Step | Hyp | Ref
| Expression |
1 | | cvmlift2lem9a.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
2 | | cvmtop1 33122 |
. . . 4
⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top) |
3 | 1, 2 | syl 17 |
. . 3
⊢ (𝜑 → 𝐶 ∈ Top) |
4 | | cnrest2r 22346 |
. . 3
⊢ (𝐶 ∈ Top → ((𝐾 ↾t 𝑀) Cn (𝐶 ↾t 𝑊)) ⊆ ((𝐾 ↾t 𝑀) Cn 𝐶)) |
5 | 3, 4 | syl 17 |
. 2
⊢ (𝜑 → ((𝐾 ↾t 𝑀) Cn (𝐶 ↾t 𝑊)) ⊆ ((𝐾 ↾t 𝑀) Cn 𝐶)) |
6 | | cvmlift2lem9a.h |
. . . . . 6
⊢ (𝜑 → 𝐻:𝑌⟶𝐵) |
7 | 6 | ffnd 6585 |
. . . . 5
⊢ (𝜑 → 𝐻 Fn 𝑌) |
8 | | cvmlift2lem9a.4 |
. . . . 5
⊢ (𝜑 → 𝑀 ⊆ 𝑌) |
9 | | fnssres 6539 |
. . . . 5
⊢ ((𝐻 Fn 𝑌 ∧ 𝑀 ⊆ 𝑌) → (𝐻 ↾ 𝑀) Fn 𝑀) |
10 | 7, 8, 9 | syl2anc 583 |
. . . 4
⊢ (𝜑 → (𝐻 ↾ 𝑀) Fn 𝑀) |
11 | | df-ima 5593 |
. . . . 5
⊢ (𝐻 “ 𝑀) = ran (𝐻 ↾ 𝑀) |
12 | | cvmlift2lem9a.6 |
. . . . 5
⊢ (𝜑 → (𝐻 “ 𝑀) ⊆ 𝑊) |
13 | 11, 12 | eqsstrrid 3966 |
. . . 4
⊢ (𝜑 → ran (𝐻 ↾ 𝑀) ⊆ 𝑊) |
14 | | df-f 6422 |
. . . 4
⊢ ((𝐻 ↾ 𝑀):𝑀⟶𝑊 ↔ ((𝐻 ↾ 𝑀) Fn 𝑀 ∧ ran (𝐻 ↾ 𝑀) ⊆ 𝑊)) |
15 | 10, 13, 14 | sylanbrc 582 |
. . 3
⊢ (𝜑 → (𝐻 ↾ 𝑀):𝑀⟶𝑊) |
16 | | cvmlift2lem9a.2 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑇 ∈ (𝑆‘𝐴)) |
17 | | cvmlift2lem9a.3 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑊 ∈ 𝑇 ∧ (𝐻‘𝑋) ∈ 𝑊)) |
18 | 17 | simpld 494 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑊 ∈ 𝑇) |
19 | | cvmlift2lem9a.s |
. . . . . . . . . . . 12
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))}) |
20 | 19 | cvmsf1o 33134 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝐴) ∧ 𝑊 ∈ 𝑇) → (𝐹 ↾ 𝑊):𝑊–1-1-onto→𝐴) |
21 | 1, 16, 18, 20 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹 ↾ 𝑊):𝑊–1-1-onto→𝐴) |
22 | 21 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐶 ↾t 𝑊)) → (𝐹 ↾ 𝑊):𝑊–1-1-onto→𝐴) |
23 | | f1of1 6699 |
. . . . . . . . 9
⊢ ((𝐹 ↾ 𝑊):𝑊–1-1-onto→𝐴 → (𝐹 ↾ 𝑊):𝑊–1-1→𝐴) |
24 | 22, 23 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐶 ↾t 𝑊)) → (𝐹 ↾ 𝑊):𝑊–1-1→𝐴) |
25 | | cvmlift2lem9a.b |
. . . . . . . . . . . 12
