MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resf1extb Structured version   Visualization version   GIF version

Theorem resf1extb 7961
Description: Extension of an injection which is a restriction of a function. (Contributed by AV, 3-Oct-2025.)
Assertion
Ref Expression
resf1extb ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → (((𝐹𝐶):𝐶1-1𝐵 ∧ (𝐹𝑋) ∉ (𝐹𝐶)) ↔ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1𝐵))

Proof of Theorem resf1extb
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . . 5 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → 𝐹:𝐴𝐵)
2 simp3 1138 . . . . . 6 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → 𝐶𝐴)
3 eldifi 4142 . . . . . . . 8 (𝑋 ∈ (𝐴𝐶) → 𝑋𝐴)
43snssd 4815 . . . . . . 7 (𝑋 ∈ (𝐴𝐶) → {𝑋} ⊆ 𝐴)
543ad2ant2 1134 . . . . . 6 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → {𝑋} ⊆ 𝐴)
62, 5unssd 4203 . . . . 5 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → (𝐶 ∪ {𝑋}) ⊆ 𝐴)
71, 6fssresd 6780 . . . 4 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})⟶𝐵)
87adantr 480 . . 3 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ ((𝐹𝐶):𝐶1-1𝐵 ∧ (𝐹𝑋) ∉ (𝐹𝐶))) → (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})⟶𝐵)
9 elun 4164 . . . . . 6 (𝑦 ∈ (𝐶 ∪ {𝑋}) ↔ (𝑦𝐶𝑦 ∈ {𝑋}))
10 elun 4164 . . . . . 6 (𝑧 ∈ (𝐶 ∪ {𝑋}) ↔ (𝑧𝐶𝑧 ∈ {𝑋}))
119, 10anbi12i 628 . . . . 5 ((𝑦 ∈ (𝐶 ∪ {𝑋}) ∧ 𝑧 ∈ (𝐶 ∪ {𝑋})) ↔ ((𝑦𝐶𝑦 ∈ {𝑋}) ∧ (𝑧𝐶𝑧 ∈ {𝑋})))
12 dff14a 7294 . . . . . . . . 9 ((𝐹𝐶):𝐶1-1𝐵 ↔ ((𝐹𝐶):𝐶𝐵 ∧ ∀𝑤𝐶𝑥𝐶 (𝑤𝑥 → ((𝐹𝐶)‘𝑤) ≠ ((𝐹𝐶)‘𝑥))))
13 neeq1 3002 . . . . . . . . . . . . . 14 (𝑤 = 𝑦 → (𝑤𝑥𝑦𝑥))
14 fveq2 6911 . . . . . . . . . . . . . . 15 (𝑤 = 𝑦 → ((𝐹𝐶)‘𝑤) = ((𝐹𝐶)‘𝑦))
1514neeq1d 2999 . . . . . . . . . . . . . 14 (𝑤 = 𝑦 → (((𝐹𝐶)‘𝑤) ≠ ((𝐹𝐶)‘𝑥) ↔ ((𝐹𝐶)‘𝑦) ≠ ((𝐹𝐶)‘𝑥)))
1613, 15imbi12d 344 . . . . . . . . . . . . 13 (𝑤 = 𝑦 → ((𝑤𝑥 → ((𝐹𝐶)‘𝑤) ≠ ((𝐹𝐶)‘𝑥)) ↔ (𝑦𝑥 → ((𝐹𝐶)‘𝑦) ≠ ((𝐹𝐶)‘𝑥))))
17 neeq2 3003 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑦𝑥𝑦𝑧))
18 fveq2 6911 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ((𝐹𝐶)‘𝑥) = ((𝐹𝐶)‘𝑧))
1918neeq2d 3000 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (((𝐹𝐶)‘𝑦) ≠ ((𝐹𝐶)‘𝑥) ↔ ((𝐹𝐶)‘𝑦) ≠ ((𝐹𝐶)‘𝑧)))
2017, 19imbi12d 344 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((𝑦𝑥 → ((𝐹𝐶)‘𝑦) ≠ ((𝐹𝐶)‘𝑥)) ↔ (𝑦𝑧 → ((𝐹𝐶)‘𝑦) ≠ ((𝐹𝐶)‘𝑧))))
2116, 20rspc2v 3634 . . . . . . . . . . . 12 ((𝑦𝐶𝑧𝐶) → (∀𝑤𝐶𝑥𝐶 (𝑤𝑥 → ((𝐹𝐶)‘𝑤) ≠ ((𝐹𝐶)‘𝑥)) → (𝑦𝑧 → ((𝐹𝐶)‘𝑦) ≠ ((𝐹𝐶)‘𝑧))))
22 simpl 482 . . . . . . . . . . . . . . . . . 18 ((𝑦𝐶𝑧𝐶) → 𝑦𝐶)
2322fvresd 6931 . . . . . . . . . . . . . . . . 17 ((𝑦𝐶𝑧𝐶) → ((𝐹𝐶)‘𝑦) = (𝐹𝑦))
24 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝑦𝐶𝑧𝐶) → 𝑧𝐶)
2524fvresd 6931 . . . . . . . . . . . . . . . . 17 ((𝑦𝐶𝑧𝐶) → ((𝐹𝐶)‘𝑧) = (𝐹𝑧))
2623, 25neeq12d 3001 . . . . . . . . . . . . . . . 16 ((𝑦𝐶𝑧𝐶) → (((𝐹𝐶)‘𝑦) ≠ ((𝐹𝐶)‘𝑧) ↔ (𝐹𝑦) ≠ (𝐹𝑧)))
2726imbi2d 340 . . . . . . . . . . . . . . 15 ((𝑦𝐶𝑧𝐶) → ((𝑦𝑧 → ((𝐹𝐶)‘𝑦) ≠ ((𝐹𝐶)‘𝑧)) ↔ (𝑦𝑧 → (𝐹𝑦) ≠ (𝐹𝑧))))
2827bi23imp13 1115 . . . . . . . . . . . . . 14 (((𝑦𝐶𝑧𝐶) ∧ (𝑦𝑧 → ((𝐹𝐶)‘𝑦) ≠ ((𝐹𝐶)‘𝑧)) ∧ 𝑦𝑧) → (𝐹𝑦) ≠ (𝐹𝑧))
29 elun1 4193 . . . . . . . . . . . . . . . . . 18 (𝑦𝐶𝑦 ∈ (𝐶 ∪ {𝑋}))
3029adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑦𝐶𝑧𝐶) → 𝑦 ∈ (𝐶 ∪ {𝑋}))
3130fvresd 6931 . . . . . . . . . . . . . . . 16 ((𝑦𝐶𝑧𝐶) → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) = (𝐹𝑦))
