Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem9a Structured version   Visualization version   GIF version

Theorem cvmlift2lem9a 35271
Description: Lemma for cvmlift2 35284 and cvmlift3 35296. (Contributed by Mario Carneiro, 9-Jul-2015.)
Hypotheses
Ref Expression
cvmlift2lem9a.b 𝐵 = 𝐶
cvmlift2lem9a.y 𝑌 = 𝐾
cvmlift2lem9a.s 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
cvmlift2lem9a.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift2lem9a.h (𝜑𝐻:𝑌𝐵)
cvmlift2lem9a.g (𝜑 → (𝐹𝐻) ∈ (𝐾 Cn 𝐽))
cvmlift2lem9a.k (𝜑𝐾 ∈ Top)
cvmlift2lem9a.1 (𝜑𝑋𝑌)
cvmlift2lem9a.2 (𝜑𝑇 ∈ (𝑆𝐴))
cvmlift2lem9a.3 (𝜑 → (𝑊𝑇 ∧ (𝐻𝑋) ∈ 𝑊))
cvmlift2lem9a.4 (𝜑𝑀𝑌)
cvmlift2lem9a.6 (𝜑 → (𝐻𝑀) ⊆ 𝑊)
Assertion
Ref Expression
cvmlift2lem9a (𝜑 → (𝐻𝑀) ∈ ((𝐾t 𝑀) Cn 𝐶))
Distinct variable groups:   𝑐,𝑑,𝑘,𝑠,𝐴   𝐹,𝑐,𝑑,𝑘,𝑠   𝐽,𝑐,𝑑,𝑘,𝑠   𝑇,𝑐,𝑑,𝑠   𝐶,𝑐,𝑑,𝑘,𝑠   𝑊,𝑐,𝑑
Allowed substitution hints:   𝜑(𝑘,𝑠,𝑐,𝑑)   𝐵(𝑘,𝑠,𝑐,𝑑)   𝑆(𝑘,𝑠,𝑐,𝑑)   𝑇(𝑘)   𝐻(𝑘,𝑠,𝑐,𝑑)   𝐾(𝑘,𝑠,𝑐,𝑑)   𝑀(𝑘,𝑠,𝑐,𝑑)   𝑊(𝑘,𝑠)   𝑋(𝑘,𝑠,𝑐,𝑑)   𝑌(𝑘,𝑠,𝑐,𝑑)

Proof of Theorem cvmlift2lem9a
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cvmlift2lem9a.f . . . 4 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
2 cvmtop1 35228 . . . 4 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
31, 2syl 17 . . 3 (𝜑𝐶 ∈ Top)
4 cnrest2r 23316 . . 3 (𝐶 ∈ Top → ((𝐾t 𝑀) Cn (𝐶t 𝑊)) ⊆ ((𝐾t 𝑀) Cn 𝐶))
53, 4syl 17 . 2 (𝜑 → ((𝐾t 𝑀) Cn (𝐶t 𝑊)) ⊆ ((𝐾t 𝑀) Cn 𝐶))
6 cvmlift2lem9a.h . . . . . 6 (𝜑𝐻:𝑌𝐵)
76ffnd 6748 . . . . 5 (𝜑𝐻 Fn 𝑌)
8 cvmlift2lem9a.4 . . . . 5 (𝜑𝑀𝑌)
9 fnssres 6703 . . . . 5 ((𝐻 Fn 𝑌𝑀𝑌) → (𝐻𝑀) Fn 𝑀)
107, 8, 9syl2anc 583 . . . 4 (𝜑 → (𝐻𝑀) Fn 𝑀)
11 df-ima 5713 . . . . 5 (𝐻𝑀) = ran (𝐻𝑀)
12 cvmlift2lem9a.6 . . . . 5 (𝜑 → (𝐻𝑀) ⊆ 𝑊)
1311, 12eqsstrrid 4058 . . . 4 (𝜑 → ran (𝐻𝑀) ⊆ 𝑊)
14 df-f 6577 . . . 4 ((𝐻𝑀):𝑀𝑊 ↔ ((𝐻𝑀) Fn 𝑀 ∧ ran (𝐻𝑀) ⊆ 𝑊))
1510, 13, 14sylanbrc 582 . . 3 (𝜑 → (𝐻𝑀):𝑀𝑊)
16 cvmlift2lem9a.2 . . . . . . . . . . 11 (𝜑𝑇 ∈ (𝑆𝐴))