⊢ 𝐵 = ∪
𝐶 |
26 | 25 | toptopon 21974 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘𝐵)) |
27 | 3, 26 | sylib 217 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ (TopOn‘𝐵)) |
28 | 19 | cvmsss 33129 |
. . . . . . . . . . . . 13
⊢ (𝑇 ∈ (𝑆‘𝐴) → 𝑇 ⊆ 𝐶) |
29 | 16, 28 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑇 ⊆ 𝐶) |
30 | 29, 18 | sseldd 3918 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑊 ∈ 𝐶) |
31 | | toponss 21984 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ (TopOn‘𝐵) ∧ 𝑊 ∈ 𝐶) → 𝑊 ⊆ 𝐵) |
32 | 27, 30, 31 | syl2anc 583 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑊 ⊆ 𝐵) |
33 | | resttopon 22220 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ (TopOn‘𝐵) ∧ 𝑊 ⊆ 𝐵) → (𝐶 ↾t 𝑊) ∈ (TopOn‘𝑊)) |
34 | 27, 32, 33 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → (𝐶 ↾t 𝑊) ∈ (TopOn‘𝑊)) |
35 | | toponss 21984 |
. . . . . . . . 9
⊢ (((𝐶 ↾t 𝑊) ∈ (TopOn‘𝑊) ∧ 𝑥 ∈ (𝐶 ↾t 𝑊)) → 𝑥 ⊆ 𝑊) |
36 | 34, 35 | sylan 579 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐶 ↾t 𝑊)) → 𝑥 ⊆ 𝑊) |
37 | | f1imacnv 6716 |
. . . . . . . 8
⊢ (((𝐹 ↾ 𝑊):𝑊–1-1→𝐴 ∧ 𝑥 ⊆ 𝑊) → (◡(𝐹 ↾ 𝑊) “ ((𝐹 ↾ 𝑊) “ 𝑥)) = 𝑥) |
38 | 24, 36, 37 | syl2anc 583 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐶 ↾t 𝑊)) → (◡(𝐹 ↾ 𝑊) “ ((𝐹 ↾ 𝑊) “ 𝑥)) = 𝑥) |
39 | 38 | imaeq2d 5958 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐶 ↾t 𝑊)) → (◡(𝐻 ↾ 𝑀) “ (◡(𝐹 ↾ 𝑊) “ ((𝐹 ↾ 𝑊) “ 𝑥))) = (◡(𝐻 ↾ 𝑀) “ 𝑥)) |
40 | | imaco 6144 |
. . . . . . 7
⊢ ((◡(𝐻 ↾ 𝑀) ∘ ◡(𝐹 ↾ 𝑊)) “ ((𝐹 ↾ 𝑊) “ 𝑥)) = (◡(𝐻 ↾ 𝑀) “ (◡(𝐹 ↾ 𝑊) “ ((𝐹 ↾ 𝑊) “ 𝑥))) |
41 | | cnvco 5783 |
. . . . . . . . 9
⊢ ◡((𝐹 ↾ 𝑊) ∘ (𝐻 ↾ 𝑀)) = (◡(𝐻 ↾ 𝑀) ∘ ◡(𝐹 ↾ 𝑊)) |
42 | | cores 6142 |
. . . . . . . . . . . . 13
⊢ (ran
(𝐻 ↾ 𝑀) ⊆ 𝑊 → ((𝐹 ↾ 𝑊) ∘ (𝐻 ↾ 𝑀)) = (𝐹 ∘ (𝐻 ↾ 𝑀))) |
43 | 13, 42 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐹 ↾ 𝑊) ∘ (𝐻 ↾ 𝑀)) = (𝐹 ∘ (𝐻 ↾ 𝑀))) |
44 | | resco 6143 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∘ 𝐻) ↾ 𝑀) = (𝐹 ∘ (𝐻 ↾ 𝑀)) |