32 elun1 4193 . . . . . . . . . . . . . . . . . 18 (𝑧𝐶𝑧 ∈ (𝐶 ∪ {𝑋}))
3332adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑦𝐶𝑧𝐶) → 𝑧 ∈ (𝐶 ∪ {𝑋}))
3433fvresd 6931 . . . . . . . . . . . . . . . 16 ((𝑦𝐶𝑧𝐶) → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧) = (𝐹𝑧))
3531, 34neeq12d 3001 . . . . . . . . . . . . . . 15 ((𝑦𝐶𝑧𝐶) → (((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧) ↔ (𝐹𝑦) ≠ (𝐹𝑧)))
36353ad2ant1 1133 . . . . . . . . . . . . . 14 (((𝑦𝐶𝑧𝐶) ∧ (𝑦𝑧 → ((𝐹𝐶)‘𝑦) ≠ ((𝐹𝐶)‘𝑧)) ∧ 𝑦𝑧) → (((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧) ↔ (𝐹𝑦) ≠ (𝐹𝑧)))
3728, 36mpbird 257 . . . . . . . . . . . . 13 (((𝑦𝐶𝑧𝐶) ∧ (𝑦𝑧 → ((𝐹𝐶)‘𝑦) ≠ ((𝐹𝐶)‘𝑧)) ∧ 𝑦𝑧) → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))
38373exp 1119 . . . . . . . . . . . 12 ((𝑦𝐶𝑧𝐶) → ((𝑦𝑧 → ((𝐹𝐶)‘𝑦) ≠ ((𝐹𝐶)‘𝑧)) → (𝑦𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))))
3921, 38syldc 48 . . . . . . . . . . 11 (∀𝑤𝐶𝑥𝐶 (𝑤𝑥 → ((𝐹𝐶)‘𝑤) ≠ ((𝐹𝐶)‘𝑥)) → ((𝑦𝐶𝑧𝐶) → (𝑦𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))))
4039adantl 481 . . . . . . . . . 10 (((𝐹𝐶):𝐶𝐵 ∧ ∀𝑤𝐶𝑥𝐶 (𝑤𝑥 → ((𝐹𝐶)‘𝑤) ≠ ((𝐹𝐶)‘𝑥))) → ((𝑦𝐶𝑧𝐶) → (𝑦𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))))
4140a1i 11 . . . . . . . . 9 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → (((𝐹𝐶):𝐶𝐵 ∧ ∀𝑤𝐶𝑥𝐶 (𝑤𝑥 → ((𝐹𝐶)‘𝑤) ≠ ((𝐹𝐶)‘𝑥))) → ((𝑦𝐶𝑧𝐶) → (𝑦𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)))))
4212, 41biimtrid 242 . . . . . . . 8 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → ((𝐹𝐶):𝐶1-1𝐵 → ((𝑦𝐶𝑧𝐶) → (𝑦𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)))))
4342a1dd 50 . . . . . . 7 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → ((𝐹𝐶):𝐶1-1𝐵 → ((𝐹𝑋) ∉ (𝐹𝐶) → ((𝑦𝐶𝑧𝐶) → (𝑦𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))))))
4443imp32 418 . . . . . 6 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ ((𝐹𝐶):𝐶1-1𝐵 ∧ (𝐹𝑋) ∉ (𝐹𝐶))) → ((𝑦𝐶𝑧𝐶) → (𝑦𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))))
45 ffn 6741 . . . . . . . . . . . . 13 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
46453ad2ant1 1133 . . . . . . . . . . . 12 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → 𝐹 Fn 𝐴)
4746, 2fvelimabd 6986 . . . . . . . . . . 11 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → ((𝐹𝑋) ∈ (𝐹𝐶) ↔ ∃𝑥𝐶 (𝐹𝑥) = (𝐹𝑋)))
4847notbid 318 . . . . . . . . . 10 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → (¬ (𝐹𝑋) ∈ (𝐹𝐶) ↔ ¬ ∃𝑥𝐶 (𝐹𝑥) = (𝐹𝑋)))
49 df-nel 3046 . . . . . . . . . 10 ((𝐹𝑋) ∉ (𝐹𝐶) ↔ ¬ (𝐹𝑋) ∈ (𝐹𝐶))
50 ralnex 3071 . . . . . . . . . 10 (∀𝑥𝐶 ¬ (𝐹𝑥) = (𝐹𝑋) ↔ ¬ ∃𝑥𝐶 (𝐹𝑥) = (𝐹𝑋))
5148, 49, 503bitr4g 314 . . . . . . . . 9 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → ((𝐹𝑋) ∉ (𝐹𝐶) ↔ ∀𝑥𝐶 ¬ (𝐹𝑥) = (𝐹𝑋)))
52 df-ne 2940 . . . . . . . . . . . . . . . 16 ((𝐹𝑥) ≠ (𝐹𝑋) ↔ ¬ (𝐹𝑥) = (𝐹𝑋))
53 fveq2 6911 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
5453neeq1d 2999 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → ((𝐹𝑥) ≠ (𝐹𝑋) ↔ (𝐹𝑧) ≠ (𝐹𝑋)))
5552, 54bitr3id 285 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (¬ (𝐹𝑥) = (𝐹𝑋) ↔ (𝐹𝑧) ≠ (𝐹𝑋)))
5655rspcv 3619 . . . . . . . . . . . . . 14 (𝑧𝐶 → (∀𝑥𝐶 ¬ (𝐹𝑥) = (𝐹𝑋) → (𝐹𝑧) ≠ (𝐹𝑋)))
5756ad2antll 729 . . . . . . . . . . . . 13 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝑦 ∈ {𝑋} ∧ 𝑧𝐶)) → (∀𝑥𝐶 ¬ (𝐹𝑥) = (𝐹𝑋) → (𝐹𝑧) ≠ (𝐹𝑋)))
