Mathbox for Mario Carneiro < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem9a Structured version   Visualization version   GIF version

Theorem cvmlift2lem9a 32664
 Description: Lemma for cvmlift2 32677 and cvmlift3 32689. (Contributed by Mario Carneiro, 9-Jul-2015.)
Hypotheses
Ref Expression
cvmlift2lem9a.b 𝐵 = 𝐶
cvmlift2lem9a.y 𝑌 = 𝐾
cvmlift2lem9a.s 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
cvmlift2lem9a.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift2lem9a.h (𝜑𝐻:𝑌𝐵)
cvmlift2lem9a.g (𝜑 → (𝐹𝐻) ∈ (𝐾 Cn 𝐽))
cvmlift2lem9a.k (𝜑𝐾 ∈ Top)
cvmlift2lem9a.1 (𝜑𝑋𝑌)
cvmlift2lem9a.2 (𝜑𝑇 ∈ (𝑆𝐴))
cvmlift2lem9a.3 (𝜑 → (𝑊𝑇 ∧ (𝐻𝑋) ∈ 𝑊))
cvmlift2lem9a.4 (𝜑𝑀𝑌)
cvmlift2lem9a.6 (𝜑 → (𝐻𝑀) ⊆ 𝑊)
Assertion
Ref Expression
cvmlift2lem9a (𝜑 → (𝐻𝑀) ∈ ((𝐾t 𝑀) Cn 𝐶))
Distinct variable groups:   𝑐,𝑑,𝑘,𝑠,𝐴   𝐹,𝑐,𝑑,𝑘,𝑠   𝐽,𝑐,𝑑,𝑘,𝑠   𝑇,𝑐,𝑑,𝑠   𝐶,𝑐,𝑑,𝑘,𝑠   𝑊,𝑐,𝑑
Allowed substitution hints:   𝜑(𝑘,𝑠,𝑐,𝑑)   𝐵(𝑘,𝑠,𝑐,𝑑)   𝑆(𝑘,𝑠,𝑐,𝑑)   𝑇(𝑘)   𝐻(𝑘,𝑠,𝑐,𝑑)   𝐾(𝑘,𝑠,𝑐,𝑑)   𝑀(𝑘,𝑠,𝑐,𝑑)   𝑊(𝑘,𝑠)   𝑋(𝑘,𝑠,𝑐,𝑑)   𝑌(𝑘,𝑠,𝑐,𝑑)

Proof of Theorem cvmlift2lem9a
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cvmlift2lem9a.f . . . 4 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
2 cvmtop1 32621 . . . 4 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
31, 2syl 17 . . 3 (𝜑𝐶 ∈ Top)
4 cnrest2r 21896 . . 3 (𝐶 ∈ Top → ((𝐾t 𝑀) Cn (𝐶t 𝑊)) ⊆ ((𝐾t 𝑀) Cn 𝐶))
53, 4syl 17 . 2 (𝜑 → ((𝐾t 𝑀) Cn (𝐶t 𝑊)) ⊆ ((𝐾t 𝑀) Cn 𝐶))
6 cvmlift2lem9a.h . . . . . 6 (𝜑𝐻:𝑌𝐵)
76ffnd 6492 . . . . 5 (𝜑𝐻 Fn 𝑌)
8 cvmlift2lem9a.4 . . . . 5 (𝜑𝑀𝑌)
9 fnssres 6446 . . . . 5 ((𝐻 Fn 𝑌𝑀𝑌) → (𝐻𝑀) Fn 𝑀)
107, 8, 9syl2anc 587 . . . 4 (𝜑 → (𝐻𝑀) Fn 𝑀)
11 df-ima 5536 . . . . 5 (𝐻𝑀) = ran (𝐻𝑀)
12 cvmlift2lem9a.6 . . . . 5 (𝜑 → (𝐻𝑀) ⊆ 𝑊)
1311, 12eqsstrrid 3967 . . . 4 (𝜑 → ran (𝐻𝑀) ⊆ 𝑊)
14 df-f 6332 . . . 4 ((𝐻𝑀):𝑀𝑊 ↔ ((𝐻𝑀) Fn 𝑀 ∧ ran (𝐻𝑀) ⊆ 𝑊))
1510, 13, 14sylanbrc 586 . . 3 (𝜑 → (𝐻𝑀):𝑀𝑊)
16 cvmlift2lem9a.2 . . . . . . . . . . 11 (𝜑𝑇 ∈ (𝑆𝐴))
