MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressval2 Structured version   Visualization version   GIF version

Theorem ressval2 16946
Description: Value of nontrivial structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Hypotheses
Ref Expression
ressbas.r 𝑅 = (𝑊s 𝐴)
ressbas.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
ressval2 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑅 = (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))

Proof of Theorem ressval2
StepHypRef Expression
1 ressbas.r . . . 4 𝑅 = (𝑊s 𝐴)
2 ressbas.b . . . 4 𝐵 = (Base‘𝑊)
31, 2ressval 16944 . . 3 ((𝑊𝑋𝐴𝑌) → 𝑅 = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)))
4 iffalse 4468 . . 3 𝐵𝐴 → if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩)) = (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
53, 4sylan9eqr 2800 . 2 ((¬ 𝐵𝐴 ∧ (𝑊𝑋𝐴𝑌)) → 𝑅 = (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
653impb 1114 1 ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑅 = (𝑊 sSet ⟨(Base‘ndx), (𝐴𝐵)⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  cin 3886  wss 3887  ifcif 4459  cop 4567  cfv 6433  (class class class)co 7275   sSet csts 16864  ndxcnx 16894  Basecbs 16912  s cress 16941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-ress 16942
This theorem is referenced by:  ressbas  16947  ressbasOLD  16948  resseqnbas  16951  resslemOLD  16952  ressinbas  16955  ressval3d  16956  ressval3dOLD  16957  ressress  16958  rescabs  17547  rescabsOLD  17548  symgvalstruct  19004  symgvalstructOLD  19005  mgpress  19735  mgpressOLD  19736
  Copyright terms: Public domain W3C validator