5832ad2antll 729 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝑦 ∈ {𝑋} ∧ 𝑧𝐶)) → 𝑧 ∈ (𝐶 ∪ {𝑋}))
5958fvresd 6931 . . . . . . . . . . . . . . . . . . 19 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝑦 ∈ {𝑋} ∧ 𝑧𝐶)) → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧) = (𝐹𝑧))
6059eqcomd 2742 . . . . . . . . . . . . . . . . . 18 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝑦 ∈ {𝑋} ∧ 𝑧𝐶)) → (𝐹𝑧) = ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))
61 elsni 4649 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ {𝑋} → 𝑦 = 𝑋)
6261eqcomd 2742 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ {𝑋} → 𝑋 = 𝑦)
6362ad2antrl 728 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝑦 ∈ {𝑋} ∧ 𝑧𝐶)) → 𝑋 = 𝑦)
6463fveq2d 6915 . . . . . . . . . . . . . . . . . . 19 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝑦 ∈ {𝑋} ∧ 𝑧𝐶)) → (𝐹𝑋) = (𝐹𝑦))
65 elun2 4194 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ {𝑋} → 𝑦 ∈ (𝐶 ∪ {𝑋}))
6665ad2antrl 728 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝑦 ∈ {𝑋} ∧ 𝑧𝐶)) → 𝑦 ∈ (𝐶 ∪ {𝑋}))
6766fvresd 6931 . . . . . . . . . . . . . . . . . . 19 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝑦 ∈ {𝑋} ∧ 𝑧𝐶)) → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) = (𝐹𝑦))
6864, 67eqtr4d 2779 . . . . . . . . . . . . . . . . . 18 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝑦 ∈ {𝑋} ∧ 𝑧𝐶)) → (𝐹𝑋) = ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦))
6960, 68neeq12d 3001 . . . . . . . . . . . . . . . . 17 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝑦 ∈ {𝑋} ∧ 𝑧𝐶)) → ((𝐹𝑧) ≠ (𝐹𝑋) ↔ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦)))
7069biimpa 476 . . . . . . . . . . . . . . . 16 ((((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝑦 ∈ {𝑋} ∧ 𝑧𝐶)) ∧ (𝐹𝑧) ≠ (𝐹𝑋)) → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦))
7170necomd 2995 . . . . . . . . . . . . . . 15 ((((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝑦 ∈ {𝑋} ∧ 𝑧𝐶)) ∧ (𝐹𝑧) ≠ (𝐹𝑋)) → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))
7271a1d 25 . . . . . . . . . . . . . 14 ((((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝑦 ∈ {𝑋} ∧ 𝑧𝐶)) ∧ (𝐹𝑧) ≠ (𝐹𝑋)) → (𝑦𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)))
7372ex 412 . . . . . . . . . . . . 13 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝑦 ∈ {𝑋} ∧ 𝑧𝐶)) → ((𝐹𝑧) ≠ (𝐹𝑋) → (𝑦𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))))
7457, 73syld 47 . . . . . . . . . . . 12 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝑦 ∈ {𝑋} ∧ 𝑧𝐶)) → (∀𝑥𝐶 ¬ (𝐹𝑥) = (𝐹𝑋) → (𝑦𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))))
7574a1d 25 . . . . . . . . . . 11 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝑦 ∈ {𝑋} ∧ 𝑧𝐶)) → ((𝐹𝐶):𝐶1-1𝐵 → (∀𝑥𝐶 ¬ (𝐹𝑥) = (𝐹𝑋) → (𝑦𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)))))
7675ex 412 . . . . . . . . . 10 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → ((𝑦 ∈ {𝑋} ∧ 𝑧𝐶) → ((𝐹𝐶):𝐶1-1𝐵 → (∀𝑥𝐶 ¬ (𝐹𝑥) = (𝐹𝑋) → (𝑦𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))))))
7776com24 95 . . . . . . . . 9 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → (∀𝑥𝐶 ¬ (𝐹𝑥) = (𝐹𝑋) → ((𝐹𝐶):𝐶1-1𝐵 → ((𝑦 ∈ {𝑋} ∧ 𝑧𝐶) → (𝑦𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))))))
