀𝑥 ∈ 𝐶 ¬ (𝐹‘𝑥) = (𝐹‘𝑋) → (𝑦 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))))) |
| 76 | 75 | ex 412 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → ((𝑦 ∈ {𝑋} ∧ 𝑧 ∈ 𝐶) → ((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 → (∀𝑥 ∈ 𝐶 ¬ (𝐹‘𝑥) = (𝐹‘𝑋) → (𝑦 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)))))) |
| 77 | 76 | com24 95 |
. . . . . . . . 9
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → (∀𝑥 ∈ 𝐶 ¬ (𝐹‘𝑥) = (𝐹‘𝑋) → ((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 → ((𝑦 ∈ {𝑋} ∧ 𝑧 ∈ 𝐶) → (𝑦 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)))))) |
| 78 | 51, 77 | sylbid 240 |
. . . . . . . 8
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → ((𝐹‘𝑋) ∉ (𝐹 “ 𝐶) → ((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 → ((𝑦 ∈ {𝑋} ∧ 𝑧 ∈ 𝐶) → (𝑦 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)))))) |
| 79 | 78 | impcomd 411 |
. . . . . . 7
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → (((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 ∧ (𝐹‘𝑋) ∉ (𝐹 “ 𝐶)) → ((𝑦 ∈ {𝑋} ∧ 𝑧 ∈ 𝐶) → (𝑦 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))))) |
| 80 | 79 | imp 406 |
. . . . . 6
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ ((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 ∧ (𝐹‘𝑋) ∉ (𝐹 “ 𝐶))) → ((𝑦 ∈ {𝑋} ∧ 𝑧 ∈ 𝐶) → (𝑦 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)))) |
| 81 | | fveq2 6887 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) |
| 82 | 81 | neeq1d 2990 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥) ≠ (𝐹‘𝑋) ↔ (𝐹‘𝑦) ≠ (𝐹‘𝑋))) |
| 83 | 52, 82 | bitr3id 285 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → (¬ (𝐹‘𝑥) = (𝐹‘𝑋) ↔ (𝐹‘𝑦) ≠ (𝐹‘𝑋))) |
| 84 | 83 | rspcv 3602 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ 𝐶 → (∀𝑥 ∈ 𝐶 ¬ (𝐹‘𝑥) = (𝐹‘𝑋) → (𝐹‘𝑦) ≠ (𝐹‘𝑋))) |
| 85 | 84 | ad2antrl 728 |
. . . . . . . . . . . . 13
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ {𝑋})) → (∀𝑥 ∈ 𝐶 ¬ (𝐹‘𝑥) = (𝐹‘𝑋) → (𝐹‘𝑦) ≠ (𝐹‘𝑋))) |
| 86 | 29 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ {𝑋})) → 𝑦 ∈ (𝐶 ∪ {𝑋})) |
| 87 | 86 | fvresd 6907 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ {𝑋})) → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) = (𝐹‘𝑦)) |
| 88 | 87 | eqcomd 2740 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ {𝑋})) → (𝐹‘𝑦) = ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦)) |
| 89 | | elsni 4625 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ {𝑋} → 𝑧 = 𝑋) |
| 90 | 89 | eqcomd 2740 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ {𝑋} → 𝑋 = 𝑧) |
| 91 | 90 | ad2antll 729 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ {𝑋})) → 𝑋 = 𝑧) |
| 92 | 91 | fveq2d 6891 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ {𝑋})) → (𝐹‘𝑋) = (𝐹‘𝑧)) |
| 93 | | elun2 4165 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ {𝑋} → 𝑧 ∈ (𝐶 ∪ {𝑋})) |
| 94 | 93 | ad2antll 729 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ {𝑋})) → 𝑧 ∈ (𝐶 ∪ {𝑋})) |
| 95 | 94 | fvresd 6907 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ {𝑋})) → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧) = (𝐹‘𝑧)) |
| 96 | 92, 95 | eqtr4d 2772 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ {𝑋})) → (𝐹‘𝑋) = ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)) |
| 97 | 88, 96 | neeq12d 2992 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ {𝑋})) → ((𝐹‘𝑦) ≠ (𝐹‘𝑋) ↔ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))) |
| 98 | 97 | biimpd 229 |
. . . . . . . . . . . . . 14
