MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressid2 Structured version   Visualization version   GIF version

Theorem ressid2 17210
Description: General behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Hypotheses
Ref Expression
ressbas.r 𝑅 = (𝑊s 𝐴)
ressbas.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
ressid2 ((𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑅 = 𝑊)

Proof of Theorem ressid2
StepHypRef Expression
1 ressbas.r . . . 4 𝑅 = (𝑊s 𝐴)
2 ressbas.b . . . 4 𝐵 = (Base‘𝑊)
31, 2ressval 17209 . . 3 ((𝑊𝑋𝐴𝑌) → 𝑅 = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)))
4 iftrue 4496 . . 3 (𝐵𝐴 → if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)) = 𝑊)
53, 4sylan9eqr 2787 . 2 ((𝐵𝐴 ∧ (𝑊𝑋𝐴𝑌)) → 𝑅 = 𝑊)
653impb 1114 1 ((𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑅 = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cin 3915  wss 3916  ifcif 4490  cop 4597  cfv 6513  (class class class)co 7389   sSet csts 17139  ndxcnx 17169  Basecbs 17185  s cress 17206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-iota 6466  df-fun 6515  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-ress 17207
This theorem is referenced by:  ressbas  17212  resseqnbas  17218  ress0  17219  ressid  17220  ressinbas  17221  ressress  17223  rescabs  17801  0symgefmndeq  19330  snsymgefmndeq  19331  mgpress  20065  psgnghm2  21496  evl1maprhm  22272  resvsca  33310  extdg1id  33667
  Copyright terms: Public domain W3C validator