7851, 77sylbid 240 . . . . . . . 8 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → ((𝐹𝑋) ∉ (𝐹𝐶) → ((𝐹𝐶):𝐶1-1𝐵 → ((𝑦 ∈ {𝑋} ∧ 𝑧𝐶) → (𝑦𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))))))
7978impcomd 411 . . . . . . 7 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → (((𝐹𝐶):𝐶1-1𝐵 ∧ (𝐹𝑋) ∉ (𝐹𝐶)) → ((𝑦 ∈ {𝑋} ∧ 𝑧𝐶) → (𝑦𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)))))
8079imp 406 . . . . . 6 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ ((𝐹𝐶):𝐶1-1𝐵 ∧ (𝐹𝑋) ∉ (𝐹𝐶))) → ((𝑦 ∈ {𝑋} ∧ 𝑧𝐶) → (𝑦𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))))
81 fveq2 6911 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
8281neeq1d 2999 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → ((𝐹𝑥) ≠ (𝐹𝑋) ↔ (𝐹𝑦) ≠ (𝐹𝑋)))
8352, 82bitr3id 285 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (¬ (𝐹𝑥) = (𝐹𝑋) ↔ (𝐹𝑦) ≠ (𝐹𝑋)))
8483rspcv 3619 . . . . . . . . . . . . . 14 (𝑦𝐶 → (∀𝑥𝐶 ¬ (𝐹𝑥) = (𝐹𝑋) → (𝐹𝑦) ≠ (𝐹𝑋)))
8584ad2antrl 728 . . . . . . . . . . . . 13 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝑦𝐶𝑧 ∈ {𝑋})) → (∀𝑥𝐶 ¬ (𝐹𝑥) = (𝐹𝑋) → (𝐹𝑦) ≠ (𝐹𝑋)))
8629ad2antrl 728 . . . . . . . . . . . . . . . . . 18 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝑦𝐶𝑧 ∈ {𝑋})) → 𝑦 ∈ (𝐶 ∪ {𝑋}))
8786fvresd 6931 . . . . . . . . . . . . . . . . 17 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝑦𝐶𝑧 ∈ {𝑋})) → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) = (𝐹𝑦))
8887eqcomd 2742 . . . . . . . . . . . . . . . 16 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝑦𝐶𝑧 ∈ {𝑋})) → (𝐹𝑦) = ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦))
89 elsni 4649 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ {𝑋} → 𝑧 = 𝑋)
9089eqcomd 2742 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ {𝑋} → 𝑋 = 𝑧)
9190ad2antll 729 . . . . . . . . . . . . . . . . . 18 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝑦𝐶𝑧 ∈ {𝑋})) → 𝑋 = 𝑧)
9291fveq2d 6915 . . . . . . . . . . . . . . . . 17 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝑦𝐶𝑧 ∈ {𝑋})) → (𝐹𝑋) = (𝐹𝑧))
93 elun2 4194 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ {𝑋} → 𝑧 ∈ (𝐶 ∪ {𝑋}))
9493ad2antll 729 . . . . . . . . . . . . . . . . . 18 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝑦𝐶𝑧 ∈ {𝑋})) → 𝑧 ∈ (𝐶 ∪ {𝑋}))
9594fvresd 6931 . . . . . . . . . . . . . . . . 17 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝑦𝐶𝑧 ∈ {𝑋})) → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧) = (𝐹𝑧))
9692, 95eqtr4d 2779 . . . . . . . . . . . . . . . 16 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝑦𝐶𝑧 ∈ {𝑋})) → (𝐹𝑋) = ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))
9788, 96neeq12d 3001 . . . . . . . . . . . . . . 15 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝑦𝐶𝑧 ∈ {𝑋})) → ((𝐹𝑦) ≠ (𝐹𝑋) ↔ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)))
9897biimpd 229 . . . . . . . . . . . . . 14 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝑦𝐶𝑧 ∈ {𝑋})) → ((𝐹𝑦) ≠ (𝐹𝑋) → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)))
9998a1dd 50 . . . . . . . . . . . . 13 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝑦𝐶𝑧 ∈ {𝑋})) → ((𝐹𝑦) ≠ (𝐹𝑋) → (𝑦𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))))