45 | 43, 44 | eqtr4di 2797 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐹 ↾ 𝑊) ∘ (𝐻 ↾ 𝑀)) = ((𝐹 ∘ 𝐻) ↾ 𝑀)) |
46 | 45 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐶 ↾t 𝑊)) → ((𝐹 ↾ 𝑊) ∘ (𝐻 ↾ 𝑀)) = ((𝐹 ∘ 𝐻) ↾ 𝑀)) |
47 | 46 | cnveqd 5773 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐶 ↾t 𝑊)) → ◡((𝐹 ↾ 𝑊) ∘ (𝐻 ↾ 𝑀)) = ◡((𝐹 ∘ 𝐻) ↾ 𝑀)) |
48 | 41, 47 | eqtr3id 2793 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐶 ↾t 𝑊)) → (◡(𝐻 ↾ 𝑀) ∘ ◡(𝐹 ↾ 𝑊)) = ◡((𝐹 ∘ 𝐻) ↾ 𝑀)) |
49 | 48 | imaeq1d 5957 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐶 ↾t 𝑊)) → ((◡(𝐻 ↾ 𝑀) ∘ ◡(𝐹 ↾ 𝑊)) “ ((𝐹 ↾ 𝑊) “ 𝑥)) = (◡((𝐹 ∘ 𝐻) ↾ 𝑀) “ ((𝐹 ↾ 𝑊) “ 𝑥))) |
50 | 40, 49 | eqtr3id 2793 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐶 ↾t 𝑊)) → (◡(𝐻 ↾ 𝑀) “ (◡(𝐹 ↾ 𝑊) “ ((𝐹 ↾ 𝑊) “ 𝑥))) = (◡((𝐹 ∘ 𝐻) ↾ 𝑀) “ ((𝐹 ↾ 𝑊) “ 𝑥))) |
51 | 39, 50 | eqtr3d 2780 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐶 ↾t 𝑊)) → (◡(𝐻 ↾ 𝑀) “ 𝑥) = (◡((𝐹 ∘ 𝐻) ↾ 𝑀) “ ((𝐹 ↾ 𝑊) “ 𝑥))) |
52 | | cvmlift2lem9a.g |
. . . . . . . 8
⊢ (𝜑 → (𝐹 ∘ 𝐻) ∈ (𝐾 Cn 𝐽)) |
53 | | cvmlift2lem9a.y |
. . . . . . . . 9
⊢ 𝑌 = ∪
𝐾 |
54 | 53 | cnrest 22344 |
. . . . . . . 8
⊢ (((𝐹 ∘ 𝐻) ∈ (𝐾 Cn 𝐽) ∧ 𝑀 ⊆ 𝑌) → ((𝐹 ∘ 𝐻) ↾ 𝑀) ∈ ((𝐾 ↾t 𝑀) Cn 𝐽)) |
55 | 52, 8, 54 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → ((𝐹 ∘ 𝐻) ↾ 𝑀) ∈ ((𝐾 ↾t 𝑀) Cn 𝐽)) |
56 | 55 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐶 ↾t 𝑊)) → ((𝐹 ∘ 𝐻) ↾ 𝑀) ∈ ((𝐾 ↾t 𝑀) Cn 𝐽)) |
57 | | resima2 5915 |
. . . . . . . 8
⊢ (𝑥 ⊆ 𝑊 → ((𝐹 ↾ 𝑊) “ 𝑥) = (𝐹 “ 𝑥)) |
58 | 36, 57 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐶 ↾t 𝑊)) → ((𝐹 ↾ 𝑊) “ 𝑥) = (𝐹 “ 𝑥)) |
59 | 1 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐶 ↾t 𝑊)) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
60 | | restopn2 22236 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ Top ∧ 𝑊 ∈ 𝐶) → (𝑥 ∈ (𝐶 ↾t 𝑊) ↔ (𝑥 ∈ 𝐶 ∧ 𝑥 ⊆ 𝑊))) |
