Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem9a Structured version   Visualization version   GIF version

Theorem cvmlift2lem9a 31884
Description: Lemma for cvmlift2 31897 and cvmlift3 31909. (Contributed by Mario Carneiro, 9-Jul-2015.)
Hypotheses
Ref Expression
cvmlift2lem9a.b 𝐵 = 𝐶
cvmlift2lem9a.y 𝑌 = 𝐾
cvmlift2lem9a.s 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
cvmlift2lem9a.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift2lem9a.h (𝜑𝐻:𝑌𝐵)
cvmlift2lem9a.g (𝜑 → (𝐹𝐻) ∈ (𝐾 Cn 𝐽))
cvmlift2lem9a.k (𝜑𝐾 ∈ Top)
cvmlift2lem9a.1 (𝜑𝑋𝑌)
cvmlift2lem9a.2 (𝜑𝑇 ∈ (𝑆𝐴))
cvmlift2lem9a.3 (𝜑 → (𝑊𝑇 ∧ (𝐻𝑋) ∈ 𝑊))
cvmlift2lem9a.4 (𝜑𝑀𝑌)
cvmlift2lem9a.6 (𝜑 → (𝐻𝑀) ⊆ 𝑊)
Assertion
Ref Expression
cvmlift2lem9a (𝜑 → (𝐻𝑀) ∈ ((𝐾t 𝑀) Cn 𝐶))
Distinct variable groups:   𝑐,𝑑,𝑘,𝑠,𝐴   𝐹,𝑐,𝑑,𝑘,𝑠   𝐽,𝑐,𝑑,𝑘,𝑠   𝑇,𝑐,𝑑,𝑠   𝐶,𝑐,𝑑,𝑘,𝑠   𝑊,𝑐,𝑑
Allowed substitution hints:   𝜑(𝑘,𝑠,𝑐,𝑑)   𝐵(𝑘,𝑠,𝑐,𝑑)   𝑆(𝑘,𝑠,𝑐,𝑑)   𝑇(𝑘)   𝐻(𝑘,𝑠,𝑐,𝑑)   𝐾(𝑘,𝑠,𝑐,𝑑)   𝑀(𝑘,𝑠,𝑐,𝑑)   𝑊(𝑘,𝑠)   𝑋(𝑘,𝑠,𝑐,𝑑)   𝑌(𝑘,𝑠,𝑐,𝑑)

Proof of Theorem cvmlift2lem9a
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cvmlift2lem9a.f . . . 4 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
2 cvmtop1 31841 . . . 4 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
31, 2syl 17 . . 3 (𝜑𝐶 ∈ Top)
4 cnrest2r 21499 . . 3 (𝐶 ∈ Top → ((𝐾t 𝑀) Cn (𝐶t 𝑊)) ⊆ ((𝐾t 𝑀) Cn 𝐶))
53, 4syl 17 . 2 (𝜑 → ((𝐾t 𝑀) Cn (𝐶t 𝑊)) ⊆ ((𝐾t 𝑀) Cn 𝐶))
6 cvmlift2lem9a.h . . . . . 6 (𝜑𝐻:𝑌𝐵)
76ffnd 6292 . . . . 5 (𝜑𝐻 Fn 𝑌)
8 cvmlift2lem9a.4 . . . . 5 (𝜑𝑀𝑌)
9 fnssres 6250 . . . . 5 ((𝐻 Fn 𝑌𝑀𝑌) → (𝐻𝑀) Fn 𝑀)
107, 8, 9syl2anc 579 . . . 4 (𝜑 → (𝐻𝑀) Fn 𝑀)
11 df-ima 5368 . . . . 5 (𝐻𝑀) = ran (𝐻𝑀)
12 cvmlift2lem9a.6 . . . . 5 (𝜑 → (𝐻𝑀) ⊆ 𝑊)
1311, 12syl5eqssr 3868 . . . 4 (𝜑 → ran (𝐻𝑀) ⊆ 𝑊)
14 df-f 6139 . . . 4 ((𝐻𝑀):𝑀𝑊 ↔ ((𝐻𝑀) Fn 𝑀 ∧ ran (𝐻𝑀) ⊆ 𝑊))
1510, 13, 14sylanbrc 578 . . 3 (𝜑 → (𝐻𝑀):𝑀𝑊)
16 cvmlift2lem9a.2 . . . . . . . . . . 11 (𝜑𝑇 ∈ (𝑆𝐴))
17 cvmlift2lem9a.3 . . . . . . . . . . . 12 (𝜑 → (𝑊𝑇 ∧ (𝐻𝑋) ∈ 𝑊))