10085, 99syld 47 . . . . . . . . . . . 12 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝑦𝐶𝑧 ∈ {𝑋})) → (∀𝑥𝐶 ¬ (𝐹𝑥) = (𝐹𝑋) → (𝑦𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))))
101100a1d 25 . . . . . . . . . . 11 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝑦𝐶𝑧 ∈ {𝑋})) → ((𝐹𝐶):𝐶1-1𝐵 → (∀𝑥𝐶 ¬ (𝐹𝑥) = (𝐹𝑋) → (𝑦𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)))))
102101ex 412 . . . . . . . . . 10 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → ((𝑦𝐶𝑧 ∈ {𝑋}) → ((𝐹𝐶):𝐶1-1𝐵 → (∀𝑥𝐶 ¬ (𝐹𝑥) = (𝐹𝑋) → (𝑦𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))))))
103102com24 95 . . . . . . . . 9 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → (∀𝑥𝐶 ¬ (𝐹𝑥) = (𝐹𝑋) → ((𝐹𝐶):𝐶1-1𝐵 → ((𝑦𝐶𝑧 ∈ {𝑋}) → (𝑦𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))))))
10451, 103sylbid 240 . . . . . . . 8 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → ((𝐹𝑋) ∉ (𝐹𝐶) → ((𝐹𝐶):𝐶1-1𝐵 → ((𝑦𝐶𝑧 ∈ {𝑋}) → (𝑦𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))))))
105104impcomd 411 . . . . . . 7 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → (((𝐹𝐶):𝐶1-1𝐵 ∧ (𝐹𝑋) ∉ (𝐹𝐶)) → ((𝑦𝐶𝑧 ∈ {𝑋}) → (𝑦𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)))))
106105imp 406 . . . . . 6 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ ((𝐹𝐶):𝐶1-1𝐵 ∧ (𝐹𝑋) ∉ (𝐹𝐶))) → ((𝑦𝐶𝑧 ∈ {𝑋}) → (𝑦𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))))
107 velsn 4648 . . . . . . . 8 (𝑦 ∈ {𝑋} ↔ 𝑦 = 𝑋)
108 velsn 4648 . . . . . . . 8 (𝑧 ∈ {𝑋} ↔ 𝑧 = 𝑋)
109 eqtr3 2762 . . . . . . . . 9 ((𝑦 = 𝑋𝑧 = 𝑋) → 𝑦 = 𝑧)
110 eqneqall 2950 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑦𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)))
111109, 110syl 17 . . . . . . . 8 ((𝑦 = 𝑋𝑧 = 𝑋) → (𝑦𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)))
112107, 108, 111syl2anb 598 . . . . . . 7 ((𝑦 ∈ {𝑋} ∧ 𝑧 ∈ {𝑋}) → (𝑦𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)))
113112a1i 11 . . . . . 6 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ ((𝐹𝐶):𝐶1-1𝐵 ∧ (𝐹𝑋) ∉ (𝐹𝐶))) → ((𝑦 ∈ {𝑋} ∧ 𝑧 ∈ {𝑋}) → (𝑦𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))))
11444, 80, 106, 113ccased 1038 . . . . 5 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ ((𝐹𝐶):𝐶1-1𝐵 ∧ (𝐹𝑋) ∉ (𝐹𝐶))) → (((𝑦𝐶𝑦 ∈ {𝑋}) ∧ (𝑧𝐶𝑧 ∈ {𝑋})) → (𝑦𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))))
11511, 114biimtrid 242 . . . 4 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ ((𝐹𝐶):𝐶1-1𝐵 ∧ (𝐹𝑋) ∉ (𝐹𝐶))) → ((𝑦 ∈ (𝐶 ∪ {𝑋}) ∧ 𝑧 ∈ (𝐶 ∪ {𝑋})) → (𝑦𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))))
116115ralrimivv 3199 . . 3 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ ((𝐹𝐶):𝐶1-1𝐵 ∧ (𝐹𝑋) ∉ (𝐹𝐶))) → ∀𝑦 ∈ (𝐶 ∪ {𝑋})∀𝑧 ∈ (𝐶 ∪ {𝑋})(𝑦𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)))
117 dff14a 7294 . . 3 ((𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1𝐵 ↔ ((𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})⟶𝐵 ∧ ∀𝑦 ∈ (𝐶 ∪ {𝑋})∀𝑧 ∈ (𝐶 ∪ {𝑋})(𝑦𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))))
1188, 116, 117sylanbrc 583 . 2 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ ((𝐹𝐶):𝐶1-1𝐵 ∧ (𝐹𝑋) ∉ (𝐹𝐶))) → (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1𝐵)
119 fssres 6779 . . . . . 6 ((𝐹:𝐴𝐵𝐶𝐴) → (𝐹𝐶):𝐶𝐵)
1201193adant2 1131 . . . . 5 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → (𝐹𝐶):𝐶𝐵)
