MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resunimafz0 Structured version   Visualization version   GIF version

Theorem resunimafz0 14485
Description: TODO-AV: Revise using 𝐹 ∈ Word dom 𝐼? Formerly part of proof of eupth2lem3 30256: The union of a restriction by an image over an open range of nonnegative integers and a singleton of an ordered pair is a restriction by an image over an interval of nonnegative integers. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 20-Feb-2021.)
Hypotheses
Ref Expression
resunimafz0.i (𝜑 → Fun 𝐼)
resunimafz0.f (𝜑𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)
resunimafz0.n (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
Assertion
Ref Expression
resunimafz0 (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}))

Proof of Theorem resunimafz0
StepHypRef Expression
1 imaundi 6168 . . . . 5 (𝐹 “ ((0..^𝑁) ∪ {𝑁})) = ((𝐹 “ (0..^𝑁)) ∪ (𝐹 “ {𝑁}))
2 resunimafz0.n . . . . . . . . 9 (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
3 elfzonn0 13748 . . . . . . . . 9 (𝑁 ∈ (0..^(♯‘𝐹)) → 𝑁 ∈ ℕ0)
42, 3syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
5 elnn0uz 12924 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
64, 5sylib 218 . . . . . . 7 (𝜑𝑁 ∈ (ℤ‘0))
7 fzisfzounsn 13819 . . . . . . 7 (𝑁 ∈ (ℤ‘0) → (0...𝑁) = ((0..^𝑁) ∪ {𝑁}))
86, 7syl 17 . . . . . 6 (𝜑 → (0...𝑁) = ((0..^𝑁) ∪ {𝑁}))
98imaeq2d 6077 . . . . 5 (𝜑 → (𝐹 “ (0...𝑁)) = (𝐹 “ ((0..^𝑁) ∪ {𝑁})))
10 resunimafz0.f . . . . . . . 8 (𝜑𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)
1110ffnd 6736 . . . . . . 7 (𝜑𝐹 Fn (0..^(♯‘𝐹)))
12 fnsnfv 6987 . . . . . . 7 ((𝐹 Fn (0..^(♯‘𝐹)) ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → {(𝐹𝑁)} = (𝐹 “ {𝑁}))
1311, 2, 12syl2anc 584 . . . . . 6 (𝜑 → {(𝐹𝑁)} = (𝐹 “ {𝑁}))
1413uneq2d 4167 . . . . 5 (𝜑 → ((𝐹 “ (0..^𝑁)) ∪ {(𝐹𝑁)}) = ((𝐹 “ (0..^𝑁)) ∪ (𝐹 “ {𝑁})))
151, 9, 143eqtr4a 2802 . . . 4 (𝜑 → (𝐹 “ (0...𝑁)) = ((𝐹 “ (0..^𝑁)) ∪ {(𝐹𝑁)}))
1615reseq2d 5996 . . 3 (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = (𝐼 ↾ ((𝐹 “ (0..^𝑁)) ∪ {(𝐹𝑁)})))
17 resundi 6010 . . 3 (𝐼 ↾ ((𝐹 “ (0..^𝑁)) ∪ {(𝐹𝑁)})) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ (𝐼 ↾ {(𝐹𝑁)}))
1816, 17eqtrdi 2792 . 2 (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ (𝐼 ↾ {(𝐹𝑁)})))
19 resunimafz0.i . . . . 5 (𝜑 → Fun 𝐼)
2019funfnd 6596 . . . 4 (𝜑𝐼 Fn dom 𝐼)
2110, 2ffvelcdmd 7104 . . . 4 (𝜑 → (𝐹𝑁) ∈ dom 𝐼)
22 fnressn 7177 . . . 4 ((𝐼 Fn dom 𝐼 ∧ (𝐹𝑁) ∈ dom 𝐼) → (𝐼 ↾ {(𝐹𝑁)}) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
2320, 21, 22syl2anc 584 . . 3 (𝜑 → (𝐼 ↾ {(𝐹𝑁)}) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
2423uneq2d 4167 . 2 (𝜑 → ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ (𝐼 ↾ {(𝐹𝑁)})) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}))
2518, 24eqtrd 2776 1 (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cun 3948  {csn 4625  cop 4631  dom cdm 5684  cres 5686  cima 5687  Fun wfun 6554   Fn wfn 6555  wf 6556  cfv 6560  (class class class)co 7432  0cc0 11156  0cn0 12528  cuz 12879  ...cfz 13548  ..^cfzo 13695  chash 14370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-n0 12529  df-z 12616  df-uz 12880  df-fz 13549  df-fzo 13696
This theorem is referenced by:  trlsegvdeg  30247
  Copyright terms: Public domain W3C validator