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ {𝑋})) → ((𝐹‘𝑦) ≠ (𝐹‘𝑋) → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))) |
| 99 | 98 | a1dd 50 |
. . . . . . . . . . . . 13
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ {𝑋})) → ((𝐹‘𝑦) ≠ (𝐹‘𝑋) → (𝑦 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)))) |
| 100 | 85, 99 | syld 47 |
. . . . . . . . . . . 12
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ {𝑋})) → (∀𝑥 ∈ 𝐶 ¬ (𝐹‘𝑥) = (𝐹‘𝑋) → (𝑦 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)))) |
| 101 | 100 | a1d 25 |
. . . . . . . . . . 11
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝑦 ∈ 𝐶 ∧ 𝑧 ∈ {𝑋})) → ((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 → (∀𝑥 ∈ 𝐶 ¬ (𝐹‘𝑥) = (𝐹‘𝑋) → (𝑦 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))))) |
| 102 | 101 | ex 412 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → ((𝑦 ∈ 𝐶 ∧ 𝑧 ∈ {𝑋}) → ((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 → (∀𝑥 ∈ 𝐶 ¬ (𝐹‘𝑥) = (𝐹‘𝑋) → (𝑦 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)))))) |
| 103 | 102 | com24 95 |
. . . . . . . . 9
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → (∀𝑥 ∈ 𝐶 ¬ (𝐹‘𝑥) = (𝐹‘𝑋) → ((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 → ((𝑦 ∈ 𝐶 ∧ 𝑧 ∈ {𝑋}) → (𝑦 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)))))) |
| 104 | 51, 103 | sylbid 240 |
. . . . . . . 8
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → ((𝐹‘𝑋) ∉ (𝐹 “ 𝐶) → ((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 → ((𝑦 ∈ 𝐶 ∧ 𝑧 ∈ {𝑋}) → (𝑦 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)))))) |
| 105 | 104 | impcomd 411 |
. . . . . . 7
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → (((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 ∧ (𝐹‘𝑋) ∉ (𝐹 “ 𝐶)) → ((𝑦 ∈ 𝐶 ∧ 𝑧 ∈ {𝑋}) → (𝑦 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))))) |
| 106 | 105 | imp 406 |
. . . . . 6
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ ((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 ∧ (𝐹‘𝑋) ∉ (𝐹 “ 𝐶))) → ((𝑦 ∈ 𝐶 ∧ 𝑧 ∈ {𝑋}) → (𝑦 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)))) |
| 107 | | velsn 4624 |
. . . . . . . 8
⊢ (𝑦 ∈ {𝑋} ↔ 𝑦 = 𝑋) |
| 108 | | velsn 4624 |
. . . . . . . 8
⊢ (𝑧 ∈ {𝑋} ↔ 𝑧 = 𝑋) |
| 109 | | eqtr3 2756 |
. . . . . . . . 9
⊢ ((𝑦 = 𝑋 ∧ 𝑧 = 𝑋) → 𝑦 = 𝑧) |
| 110 | | eqneqall 2942 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → (𝑦 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))) |
| 111 | 109, 110 | syl 17 |
. . . . . . . 8
⊢ ((𝑦 = 𝑋 ∧ 𝑧 = 𝑋) → (𝑦 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))) |
| 112 | 107, 108,
111 | syl2anb 598 |
. . . . . . 7
⊢ ((𝑦 ∈ {𝑋} ∧ 𝑧 ∈ {𝑋}) → (𝑦 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))) |
| 113 | 112 | a1i 11 |
. . . . . 6
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ ((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 ∧ (𝐹‘𝑋) ∉ (𝐹 “ 𝐶))) → ((𝑦 ∈ {𝑋} ∧ 𝑧 ∈ {𝑋}) → (𝑦 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)))) |
| 114 | 44, 80, 106, 113 | ccased 1038 |
. . . . 5
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ ((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 ∧ (𝐹‘𝑋) ∉ (𝐹 “ 𝐶))) → (((𝑦 ∈ 𝐶 ∨ 𝑦 ∈ {𝑋}) ∧ (𝑧 ∈ 𝐶 ∨ 𝑧 ∈ {𝑋})) → (𝑦 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)))) |
| 115 | 11, 114 | biimtrid 242 |
. . . 4
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ ((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 ∧ (𝐹‘𝑋) ∉ (𝐹 “ 𝐶))) → ((𝑦 ∈ (𝐶 ∪ {𝑋}) ∧ 𝑧 ∈ (𝐶 ∪ {𝑋})) → (𝑦 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)))) |
| 116 | 115 | ralrimivv 3187 |
. . 3