121120adantr 480 . . . 4 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1𝐵) → (𝐹𝐶):𝐶𝐵)
122 df-f1 6571 . . . . . . 7 ((𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1𝐵 ↔ ((𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})⟶𝐵 ∧ Fun (𝐹 ↾ (𝐶 ∪ {𝑋}))))
123 funres11 6648 . . . . . . 7 (Fun (𝐹 ↾ (𝐶 ∪ {𝑋})) → Fun ((𝐹 ↾ (𝐶 ∪ {𝑋})) ↾ 𝐶))
124122, 123simplbiim 504 . . . . . 6 ((𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1𝐵 → Fun ((𝐹 ↾ (𝐶 ∪ {𝑋})) ↾ 𝐶))
125124adantl 481 . . . . 5 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1𝐵) → Fun ((𝐹 ↾ (𝐶 ∪ {𝑋})) ↾ 𝐶))
126 ssun1 4189 . . . . . . . . 9 𝐶 ⊆ (𝐶 ∪ {𝑋})
127126resabs1i 6029 . . . . . . . 8 ((𝐹 ↾ (𝐶 ∪ {𝑋})) ↾ 𝐶) = (𝐹𝐶)
128127eqcomi 2745 . . . . . . 7 (𝐹𝐶) = ((𝐹 ↾ (𝐶 ∪ {𝑋})) ↾ 𝐶)
129128cnveqi 5889 . . . . . 6 (𝐹𝐶) = ((𝐹 ↾ (𝐶 ∪ {𝑋})) ↾ 𝐶)
130129funeqi 6592 . . . . 5 (Fun (𝐹𝐶) ↔ Fun ((𝐹 ↾ (𝐶 ∪ {𝑋})) ↾ 𝐶))
131125, 130sylibr 234 . . . 4 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1𝐵) → Fun (𝐹𝐶))
132 df-f1 6571 . . . 4 ((𝐹𝐶):𝐶1-1𝐵 ↔ ((𝐹𝐶):𝐶𝐵 ∧ Fun (𝐹𝐶)))
133121, 131, 132sylanbrc 583 . . 3 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1𝐵) → (𝐹𝐶):𝐶1-1𝐵)
134 elun1 4193 . . . . . . . . . . . . 13 (𝑥𝐶𝑥 ∈ (𝐶 ∪ {𝑋}))
135 snidg 4666 . . . . . . . . . . . . . . 15 (𝑋 ∈ (𝐴𝐶) → 𝑋 ∈ {𝑋})
1361353ad2ant2 1134 . . . . . . . . . . . . . 14 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → 𝑋 ∈ {𝑋})
137 elun2 4194 . . . . . . . . . . . . . 14 (𝑋 ∈ {𝑋} → 𝑋 ∈ (𝐶 ∪ {𝑋}))
138136, 137syl 17 . . . . . . . . . . . . 13 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → 𝑋 ∈ (𝐶 ∪ {𝑋}))
139 neeq1 3002 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → (𝑦𝑧𝑥𝑧))
140 fveq2 6911 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) = ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑥))
141140neeq1d 2999 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → (((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧) ↔ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑥) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)))
142139, 141imbi12d 344 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → ((𝑦𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)) ↔ (𝑥𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑥) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))))
143 neeq2 3003 . . . . . . . . . . . . . . 15 (𝑧 = 𝑋 → (𝑥𝑧𝑥𝑋))
144 fveq2 6911 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑋 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧) = ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑋))
145144neeq2d 3000 . . . . . . . . . . . . . . 15 (𝑧 = 𝑋 → (((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑥) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧) ↔ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑥) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑋)))
146143, 145imbi12d 344 . . . . . . . . . . . . . 14 (𝑧 = 𝑋 → ((𝑥𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑥) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)) ↔ (𝑥𝑋 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑥) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑋))))