61 | 3, 30, 60 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (𝐶 ↾t 𝑊) ↔ (𝑥 ∈ 𝐶 ∧ 𝑥 ⊆ 𝑊))) |
62 | 61 | simprbda 498 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐶 ↾t 𝑊)) → 𝑥 ∈ 𝐶) |
63 | | cvmopn 33142 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑥 ∈ 𝐶) → (𝐹 “ 𝑥) ∈ 𝐽) |
64 | 59, 62, 63 | syl2anc 583 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐶 ↾t 𝑊)) → (𝐹 “ 𝑥) ∈ 𝐽) |
65 | 58, 64 | eqeltrd 2839 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐶 ↾t 𝑊)) → ((𝐹 ↾ 𝑊) “ 𝑥) ∈ 𝐽) |
66 | | cnima 22324 |
. . . . . 6
⊢ ((((𝐹 ∘ 𝐻) ↾ 𝑀) ∈ ((𝐾 ↾t 𝑀) Cn 𝐽) ∧ ((𝐹 ↾ 𝑊) “ 𝑥) ∈ 𝐽) → (◡((𝐹 ∘ 𝐻) ↾ 𝑀) “ ((𝐹 ↾ 𝑊) “ 𝑥)) ∈ (𝐾 ↾t 𝑀)) |
67 | 56, 65, 66 | syl2anc 583 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐶 ↾t 𝑊)) → (◡((𝐹 ∘ 𝐻) ↾ 𝑀) “ ((𝐹 ↾ 𝑊) “ 𝑥)) ∈ (𝐾 ↾t 𝑀)) |
68 | 51, 67 | eqeltrd 2839 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐶 ↾t 𝑊)) → (◡(𝐻 ↾ 𝑀) “ 𝑥) ∈ (𝐾 ↾t 𝑀)) |
69 | 68 | ralrimiva 3107 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ (𝐶 ↾t 𝑊)(◡(𝐻 ↾ 𝑀) “ 𝑥) ∈ (𝐾 ↾t 𝑀)) |
70 | | cvmlift2lem9a.k |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ Top) |
71 | 53 | toptopon 21974 |
. . . . . 6
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌)) |
72 | 70, 71 | sylib 217 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
73 | | resttopon 22220 |
. . . . 5
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝑀 ⊆ 𝑌) → (𝐾 ↾t 𝑀) ∈ (TopOn‘𝑀)) |
74 | 72, 8, 73 | syl2anc 583 |
. . . 4
⊢ (𝜑 → (𝐾 ↾t 𝑀) ∈ (TopOn‘𝑀)) |
75 | | iscn 22294 |
. . . 4
⊢ (((𝐾 ↾t 𝑀) ∈ (TopOn‘𝑀) ∧ (𝐶 ↾t 𝑊) ∈ (TopOn‘𝑊)) → ((𝐻 ↾ 𝑀) ∈ ((𝐾 ↾t 𝑀) Cn (𝐶 ↾t 𝑊)) ↔ ((𝐻 ↾ 𝑀):𝑀⟶𝑊 ∧ ∀𝑥 ∈ (𝐶 ↾t 𝑊)(◡(𝐻 ↾ 𝑀) “ 𝑥) ∈ (𝐾 ↾t 𝑀)))) |
76 | 74, 34, 75 | syl2anc 583 |
. . 3
⊢ (𝜑 → ((𝐻 ↾ 𝑀) ∈ ((𝐾 ↾t 𝑀) Cn (𝐶 ↾t 𝑊)) ↔ ((𝐻 ↾ 𝑀):𝑀⟶𝑊 ∧ ∀𝑥 ∈ (𝐶 ↾t 𝑊)(◡(𝐻 ↾ 𝑀) “ 𝑥) ∈ (𝐾 ↾t 𝑀)))) |
77 | 15, 69, 76 | mpbir2and 709 |
. 2
⊢ (𝜑 → (𝐻 ↾ 𝑀) ∈ ((𝐾 ↾t 𝑀) Cn (𝐶 ↾t 𝑊))) |
78 | 5, 77 | sseldd 3918 |
1
⊢ (𝜑 → (𝐻 ↾ 𝑀) ∈ ((𝐾 ↾t 𝑀) Cn 𝐶)) |