1817simpld 490 . . . . . . . . . . 11 (𝜑𝑊𝑇)
19 cvmlift2lem9a.s . . . . . . . . . . . 12 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
2019cvmsf1o 31853 . . . . . . . . . . 11 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝐴) ∧ 𝑊𝑇) → (𝐹𝑊):𝑊1-1-onto𝐴)
211, 16, 18, 20syl3anc 1439 . . . . . . . . . 10 (𝜑 → (𝐹𝑊):𝑊1-1-onto𝐴)
2221adantr 474 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → (𝐹𝑊):𝑊1-1-onto𝐴)
23 f1of1 6390 . . . . . . . . 9 ((𝐹𝑊):𝑊1-1-onto𝐴 → (𝐹𝑊):𝑊1-1𝐴)
2422, 23syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → (𝐹𝑊):𝑊1-1𝐴)
25 cvmlift2lem9a.b . . . . . . . . . . . 12 𝐵 = 𝐶
2625toptopon 21129 . . . . . . . . . . 11 (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘𝐵))
273, 26sylib 210 . . . . . . . . . 10 (𝜑𝐶 ∈ (TopOn‘𝐵))
2819cvmsss 31848 . . . . . . . . . . . . 13 (𝑇 ∈ (𝑆𝐴) → 𝑇𝐶)
2916, 28syl 17 . . . . . . . . . . . 12 (𝜑𝑇𝐶)
3029, 18sseldd 3821 . . . . . . . . . . 11 (𝜑𝑊𝐶)
31 toponss 21139 . . . . . . . . . . 11 ((𝐶 ∈ (TopOn‘𝐵) ∧ 𝑊𝐶) → 𝑊𝐵)
3227, 30, 31syl2anc 579 . . . . . . . . . 10 (𝜑𝑊𝐵)
33 resttopon 21373 . . . . . . . . . 10 ((𝐶 ∈ (TopOn‘𝐵) ∧ 𝑊𝐵) → (𝐶t 𝑊) ∈ (TopOn‘𝑊))
3427, 32, 33syl2anc 579 . . . . . . . . 9 (𝜑 → (𝐶t 𝑊) ∈ (TopOn‘𝑊))
35 toponss 21139 . . . . . . . . 9 (((𝐶t 𝑊) ∈ (TopOn‘𝑊) ∧ 𝑥 ∈ (𝐶t 𝑊)) → 𝑥𝑊)
3634, 35sylan 575 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → 𝑥𝑊)
37 f1imacnv 6407 . . . . . . . 8 (((𝐹𝑊):𝑊1-1𝐴𝑥𝑊) → ((𝐹𝑊) “ ((𝐹𝑊) “ 𝑥)) = 𝑥)
3824, 36, 37syl2anc 579 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐹𝑊) “ ((𝐹𝑊) “ 𝑥)) = 𝑥)
3938imaeq2d 5720 . . . . . 6 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐻𝑀) “ ((𝐹𝑊) “ ((𝐹𝑊) “ 𝑥))) = ((𝐻𝑀) “ 𝑥))
40 imaco 5894 . . . . . . 7 (((𝐻𝑀) ∘ (𝐹𝑊)) “ ((𝐹𝑊) “ 𝑥)) = ((𝐻𝑀) “ ((𝐹𝑊) “ ((𝐹𝑊) “ 𝑥)))
41 cnvco 5553 . . . . . . . . 9 ((𝐹𝑊) ∘ (𝐻𝑀)) = ((𝐻𝑀) ∘ (𝐹𝑊))
42 cores 5892 . . . . . . . . . . . . 13 (ran (𝐻𝑀) ⊆ 𝑊 → ((𝐹𝑊) ∘ (𝐻𝑀)) = (𝐹 ∘ (𝐻𝑀)))
