| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressid2 | Structured version Visualization version GIF version | ||
| Description: General behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
| Ref | Expression |
|---|---|
| ressbas.r | ⊢ 𝑅 = (𝑊 ↾s 𝐴) |
| ressbas.b | ⊢ 𝐵 = (Base‘𝑊) |
| Ref | Expression |
|---|---|
| ressid2 | ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = 𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressbas.r | . . . 4 ⊢ 𝑅 = (𝑊 ↾s 𝐴) | |
| 2 | ressbas.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
| 3 | 1, 2 | ressval 17255 | . . 3 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = if(𝐵 ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉))) |
| 4 | iftrue 4511 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → if(𝐵 ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉)) = 𝑊) | |
| 5 | 3, 4 | sylan9eqr 2791 | . 2 ⊢ ((𝐵 ⊆ 𝐴 ∧ (𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌)) → 𝑅 = 𝑊) |
| 6 | 5 | 3impb 1114 | 1 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = 𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∩ cin 3930 ⊆ wss 3931 ifcif 4505 〈cop 4612 ‘cfv 6541 (class class class)co 7413 sSet csts 17182 ndxcnx 17212 Basecbs 17229 ↾s cress 17252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-ress 17253 |
| This theorem is referenced by: ressbas 17258 ressbasOLD 17259 resseqnbas 17265 ress0 17266 ressid 17267 ressinbas 17268 ressress 17270 rescabs 17848 rescabsOLD 17849 0symgefmndeq 19379 snsymgefmndeq 19380 mgpress 20115 psgnghm2 21553 evl1maprhm 22331 resvsca 33296 extdg1id 33653 |
| Copyright terms: Public domain | W3C validator |