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ ((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 ∧ (𝐹‘𝑋) ∉ (𝐹 “ 𝐶))) → ∀𝑦 ∈ (𝐶 ∪ {𝑋})∀𝑧 ∈ (𝐶 ∪ {𝑋})(𝑦 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))) |
| 117 | | dff14a 7273 |
. . 3
⊢ ((𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1→𝐵 ↔ ((𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})⟶𝐵 ∧ ∀𝑦 ∈ (𝐶 ∪ {𝑋})∀𝑧 ∈ (𝐶 ∪ {𝑋})(𝑦 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)))) |
| 118 | 8, 116, 117 | sylanbrc 583 |
. 2
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ ((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 ∧ (𝐹‘𝑋) ∉ (𝐹 “ 𝐶))) → (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1→𝐵) |
| 119 | | fssres 6755 |
. . . . . 6
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
| 120 | 119 | 3adant2 1131 |
. . . . 5
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
| 121 | 120 | adantr 480 |
. . . 4
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1→𝐵) → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
| 122 | | df-f1 6547 |
. . . . . . 7
⊢ ((𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1→𝐵 ↔ ((𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})⟶𝐵 ∧ Fun ◡(𝐹 ↾ (𝐶 ∪ {𝑋})))) |
| 123 | | funres11 6624 |
. . . . . . 7
⊢ (Fun
◡(𝐹 ↾ (𝐶 ∪ {𝑋})) → Fun ◡((𝐹 ↾ (𝐶 ∪ {𝑋})) ↾ 𝐶)) |
| 124 | 122, 123 | simplbiim 504 |
. . . . . 6
⊢ ((𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1→𝐵 → Fun ◡((𝐹 ↾ (𝐶 ∪ {𝑋})) ↾ 𝐶)) |
| 125 | 124 | adantl 481 |
. . . . 5
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1→𝐵) → Fun ◡((𝐹 ↾ (𝐶 ∪ {𝑋})) ↾ 𝐶)) |
| 126 | | ssun1 4160 |
. . . . . . . . 9
⊢ 𝐶 ⊆ (𝐶 ∪ {𝑋}) |
| 127 | 126 | resabs1i 6007 |
. . . . . . . 8
⊢ ((𝐹 ↾ (𝐶 ∪ {𝑋})) ↾ 𝐶) = (𝐹 ↾ 𝐶) |
| 128 | 127 | eqcomi 2743 |
. . . . . . 7
⊢ (𝐹 ↾ 𝐶) = ((𝐹 ↾ (𝐶 ∪ {𝑋})) ↾ 𝐶) |
| 129 | 128 | cnveqi 5867 |
. . . . . 6
⊢ ◡(𝐹 ↾ 𝐶) = ◡((𝐹 ↾ (𝐶 ∪ {𝑋})) ↾ 𝐶) |
| 130 | 129 | funeqi 6568 |
. . . . 5
⊢ (Fun
◡(𝐹 ↾ 𝐶) ↔ Fun ◡((𝐹 ↾ (𝐶 ∪ {𝑋})) ↾ 𝐶)) |
| 131 | 125, 130 | sylibr 234 |
. . . 4
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1→𝐵) → Fun ◡(𝐹 ↾ 𝐶)) |
| 132 | | df-f1 6547 |
. . . 4
⊢ ((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 ↔ ((𝐹 ↾ 𝐶):𝐶⟶𝐵 ∧ Fun ◡(𝐹 ↾ 𝐶))) |
| 133 | 121, 131,
132 | sylanbrc 583 |
. . 3
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1→𝐵) → (𝐹 ↾ 𝐶):𝐶–1-1→𝐵) |
| 134 | | elun1 4164 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐶 → 𝑥 ∈ (𝐶 ∪ {𝑋})) |
| 135 | | snidg 4642 |
. . . . . . . . . . . . . . 15
⊢ (𝑋 ∈ (𝐴 ∖ 𝐶) → 𝑋 ∈ {𝑋}) |
| 136 | 135 | 3ad2ant2 1134 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → 𝑋 ∈ {𝑋}) |
| 137 | | elun2 4165 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ {𝑋} → 𝑋 ∈ (𝐶 ∪ {𝑋})) |
| 138 | 136, 137 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → 𝑋 ∈ (𝐶 ∪ {𝑋})) |
| 139 | | neeq1 2993 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑥 → (𝑦 ≠ 𝑧 ↔ 𝑥 ≠ 𝑧)) |
| 140 | | fveq2 6887 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑥 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) = ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑥)) |
| 141 | 140 | neeq1d 2990 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑥 → (((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧) ↔ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑥) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))) |
| 142 | 139, 141 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑥 → ((𝑦 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)) ↔ (𝑥 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑥) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)))) |