17 cvmlift2lem9a.3 . . . . . . . . . . . 12 (𝜑 → (𝑊𝑇 ∧ (𝐻𝑋) ∈ 𝑊))
1817simpld 498 . . . . . . . . . . 11 (𝜑𝑊𝑇)
19 cvmlift2lem9a.s . . . . . . . . . . . 12 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
2019cvmsf1o 32633 . . . . . . . . . . 11 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝐴) ∧ 𝑊𝑇) → (𝐹𝑊):𝑊1-1-onto𝐴)
211, 16, 18, 20syl3anc 1368 . . . . . . . . . 10 (𝜑 → (𝐹𝑊):𝑊1-1-onto𝐴)
2221adantr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → (𝐹𝑊):𝑊1-1-onto𝐴)
23 f1of1 6593 . . . . . . . . 9 ((𝐹𝑊):𝑊1-1-onto𝐴 → (𝐹𝑊):𝑊1-1𝐴)
2422, 23syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → (𝐹𝑊):𝑊1-1𝐴)
25 cvmlift2lem9a.b . . . . . . . . . . . 12 𝐵 = 𝐶
2625toptopon 21526 . . . . . . . . . . 11 (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘𝐵))
273, 26sylib 221 . . . . . . . . . 10 (𝜑𝐶 ∈ (TopOn‘𝐵))
2819cvmsss 32628 . . . . . . . . . . . . 13 (𝑇 ∈ (𝑆𝐴) → 𝑇𝐶)
2916, 28syl 17 . . . . . . . . . . . 12 (𝜑𝑇𝐶)
3029, 18sseldd 3919 . . . . . . . . . . 11 (𝜑𝑊𝐶)
31 toponss 21536 . . . . . . . . . . 11 ((𝐶 ∈ (TopOn‘𝐵) ∧ 𝑊𝐶) → 𝑊𝐵)
3227, 30, 31syl2anc 587 . . . . . . . . . 10 (𝜑𝑊𝐵)
33 resttopon 21770 . . . . . . . . . 10 ((𝐶 ∈ (TopOn‘𝐵) ∧ 𝑊𝐵) → (𝐶t 𝑊) ∈ (TopOn‘𝑊))
3427, 32, 33syl2anc 587 . . . . . . . . 9 (𝜑 → (𝐶t 𝑊) ∈ (TopOn‘𝑊))
35 toponss 21536 . . . . . . . . 9 (((𝐶t 𝑊) ∈ (TopOn‘𝑊) ∧ 𝑥 ∈ (𝐶t 𝑊)) → 𝑥𝑊)
3634, 35sylan 583 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → 𝑥𝑊)
37 f1imacnv 6610 . . . . . . . 8 (((𝐹𝑊):𝑊1-1𝐴𝑥𝑊) → ((𝐹𝑊) “ ((𝐹𝑊) “ 𝑥)) = 𝑥)
3824, 36, 37syl2anc 587 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐹𝑊) “ ((𝐹𝑊) “ 𝑥)) = 𝑥)
3938imaeq2d 5900 . . . . . 6 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐻𝑀) “ ((𝐹𝑊) “ ((𝐹𝑊) “ 𝑥))) = ((𝐻𝑀) “ 𝑥))
40 imaco 6075 . . . . . . 7 (((𝐻𝑀) ∘ (𝐹𝑊)) “ ((𝐹𝑊) “ 𝑥)) = ((𝐻𝑀) “ ((𝐹𝑊) “ ((𝐹𝑊) “ 𝑥)))
41 cnvco 5724 . . . . . . . . 9 ((𝐹𝑊) ∘ (𝐻𝑀)) = ((𝐻𝑀) ∘ (𝐹𝑊))
42 cores 6073 . . . . . . . . . . . . 13 (ran (𝐻𝑀) ⊆ 𝑊 → ((𝐹𝑊) ∘ (𝐻𝑀)) = (𝐹 ∘ (𝐻𝑀)))