17 cvmlift2lem9a.3 . . . . . . . . . . . 12 (𝜑 → (𝑊𝑇 ∧ (𝐻𝑋) ∈ 𝑊))
1817simpld 494 . . . . . . . . . . 11 (𝜑𝑊𝑇)
19 cvmlift2lem9a.s . . . . . . . . . . . 12 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
2019cvmsf1o 35240 . . . . . . . . . . 11 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝐴) ∧ 𝑊𝑇) → (𝐹𝑊):𝑊1-1-onto𝐴)
211, 16, 18, 20syl3anc 1371 . . . . . . . . . 10 (𝜑 → (𝐹𝑊):𝑊1-1-onto𝐴)
2221adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → (𝐹𝑊):𝑊1-1-onto𝐴)
23 f1of1 6861 . . . . . . . . 9 ((𝐹𝑊):𝑊1-1-onto𝐴 → (𝐹𝑊):𝑊1-1𝐴)
2422, 23syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → (𝐹𝑊):𝑊1-1𝐴)
25 cvmlift2lem9a.b . . . . . . . . . . . 12 𝐵 = 𝐶
2625toptopon 22944 . . . . . . . . . . 11 (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘𝐵))
273, 26sylib 218 . . . . . . . . . 10 (𝜑𝐶 ∈ (TopOn‘𝐵))
2819cvmsss 35235 . . . . . . . . . . . . 13 (𝑇 ∈ (𝑆𝐴) → 𝑇𝐶)
2916, 28syl 17 . . . . . . . . . . . 12 (𝜑𝑇𝐶)
3029, 18sseldd 4009 . . . . . . . . . . 11 (𝜑𝑊𝐶)
31 toponss 22954 . . . . . . . . . . 11 ((𝐶 ∈ (TopOn‘𝐵) ∧ 𝑊𝐶) → 𝑊𝐵)
3227, 30, 31syl2anc 583 . . . . . . . . . 10 (𝜑𝑊𝐵)
33 resttopon 23190 . . . . . . . . . 10 ((𝐶 ∈ (TopOn‘𝐵) ∧ 𝑊𝐵) → (𝐶t 𝑊) ∈ (TopOn‘𝑊))
3427, 32, 33syl2anc 583 . . . . . . . . 9 (𝜑 → (𝐶t 𝑊) ∈ (TopOn‘𝑊))
35 toponss 22954 . . . . . . . . 9 (((𝐶t 𝑊) ∈ (TopOn‘𝑊) ∧ 𝑥 ∈ (𝐶t 𝑊)) → 𝑥𝑊)
3634, 35sylan 579 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → 𝑥𝑊)
37 f1imacnv 6878 . . . . . . . 8 (((𝐹𝑊):𝑊1-1𝐴𝑥𝑊) → ((𝐹𝑊) “ ((𝐹𝑊) “ 𝑥)) = 𝑥)
3824, 36, 37syl2anc 583 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐹𝑊) “ ((𝐹𝑊) “ 𝑥)) = 𝑥)
3938imaeq2d 6089 . . . . . 6 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐻𝑀) “ ((𝐹𝑊) “ ((𝐹𝑊) “ 𝑥))) = ((𝐻𝑀) “ 𝑥))
40 imaco 6282 . . . . . . 7 (((𝐻𝑀) ∘ (𝐹𝑊)) “ ((𝐹𝑊) “ 𝑥)) = ((𝐻𝑀) “ ((𝐹𝑊) “ ((𝐹𝑊) “ 𝑥)))
41 cnvco 5910 . . . . . . . . 9 ((𝐹𝑊) ∘ (𝐻𝑀)) = ((𝐻𝑀) ∘ (𝐹𝑊))
42 cores 6280 . . . . . . . . . . . . 13 (ran (𝐻𝑀) ⊆ 𝑊 → ((𝐹𝑊) ∘ (𝐻𝑀)) = (𝐹 ∘ (𝐻𝑀)))