| 143 | | neeq2 2994 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑋 → (𝑥 ≠ 𝑧 ↔ 𝑥 ≠ 𝑋)) |
| 144 | | fveq2 6887 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑋 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧) = ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑋)) |
| 145 | 144 | neeq2d 2991 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑋 → (((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑥) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧) ↔ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑥) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑋))) |
| 146 | 143, 145 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑋 → ((𝑥 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑥) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)) ↔ (𝑥 ≠ 𝑋 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑥) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑋)))) |
| 147 | 142, 146 | rspc2v 3617 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (𝐶 ∪ {𝑋}) ∧ 𝑋 ∈ (𝐶 ∪ {𝑋})) → (∀𝑦 ∈ (𝐶 ∪ {𝑋})∀𝑧 ∈ (𝐶 ∪ {𝑋})(𝑦 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)) → (𝑥 ≠ 𝑋 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑥) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑋)))) |
| 148 | 134, 138,
147 | syl2anr 597 |
. . . . . . . . . . . 12
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ 𝑥 ∈ 𝐶) → (∀𝑦 ∈ (𝐶 ∪ {𝑋})∀𝑧 ∈ (𝐶 ∪ {𝑋})(𝑦 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)) → (𝑥 ≠ 𝑋 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑥) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑋)))) |
| 149 | 148 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ 𝑥 ∈ 𝐶) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})⟶𝐵) → (∀𝑦 ∈ (𝐶 ∪ {𝑋})∀𝑧 ∈ (𝐶 ∪ {𝑋})(𝑦 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)) → (𝑥 ≠ 𝑋 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑥) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑋)))) |
| 150 | | eldifn 4114 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑋 ∈ (𝐴 ∖ 𝐶) → ¬ 𝑋 ∈ 𝐶) |
| 151 | | nelelne 3030 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
𝑋 ∈ 𝐶 → (𝑥 ∈ 𝐶 → 𝑥 ≠ 𝑋)) |
| 152 | 150, 151 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑋 ∈ (𝐴 ∖ 𝐶) → (𝑥 ∈ 𝐶 → 𝑥 ≠ 𝑋)) |
| 153 | 152 | 3ad2ant2 1134 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → (𝑥 ∈ 𝐶 → 𝑥 ≠ 𝑋)) |
| 154 | 153 | imp 406 |
. . . . . . . . . . . . . 14
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ 𝑥 ∈ 𝐶) → 𝑥 ≠ 𝑋) |
| 155 | 154 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ 𝑥 ∈ 𝐶) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})⟶𝐵) → 𝑥 ≠ 𝑋) |
| 156 | | pm2.27 42 |
. . . . . . . . . . . . 13
⊢ (𝑥 ≠ 𝑋 → ((𝑥 ≠ 𝑋 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑥) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑋)) → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑥) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑋))) |
| 157 | 155, 156 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ 𝑥 ∈ 𝐶) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})⟶𝐵) → ((𝑥 ≠ 𝑋 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑥) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑋)) → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑥) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑋))) |
| 158 | 134 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ (𝐶 ∪ {𝑋})) |
| 159 | 158 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ 𝑥 ∈ 𝐶) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})⟶𝐵) → 𝑥 ∈ (𝐶 ∪ {𝑋})) |