4313, 42syl 17 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝑊) ∘ (𝐻𝑀)) = (𝐹 ∘ (𝐻𝑀)))
44 resco 5893 . . . . . . . . . . . 12 ((𝐹𝐻) ↾ 𝑀) = (𝐹 ∘ (𝐻𝑀))
4543, 44syl6eqr 2831 . . . . . . . . . . 11 (𝜑 → ((𝐹𝑊) ∘ (𝐻𝑀)) = ((𝐹𝐻) ↾ 𝑀))
4645adantr 474 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐹𝑊) ∘ (𝐻𝑀)) = ((𝐹𝐻) ↾ 𝑀))
4746cnveqd 5543 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐹𝑊) ∘ (𝐻𝑀)) = ((𝐹𝐻) ↾ 𝑀))
4841, 47syl5eqr 2827 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐻𝑀) ∘ (𝐹𝑊)) = ((𝐹𝐻) ↾ 𝑀))
4948imaeq1d 5719 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → (((𝐻𝑀) ∘ (𝐹𝑊)) “ ((𝐹𝑊) “ 𝑥)) = (((𝐹𝐻) ↾ 𝑀) “ ((𝐹𝑊) “ 𝑥)))
5040, 49syl5eqr 2827 . . . . . 6 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐻𝑀) “ ((𝐹𝑊) “ ((𝐹𝑊) “ 𝑥))) = (((𝐹𝐻) ↾ 𝑀) “ ((𝐹𝑊) “ 𝑥)))
5139, 50eqtr3d 2815 . . . . 5 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐻𝑀) “ 𝑥) = (((𝐹𝐻) ↾ 𝑀) “ ((𝐹𝑊) “ 𝑥)))
52 cvmlift2lem9a.g . . . . . . . 8 (𝜑 → (𝐹𝐻) ∈ (𝐾 Cn 𝐽))
53 cvmlift2lem9a.y . . . . . . . . 9 𝑌 = 𝐾
5453cnrest 21497 . . . . . . . 8 (((𝐹𝐻) ∈ (𝐾 Cn 𝐽) ∧ 𝑀𝑌) → ((𝐹𝐻) ↾ 𝑀) ∈ ((𝐾t 𝑀) Cn 𝐽))
5552, 8, 54syl2anc 579 . . . . . . 7 (𝜑 → ((𝐹𝐻) ↾ 𝑀) ∈ ((𝐾t 𝑀) Cn 𝐽))
5655adantr 474 . . . . . 6 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐹𝐻) ↾ 𝑀) ∈ ((𝐾t 𝑀) Cn 𝐽))
57 resima2 5681 . . . . . . . 8 (𝑥𝑊 → ((𝐹𝑊) “ 𝑥) = (𝐹𝑥))
5836, 57syl 17 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐹𝑊) “ 𝑥) = (𝐹𝑥))
591adantr 474 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
60 restopn2 21389 . . . . . . . . . 10 ((𝐶 ∈ Top ∧ 𝑊𝐶) → (𝑥 ∈ (𝐶t 𝑊) ↔ (𝑥𝐶𝑥𝑊)))
613, 30, 60syl2anc 579 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐶t 𝑊) ↔ (𝑥𝐶𝑥𝑊)))
6261simprbda 494 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → 𝑥𝐶)
63 cvmopn 31861 . . . . . . . 8 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ 𝐽)
6459, 62, 63syl2anc 579 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → (𝐹𝑥) ∈ 𝐽)