147142, 146rspc2v 3634 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝐶 ∪ {𝑋}) ∧ 𝑋 ∈ (𝐶 ∪ {𝑋})) → (∀𝑦 ∈ (𝐶 ∪ {𝑋})∀𝑧 ∈ (𝐶 ∪ {𝑋})(𝑦𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)) → (𝑥𝑋 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑥) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑋))))
148134, 138, 147syl2anr 597 . . . . . . . . . . . 12 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ 𝑥𝐶) → (∀𝑦 ∈ (𝐶 ∪ {𝑋})∀𝑧 ∈ (𝐶 ∪ {𝑋})(𝑦𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)) → (𝑥𝑋 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑥) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑋))))
149148adantr 480 . . . . . . . . . . 11 ((((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ 𝑥𝐶) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})⟶𝐵) → (∀𝑦 ∈ (𝐶 ∪ {𝑋})∀𝑧 ∈ (𝐶 ∪ {𝑋})(𝑦𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)) → (𝑥𝑋 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑥) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑋))))
150 eldifn 4143 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ (𝐴𝐶) → ¬ 𝑋𝐶)
151 nelelne 3040 . . . . . . . . . . . . . . . . 17 𝑋𝐶 → (𝑥𝐶𝑥𝑋))
152150, 151syl 17 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (𝐴𝐶) → (𝑥𝐶𝑥𝑋))
1531523ad2ant2 1134 . . . . . . . . . . . . . . 15 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → (𝑥𝐶𝑥𝑋))
154153imp 406 . . . . . . . . . . . . . 14 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ 𝑥𝐶) → 𝑥𝑋)
155154adantr 480 . . . . . . . . . . . . 13 ((((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ 𝑥𝐶) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})⟶𝐵) → 𝑥𝑋)
156 pm2.27 42 . . . . . . . . . . . . 13 (𝑥𝑋 → ((𝑥𝑋 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑥) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑋)) → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑥) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑋)))
157155, 156syl 17 . . . . . . . . . . . 12 ((((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ 𝑥𝐶) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})⟶𝐵) → ((𝑥𝑋 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑥) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑋)) → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑥) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑋)))
158134adantl 481 . . . . . . . . . . . . . . 15 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ 𝑥𝐶) → 𝑥 ∈ (𝐶 ∪ {𝑋}))
159158adantr 480 . . . . . . . . . . . . . 14 ((((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ 𝑥𝐶) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})⟶𝐵) → 𝑥 ∈ (𝐶 ∪ {𝑋}))
160159fvresd 6931 . . . . . . . . . . . . 13 ((((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ 𝑥𝐶) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})⟶𝐵) → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑥) = (𝐹𝑥))
161135, 137syl 17 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ (𝐴𝐶) → 𝑋 ∈ (𝐶 ∪ {𝑋}))
1621613ad2ant2 1134 . . . . . . . . . . . . . . . 16 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → 𝑋 ∈ (𝐶 ∪ {𝑋}))
163162adantr 480 . . . . . . . . . . . . . . 15 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ 𝑥𝐶) → 𝑋 ∈ (𝐶 ∪ {𝑋}))
164163fvresd 6931 . . . . . . . . . . . . . 14 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ 𝑥𝐶) → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑋) = (𝐹𝑋))