4313, 42syl 17 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝑊) ∘ (𝐻𝑀)) = (𝐹 ∘ (𝐻𝑀)))
44 resco 6074 . . . . . . . . . . . 12 ((𝐹𝐻) ↾ 𝑀) = (𝐹 ∘ (𝐻𝑀))
4543, 44eqtr4di 2854 . . . . . . . . . . 11 (𝜑 → ((𝐹𝑊) ∘ (𝐻𝑀)) = ((𝐹𝐻) ↾ 𝑀))
4645adantr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐹𝑊) ∘ (𝐻𝑀)) = ((𝐹𝐻) ↾ 𝑀))
4746cnveqd 5714 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐹𝑊) ∘ (𝐻𝑀)) = ((𝐹𝐻) ↾ 𝑀))
4841, 47syl5eqr 2850 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐻𝑀) ∘ (𝐹𝑊)) = ((𝐹𝐻) ↾ 𝑀))
4948imaeq1d 5899 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → (((𝐻𝑀) ∘ (𝐹𝑊)) “ ((𝐹𝑊) “ 𝑥)) = (((𝐹𝐻) ↾ 𝑀) “ ((𝐹𝑊) “ 𝑥)))
5040, 49syl5eqr 2850 . . . . . 6 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐻𝑀) “ ((𝐹𝑊) “ ((𝐹𝑊) “ 𝑥))) = (((𝐹𝐻) ↾ 𝑀) “ ((𝐹𝑊) “ 𝑥)))
5139, 50eqtr3d 2838 . . . . 5 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐻𝑀) “ 𝑥) = (((𝐹𝐻) ↾ 𝑀) “ ((𝐹𝑊) “ 𝑥)))
52 cvmlift2lem9a.g . . . . . . . 8 (𝜑 → (𝐹𝐻) ∈ (𝐾 Cn 𝐽))
53 cvmlift2lem9a.y . . . . . . . . 9 𝑌 = 𝐾
5453cnrest 21894 . . . . . . . 8 (((𝐹𝐻) ∈ (𝐾 Cn 𝐽) ∧ 𝑀𝑌) → ((𝐹𝐻) ↾ 𝑀) ∈ ((𝐾t 𝑀) Cn 𝐽))
5552, 8, 54syl2anc 587 . . . . . . 7 (𝜑 → ((𝐹𝐻) ↾ 𝑀) ∈ ((𝐾t 𝑀) Cn 𝐽))
5655adantr 484 . . . . . 6 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐹𝐻) ↾ 𝑀) ∈ ((𝐾t 𝑀) Cn 𝐽))
57 resima2 5857 . . . . . . . 8 (𝑥𝑊 → ((𝐹𝑊) “ 𝑥) = (𝐹𝑥))
5836, 57syl 17 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐹𝑊) “ 𝑥) = (𝐹𝑥))
591adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
60 restopn2 21786 . . . . . . . . . 10 ((𝐶 ∈ Top ∧ 𝑊𝐶) → (𝑥 ∈ (𝐶t 𝑊) ↔ (𝑥𝐶𝑥𝑊)))
613, 30, 60syl2anc 587 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐶t 𝑊) ↔ (𝑥𝐶𝑥𝑊)))
6261simprbda 502 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → 𝑥𝐶)
63 cvmopn 32641 . . . . . . . 8 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ 𝐽)
6459, 62, 63syl2anc 587 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → (𝐹𝑥) ∈ 𝐽)
