![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ressval2 | Structured version Visualization version GIF version |
Description: Value of nontrivial structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
Ref | Expression |
---|---|
ressbas.r | ⊢ 𝑅 = (𝑊 ↾s 𝐴) |
ressbas.b | ⊢ 𝐵 = (Base‘𝑊) |
Ref | Expression |
---|---|
ressval2 | ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressbas.r | . . . 4 ⊢ 𝑅 = (𝑊 ↾s 𝐴) | |
2 | ressbas.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
3 | 1, 2 | ressval 17240 | . . 3 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = if(𝐵 ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉))) |
4 | iffalse 4532 | . . 3 ⊢ (¬ 𝐵 ⊆ 𝐴 → if(𝐵 ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉)) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉)) | |
5 | 3, 4 | sylan9eqr 2788 | . 2 ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ (𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌)) → 𝑅 = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉)) |
6 | 5 | 3impb 1112 | 1 ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ∩ cin 3945 ⊆ wss 3946 ifcif 4523 〈cop 4629 ‘cfv 6546 (class class class)co 7416 sSet csts 17160 ndxcnx 17190 Basecbs 17208 ↾s cress 17237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3776 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5146 df-opab 5208 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-iota 6498 df-fun 6548 df-fv 6554 df-ov 7419 df-oprab 7420 df-mpo 7421 df-ress 17238 |
This theorem is referenced by: ressbas 17243 ressbasOLD 17244 resseqnbas 17250 resslemOLD 17251 ressinbas 17254 ressval3d 17255 ressval3dOLD 17256 ressress 17257 rescabs 17846 rescabsOLD 17847 symgvalstruct 19390 symgvalstructOLD 19391 mgpress 20128 mgpressOLD 20129 resssra 33490 |
Copyright terms: Public domain | W3C validator |