165164adantr 480 . . . . . . . . . . . . 13 ((((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ 𝑥𝐶) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})⟶𝐵) → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑋) = (𝐹𝑋))
166160, 165neeq12d 3001 . . . . . . . . . . . 12 ((((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ 𝑥𝐶) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})⟶𝐵) → (((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑥) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑋) ↔ (𝐹𝑥) ≠ (𝐹𝑋)))
167157, 166sylibd 239 . . . . . . . . . . 11 ((((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ 𝑥𝐶) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})⟶𝐵) → ((𝑥𝑋 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑥) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑋)) → (𝐹𝑥) ≠ (𝐹𝑋)))
168149, 167syld 47 . . . . . . . . . 10 ((((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ 𝑥𝐶) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})⟶𝐵) → (∀𝑦 ∈ (𝐶 ∪ {𝑋})∀𝑧 ∈ (𝐶 ∪ {𝑋})(𝑦𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧)) → (𝐹𝑥) ≠ (𝐹𝑋)))
169168expimpd 453 . . . . . . . . 9 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ 𝑥𝐶) → (((𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})⟶𝐵 ∧ ∀𝑦 ∈ (𝐶 ∪ {𝑋})∀𝑧 ∈ (𝐶 ∪ {𝑋})(𝑦𝑧 → ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑦) ≠ ((𝐹 ↾ (𝐶 ∪ {𝑋}))‘𝑧))) → (𝐹𝑥) ≠ (𝐹𝑋)))
170117, 169biimtrid 242 . . . . . . . 8 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ 𝑥𝐶) → ((𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1𝐵 → (𝐹𝑥) ≠ (𝐹𝑋)))
171170impancom 451 . . . . . . 7 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1𝐵) → (𝑥𝐶 → (𝐹𝑥) ≠ (𝐹𝑋)))
172171imp 406 . . . . . 6 ((((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1𝐵) ∧ 𝑥𝐶) → (𝐹𝑥) ≠ (𝐹𝑋))
173172neneqd 2944 . . . . 5 ((((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1𝐵) ∧ 𝑥𝐶) → ¬ (𝐹𝑥) = (𝐹𝑋))
174173ralrimiva 3145 . . . 4 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1𝐵) → ∀𝑥𝐶 ¬ (𝐹𝑥) = (𝐹𝑋))
17551adantr 480 . . . 4 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1𝐵) → ((𝐹𝑋) ∉ (𝐹𝐶) ↔ ∀𝑥𝐶 ¬ (𝐹𝑥) = (𝐹𝑋)))
176174, 175mpbird 257 . . 3 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1𝐵) → (𝐹𝑋) ∉ (𝐹𝐶))
177133, 176jca 511 . 2 (((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) ∧ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1𝐵) → ((𝐹𝐶):𝐶1-1𝐵 ∧ (𝐹𝑋) ∉ (𝐹𝐶)))
178118, 177impbida 801 1 ((𝐹:𝐴𝐵𝑋 ∈ (𝐴𝐶) ∧ 𝐶𝐴) → (((𝐹𝐶):𝐶1-1𝐵 ∧ (𝐹𝑋) ∉ (𝐹𝐶)) ↔ (𝐹 ↾ (𝐶 ∪ {𝑋})):(𝐶 ∪ {𝑋})–1-1𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1538  wcel 2107  wne 2939  wnel 3045  wral 3060  wrex 3069  cdif 3961  cun 3962  wss 3964  {csn 4632  ccnv 5689  cres 5692  cima 5693  Fun wfun 6560   Fn wfn 6561  wf 6562  1-1wf1 6563  cfv 6566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5303  ax-nul 5313  ax-pr 5439
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rab 3435  df-v 3481  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-nul 4341  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-br 5150  df-opab 5212  df-id 5584  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fv 6574
This theorem is referenced by:  resf1ext2b  7962
  Copyright terms: Public domain W3C validator