6558, 64eqeltrd 2893 . . . . . 6 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐹𝑊) “ 𝑥) ∈ 𝐽)
66 cnima 21874 . . . . . 6 ((((𝐹𝐻) ↾ 𝑀) ∈ ((𝐾t 𝑀) Cn 𝐽) ∧ ((𝐹𝑊) “ 𝑥) ∈ 𝐽) → (((𝐹𝐻) ↾ 𝑀) “ ((𝐹𝑊) “ 𝑥)) ∈ (𝐾t 𝑀))
6756, 65, 66syl2anc 587 . . . . 5 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → (((𝐹𝐻) ↾ 𝑀) “ ((𝐹𝑊) “ 𝑥)) ∈ (𝐾t 𝑀))
6851, 67eqeltrd 2893 . . . 4 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐻𝑀) “ 𝑥) ∈ (𝐾t 𝑀))
6968ralrimiva 3152 . . 3 (𝜑 → ∀𝑥 ∈ (𝐶t 𝑊)((𝐻𝑀) “ 𝑥) ∈ (𝐾t 𝑀))
70 cvmlift2lem9a.k . . . . . 6 (𝜑𝐾 ∈ Top)
7153toptopon 21526 . . . . . 6 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
7270, 71sylib 221 . . . . 5 (𝜑𝐾 ∈ (TopOn‘𝑌))
73 resttopon 21770 . . . . 5 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝑀𝑌) → (𝐾t 𝑀) ∈ (TopOn‘𝑀))
7472, 8, 73syl2anc 587 . . . 4 (𝜑 → (𝐾t 𝑀) ∈ (TopOn‘𝑀))
75 iscn 21844 . . . 4 (((𝐾t 𝑀) ∈ (TopOn‘𝑀) ∧ (𝐶t 𝑊) ∈ (TopOn‘𝑊)) → ((𝐻𝑀) ∈ ((𝐾t 𝑀) Cn (𝐶t 𝑊)) ↔ ((𝐻𝑀):𝑀𝑊 ∧ ∀𝑥 ∈ (𝐶t 𝑊)((𝐻𝑀) “ 𝑥) ∈ (𝐾t 𝑀))))
7674, 34, 75syl2anc 587 . . 3 (𝜑 → ((𝐻𝑀) ∈ ((𝐾t 𝑀) Cn (𝐶t 𝑊)) ↔ ((𝐻𝑀):𝑀𝑊 ∧ ∀𝑥 ∈ (𝐶t 𝑊)((𝐻𝑀) “ 𝑥) ∈ (𝐾t 𝑀))))
7715, 69, 76mpbir2and 712 . 2 (𝜑 → (𝐻𝑀) ∈ ((𝐾t 𝑀) Cn (𝐶t 𝑊)))
785, 77sseldd 3919 1 (𝜑 → (𝐻𝑀) ∈ ((𝐾t 𝑀) Cn 𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2112  ∀wral 3109  {crab 3113   ∖ cdif 3881   ∩ cin 3883   ⊆ wss 3884  ∅c0 4246  𝒫 cpw 4500  {csn 4528  ∪ cuni 4803   ↦ cmpt 5113  ◡ccnv 5522  ran crn 5524   ↾ cres 5525   “ cima 5526   ∘ ccom 5527   Fn wfn 6323  ⟶wf 6324  –1-1→wf1 6325  –1-1-onto→wf1o 6327  ‘cfv 6328  (class class class)co 7139   ↾t crest 16690  Topctop 21502  TopOnctopon 21519   Cn ccn 21833  Homeochmeo 22362   CovMap ccvm 32616 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-fin 8500  df-fi 8863  df-rest 16692  df-topgen 16713  df-top 21503  df-topon 21520  df-bases 21555  df-cn 21836  df-hmeo 22364  df-cvm 32617 This theorem is referenced by:  cvmlift2lem9  32672  cvmlift3lem7  32686
 Copyright terms: Public domain W3C validator