| 160 | 159 | fvresd 6907 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ 𝑥 ∈ 𝐶) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})⟶𝐵) → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑥) = (𝐹‘𝑥)) |
| 161 | 135, 137 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑋 ∈ (𝐴 ∖ 𝐶) → 𝑋 ∈ (𝐶 ∪ {𝑋})) |
| 162 | 161 | 3ad2ant2 1134 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → 𝑋 ∈ (𝐶 ∪ {𝑋})) |
| 163 | 162 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ 𝑥 ∈ 𝐶) → 𝑋 ∈ (𝐶 ∪ {𝑋})) |
| 164 | 163 | fvresd 6907 |
. . . . . . . . . . . . . 14
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ 𝑥 ∈ 𝐶) → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑋) = (𝐹‘𝑋)) |
| 165 | 164 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ 𝑥 ∈ 𝐶) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})⟶𝐵) → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑋) = (𝐹‘𝑋)) |
| 166 | 160, 165 | neeq12d 2992 |
. . . . . . . . . . . 12
⊢ ((((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ 𝑥 ∈ 𝐶) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})⟶𝐵) → (((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑥) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑋) ↔ (𝐹‘𝑥) ≠ (𝐹‘𝑋))) |
| 167 | 157, 166 | sylibd 239 |
. . . . . . . . . . 11
⊢ ((((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ 𝑥 ∈ 𝐶) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})⟶𝐵) → ((𝑥 ≠ 𝑋 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑥) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑋)) → (𝐹‘𝑥) ≠ (𝐹‘𝑋))) |
| 168 | 149, 167 | syld 47 |
. . . . . . . . . 10
⊢ ((((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ 𝑥 ∈ 𝐶) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})⟶𝐵) → (∀𝑦 ∈ (𝐶 ∪ {𝑋})∀𝑧 ∈ (𝐶 ∪ {𝑋})(𝑦 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)) → (𝐹‘𝑥) ≠ (𝐹‘𝑋))) |
| 169 | 168 | expimpd 453 |
. . . . . . . . 9
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ 𝑥 ∈ 𝐶) → (((𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})⟶𝐵 ∧ ∀𝑦 ∈ (𝐶 ∪ {𝑋})∀𝑧 ∈ (𝐶 ∪ {𝑋})(𝑦 ≠ 𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))) → (𝐹‘𝑥) ≠ (𝐹‘𝑋))) |
| 170 | 117, 169 | biimtrid 242 |
. . . . . . . 8
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ 𝑥 ∈ 𝐶) → ((𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1→𝐵 → (𝐹‘𝑥) ≠ (𝐹‘𝑋))) |
| 171 | 170 | impancom 451 |
. . . . . . 7
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1→𝐵) → (𝑥 ∈ 𝐶 → (𝐹‘𝑥) ≠ (𝐹‘𝑋))) |
| 172 | 171 | imp 406 |
. . . . . 6
⊢ ((((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1→𝐵) ∧ 𝑥 ∈ 𝐶) → (𝐹‘𝑥) ≠ (𝐹‘𝑋)) |
| 173 | 172 | neneqd 2936 |
. . . . 5
⊢ ((((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1→𝐵) ∧ 𝑥 ∈ 𝐶) → ¬ (𝐹‘𝑥) = (𝐹‘𝑋)) |
| 174 | 173 | ralrimiva 3133 |
. . . 4
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1→𝐵) → ∀𝑥 ∈ 𝐶 ¬ (𝐹‘𝑥) = (𝐹‘𝑋)) |
| 175 | 51 | adantr 480 |
. . . 4
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1→𝐵) → ((𝐹‘𝑋) ∉ (𝐹 “ 𝐶) ↔ ∀𝑥 ∈ 𝐶 ¬ (𝐹‘𝑥) = (𝐹‘𝑋))) |
| 176 | 174, 175 | mpbird 257 |
. . 3
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1→𝐵) → (𝐹‘𝑋) ∉ (𝐹 “ 𝐶)) |
| 177 | 133, 176 | jca 511 |
. 2
⊢ (((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1→𝐵) → ((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 ∧ (𝐹‘𝑋) ∉ (𝐹 “ 𝐶))) |
| 178 | 118, 177 | impbida 800 |
1
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ (𝐴 ∖ 𝐶) ∧ 𝐶 ⊆ 𝐴) → (((𝐹 ↾ 𝐶):𝐶–1-1→𝐵 ∧ (𝐹‘𝑋) ∉ (𝐹 “ 𝐶)) ↔ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1→𝐵)) |