4313, 42syl 17 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝑊) ∘ (𝐻𝑀)) = (𝐹 ∘ (𝐻𝑀)))
44 resco 6281 . . . . . . . . . . . 12 ((𝐹𝐻) ↾ 𝑀) = (𝐹 ∘ (𝐻𝑀))
4543, 44eqtr4di 2798 . . . . . . . . . . 11 (𝜑 → ((𝐹𝑊) ∘ (𝐻𝑀)) = ((𝐹𝐻) ↾ 𝑀))
4645adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐹𝑊) ∘ (𝐻𝑀)) = ((𝐹𝐻) ↾ 𝑀))
4746cnveqd 5900 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐹𝑊) ∘ (𝐻𝑀)) = ((𝐹𝐻) ↾ 𝑀))
4841, 47eqtr3id 2794 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐻𝑀) ∘ (𝐹𝑊)) = ((𝐹𝐻) ↾ 𝑀))
4948imaeq1d 6088 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → (((𝐻𝑀) ∘ (𝐹𝑊)) “ ((𝐹𝑊) “ 𝑥)) = (((𝐹𝐻) ↾ 𝑀) “ ((𝐹𝑊) “ 𝑥)))
5040, 49eqtr3id 2794 . . . . . 6 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐻𝑀) “ ((𝐹𝑊) “ ((𝐹𝑊) “ 𝑥))) = (((𝐹𝐻) ↾ 𝑀) “ ((𝐹𝑊) “ 𝑥)))
5139, 50eqtr3d 2782 . . . . 5 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐻𝑀) “ 𝑥) = (((𝐹𝐻) ↾ 𝑀) “ ((𝐹𝑊) “ 𝑥)))
52 cvmlift2lem9a.g . . . . . . . 8 (𝜑 → (𝐹𝐻) ∈ (𝐾 Cn 𝐽))
53 cvmlift2lem9a.y . . . . . . . . 9 𝑌 = 𝐾
5453cnrest 23314 . . . . . . . 8 (((𝐹𝐻) ∈ (𝐾 Cn 𝐽) ∧ 𝑀𝑌) → ((𝐹𝐻) ↾ 𝑀) ∈ ((𝐾t 𝑀) Cn 𝐽))
5552, 8, 54syl2anc 583 . . . . . . 7 (𝜑 → ((𝐹𝐻) ↾ 𝑀) ∈ ((𝐾t 𝑀) Cn 𝐽))
5655adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐹𝐻) ↾ 𝑀) ∈ ((𝐾t 𝑀) Cn 𝐽))
57 resima2 6045 . . . . . . . 8 (𝑥𝑊 → ((𝐹𝑊) “ 𝑥) = (𝐹𝑥))
5836, 57syl 17 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐹𝑊) “ 𝑥) = (𝐹𝑥))
591adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
60 restopn2 23206 . . . . . . . . . 10 ((𝐶 ∈ Top ∧ 𝑊𝐶) → (𝑥 ∈ (𝐶t 𝑊) ↔ (𝑥𝐶𝑥𝑊)))
613, 30, 60syl2anc 583 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐶t 𝑊) ↔ (𝑥𝐶𝑥𝑊)))
6261simprbda 498 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → 𝑥𝐶)
63 cvmopn 35248 . . . . . . . 8 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ 𝐽)
6459, 62, 63syl2anc 583 . . . . . . 7 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → (𝐹𝑥) ∈ 𝐽)