6558, 64eqeltrd 2858 . . . . . 6 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐹𝑊) “ 𝑥) ∈ 𝐽)
66 cnima 21477 . . . . . 6 ((((𝐹𝐻) ↾ 𝑀) ∈ ((𝐾t 𝑀) Cn 𝐽) ∧ ((𝐹𝑊) “ 𝑥) ∈ 𝐽) → (((𝐹𝐻) ↾ 𝑀) “ ((𝐹𝑊) “ 𝑥)) ∈ (𝐾t 𝑀))
6756, 65, 66syl2anc 579 . . . . 5 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → (((𝐹𝐻) ↾ 𝑀) “ ((𝐹𝑊) “ 𝑥)) ∈ (𝐾t 𝑀))
6851, 67eqeltrd 2858 . . . 4 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐻𝑀) “ 𝑥) ∈ (𝐾t 𝑀))
6968ralrimiva 3147 . . 3 (𝜑 → ∀𝑥 ∈ (𝐶t 𝑊)((𝐻𝑀) “ 𝑥) ∈ (𝐾t 𝑀))
70 cvmlift2lem9a.k . . . . . 6 (𝜑𝐾 ∈ Top)
7153toptopon 21129 . . . . . 6 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
7270, 71sylib 210 . . . . 5 (𝜑𝐾 ∈ (TopOn‘𝑌))
73 resttopon 21373 . . . . 5 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝑀𝑌) → (𝐾t 𝑀) ∈ (TopOn‘𝑀))
7472, 8, 73syl2anc 579 . . . 4 (𝜑 → (𝐾t 𝑀) ∈ (TopOn‘𝑀))
75 iscn 21447 . . . 4 (((𝐾t 𝑀) ∈ (TopOn‘𝑀) ∧ (𝐶t 𝑊) ∈ (TopOn‘𝑊)) → ((𝐻𝑀) ∈ ((𝐾t 𝑀) Cn (𝐶t 𝑊)) ↔ ((𝐻𝑀):𝑀𝑊 ∧ ∀𝑥 ∈ (𝐶t 𝑊)((𝐻𝑀) “ 𝑥) ∈ (𝐾t 𝑀))))
7674, 34, 75syl2anc 579 . . 3 (𝜑 → ((𝐻𝑀) ∈ ((𝐾t 𝑀) Cn (𝐶t 𝑊)) ↔ ((𝐻𝑀):𝑀𝑊 ∧ ∀𝑥 ∈ (𝐶t 𝑊)((𝐻𝑀) “ 𝑥) ∈ (𝐾t 𝑀))))
7715, 69, 76mpbir2and 703 . 2 (𝜑 → (𝐻𝑀) ∈ ((𝐾t 𝑀) Cn (𝐶t 𝑊)))
785, 77sseldd 3821 1 (𝜑 → (𝐻𝑀) ∈ ((𝐾t 𝑀) Cn 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2106  wral 3089  {crab 3093  cdif 3788  cin 3790  wss 3791  c0 4140  𝒫 cpw 4378  {csn 4397   cuni 4671  cmpt 4965  ccnv 5354  ran crn 5356  cres 5357  cima 5358  ccom 5359   Fn wfn 6130  wf 6131  1-1wf1 6132  1-1-ontowf1o 6134  cfv 6135  (class class class)co 6922  t crest 16467  Topctop 21105  TopOnctopon 21122   Cn ccn 21436  Homeochmeo 21965   CovMap ccvm 31836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-oadd 7847  df-er 8026  df-map 8142  df-en 8242  df-fin 8245  df-fi 8605  df-rest 16469  df-topgen 16490  df-top 21106  df-topon 21123  df-bases 21158  df-cn 21439  df-hmeo 21967  df-cvm 31837
This theorem is referenced by:  cvmlift2lem9  31892  cvmlift3lem7  31906
  Copyright terms: Public domain W3C validator