Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resunimafz0 | Structured version Visualization version GIF version |
Description: TODO-AV: Revise using 𝐹 ∈ Word dom 𝐼? Formerly part of proof of eupth2lem3 28600: The union of a restriction by an image over an open range of nonnegative integers and a singleton of an ordered pair is a restriction by an image over an interval of nonnegative integers. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 20-Feb-2021.) |
Ref | Expression |
---|---|
resunimafz0.i | ⊢ (𝜑 → Fun 𝐼) |
resunimafz0.f | ⊢ (𝜑 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) |
resunimafz0.n | ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
Ref | Expression |
---|---|
resunimafz0 | ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaundi 6053 | . . . . 5 ⊢ (𝐹 “ ((0..^𝑁) ∪ {𝑁})) = ((𝐹 “ (0..^𝑁)) ∪ (𝐹 “ {𝑁})) | |
2 | resunimafz0.n | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) | |
3 | elfzonn0 13432 | . . . . . . . . 9 ⊢ (𝑁 ∈ (0..^(♯‘𝐹)) → 𝑁 ∈ ℕ0) | |
4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
5 | elnn0uz 12623 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (ℤ≥‘0)) | |
6 | 4, 5 | sylib 217 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘0)) |
7 | fzisfzounsn 13499 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘0) → (0...𝑁) = ((0..^𝑁) ∪ {𝑁})) | |
8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → (0...𝑁) = ((0..^𝑁) ∪ {𝑁})) |
9 | 8 | imaeq2d 5969 | . . . . 5 ⊢ (𝜑 → (𝐹 “ (0...𝑁)) = (𝐹 “ ((0..^𝑁) ∪ {𝑁}))) |
10 | resunimafz0.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) | |
11 | 10 | ffnd 6601 | . . . . . . 7 ⊢ (𝜑 → 𝐹 Fn (0..^(♯‘𝐹))) |
12 | fnsnfv 6847 | . . . . . . 7 ⊢ ((𝐹 Fn (0..^(♯‘𝐹)) ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → {(𝐹‘𝑁)} = (𝐹 “ {𝑁})) | |
13 | 11, 2, 12 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → {(𝐹‘𝑁)} = (𝐹 “ {𝑁})) |
14 | 13 | uneq2d 4097 | . . . . 5 ⊢ (𝜑 → ((𝐹 “ (0..^𝑁)) ∪ {(𝐹‘𝑁)}) = ((𝐹 “ (0..^𝑁)) ∪ (𝐹 “ {𝑁}))) |
15 | 1, 9, 14 | 3eqtr4a 2804 | . . . 4 ⊢ (𝜑 → (𝐹 “ (0...𝑁)) = ((𝐹 “ (0..^𝑁)) ∪ {(𝐹‘𝑁)})) |
16 | 15 | reseq2d 5891 | . . 3 ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = (𝐼 ↾ ((𝐹 “ (0..^𝑁)) ∪ {(𝐹‘𝑁)}))) |
17 | resundi 5905 | . . 3 ⊢ (𝐼 ↾ ((𝐹 “ (0..^𝑁)) ∪ {(𝐹‘𝑁)})) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ (𝐼 ↾ {(𝐹‘𝑁)})) | |
18 | 16, 17 | eqtrdi 2794 | . 2 ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ (𝐼 ↾ {(𝐹‘𝑁)}))) |
19 | resunimafz0.i | . . . . 5 ⊢ (𝜑 → Fun 𝐼) | |
20 | 19 | funfnd 6465 | . . . 4 ⊢ (𝜑 → 𝐼 Fn dom 𝐼) |
21 | 10, 2 | ffvelrnd 6962 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑁) ∈ dom 𝐼) |
22 | fnressn 7030 | . . . 4 ⊢ ((𝐼 Fn dom 𝐼 ∧ (𝐹‘𝑁) ∈ dom 𝐼) → (𝐼 ↾ {(𝐹‘𝑁)}) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) | |
23 | 20, 21, 22 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐼 ↾ {(𝐹‘𝑁)}) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) |
24 | 23 | uneq2d 4097 | . 2 ⊢ (𝜑 → ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ (𝐼 ↾ {(𝐹‘𝑁)})) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉})) |
25 | 18, 24 | eqtrd 2778 | 1 ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∪ cun 3885 {csn 4561 〈cop 4567 dom cdm 5589 ↾ cres 5591 “ cima 5592 Fun wfun 6427 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 0cc0 10871 ℕ0cn0 12233 ℤ≥cuz 12582 ...cfz 13239 ..^cfzo 13382 ♯chash 14044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 |
This theorem is referenced by: trlsegvdeg 28591 |
Copyright terms: Public domain | W3C validator |