6558, 64eqeltrd 2844 . . . . . 6 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐹𝑊) “ 𝑥) ∈ 𝐽)
66 cnima 23294 . . . . . 6 ((((𝐹𝐻) ↾ 𝑀) ∈ ((𝐾t 𝑀) Cn 𝐽) ∧ ((𝐹𝑊) “ 𝑥) ∈ 𝐽) → (((𝐹𝐻) ↾ 𝑀) “ ((𝐹𝑊) “ 𝑥)) ∈ (𝐾t 𝑀))
6756, 65, 66syl2anc 583 . . . . 5 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → (((𝐹𝐻) ↾ 𝑀) “ ((𝐹𝑊) “ 𝑥)) ∈ (𝐾t 𝑀))
6851, 67eqeltrd 2844 . . . 4 ((𝜑𝑥 ∈ (𝐶t 𝑊)) → ((𝐻𝑀) “ 𝑥) ∈ (𝐾t 𝑀))
6968ralrimiva 3152 . . 3 (𝜑 → ∀𝑥 ∈ (𝐶t 𝑊)((𝐻𝑀) “ 𝑥) ∈ (𝐾t 𝑀))
70 cvmlift2lem9a.k . . . . . 6 (𝜑𝐾 ∈ Top)
7153toptopon 22944 . . . . . 6 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
7270, 71sylib 218 . . . . 5 (𝜑𝐾 ∈ (TopOn‘𝑌))
73 resttopon 23190 . . . . 5 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝑀𝑌) → (𝐾t 𝑀) ∈ (TopOn‘𝑀))
7472, 8, 73syl2anc 583 . . . 4 (𝜑 → (𝐾t 𝑀) ∈ (TopOn‘𝑀))
75 iscn 23264 . . . 4 (((𝐾t 𝑀) ∈ (TopOn‘𝑀) ∧ (𝐶t 𝑊) ∈ (TopOn‘𝑊)) → ((𝐻𝑀) ∈ ((𝐾t 𝑀) Cn (𝐶t 𝑊)) ↔ ((𝐻𝑀):𝑀𝑊 ∧ ∀𝑥 ∈ (𝐶t 𝑊)((𝐻𝑀) “ 𝑥) ∈ (𝐾t 𝑀))))
7674, 34, 75syl2anc 583 . . 3 (𝜑 → ((𝐻𝑀) ∈ ((𝐾t 𝑀) Cn (𝐶t 𝑊)) ↔ ((𝐻𝑀):𝑀𝑊 ∧ ∀𝑥 ∈ (𝐶t 𝑊)((𝐻𝑀) “ 𝑥) ∈ (𝐾t 𝑀))))
7715, 69, 76mpbir2and 712 . 2 (𝜑 → (𝐻𝑀) ∈ ((𝐾t 𝑀) Cn (𝐶t 𝑊)))
785, 77sseldd 4009 1 (𝜑 → (𝐻𝑀) ∈ ((𝐾t 𝑀) Cn 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443  cdif 3973  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648   cuni 4931  cmpt 5249  ccnv 5699  ran crn 5701  cres 5702  cima 5703  ccom 5704   Fn wfn 6568  wf 6569  1-1wf1 6570  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  t crest 17480  Topctop 22920  TopOnctopon 22937   Cn ccn 23253  Homeochmeo 23782   CovMap ccvm 35223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-map 8886  df-en 9004  df-fin 9007  df-fi 9480  df-rest 17482  df-topgen 17503  df-top 22921  df-topon 22938  df-bases 22974  df-cn 23256  df-hmeo 23784  df-cvm 35224
This theorem is referenced by:  cvmlift2lem9  35279  cvmlift3lem7  35293
  Copyright terms: Public domain W3C validator