MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resunimafz0 Structured version   Visualization version   GIF version

Theorem resunimafz0 14434
Description: TODO-AV: Revise using 𝐹 ∈ Word dom 𝐼? Formerly part of proof of eupth2lem3 30088: The union of a restriction by an image over an open range of nonnegative integers and a singleton of an ordered pair is a restriction by an image over an interval of nonnegative integers. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 20-Feb-2021.)
Hypotheses
Ref Expression
resunimafz0.i (𝜑 → Fun 𝐼)
resunimafz0.f (𝜑𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)
resunimafz0.n (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
Assertion
Ref Expression
resunimafz0 (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}))

Proof of Theorem resunimafz0
StepHypRef Expression
1 imaundi 6149 . . . . 5 (𝐹 “ ((0..^𝑁) ∪ {𝑁})) = ((𝐹 “ (0..^𝑁)) ∪ (𝐹 “ {𝑁}))
2 resunimafz0.n . . . . . . . . 9 (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
3 elfzonn0 13707 . . . . . . . . 9 (𝑁 ∈ (0..^(♯‘𝐹)) → 𝑁 ∈ ℕ0)
42, 3syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
5 elnn0uz 12895 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
64, 5sylib 217 . . . . . . 7 (𝜑𝑁 ∈ (ℤ‘0))
7 fzisfzounsn 13774 . . . . . . 7 (𝑁 ∈ (ℤ‘0) → (0...𝑁) = ((0..^𝑁) ∪ {𝑁}))
86, 7syl 17 . . . . . 6 (𝜑 → (0...𝑁) = ((0..^𝑁) ∪ {𝑁}))
98imaeq2d 6058 . . . . 5 (𝜑 → (𝐹 “ (0...𝑁)) = (𝐹 “ ((0..^𝑁) ∪ {𝑁})))
10 resunimafz0.f . . . . . . . 8 (𝜑𝐹:(0..^(♯‘𝐹))⟶dom 𝐼)
1110ffnd 6717 . . . . . . 7 (𝜑𝐹 Fn (0..^(♯‘𝐹)))
12 fnsnfv 6971 . . . . . . 7 ((𝐹 Fn (0..^(♯‘𝐹)) ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → {(𝐹𝑁)} = (𝐹 “ {𝑁}))
1311, 2, 12syl2anc 582 . . . . . 6 (𝜑 → {(𝐹𝑁)} = (𝐹 “ {𝑁}))
1413uneq2d 4156 . . . . 5 (𝜑 → ((𝐹 “ (0..^𝑁)) ∪ {(𝐹𝑁)}) = ((𝐹 “ (0..^𝑁)) ∪ (𝐹 “ {𝑁})))
151, 9, 143eqtr4a 2791 . . . 4 (𝜑 → (𝐹 “ (0...𝑁)) = ((𝐹 “ (0..^𝑁)) ∪ {(𝐹𝑁)}))
1615reseq2d 5979 . . 3 (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = (𝐼 ↾ ((𝐹 “ (0..^𝑁)) ∪ {(𝐹𝑁)})))
17 resundi 5993 . . 3 (𝐼 ↾ ((𝐹 “ (0..^𝑁)) ∪ {(𝐹𝑁)})) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ (𝐼 ↾ {(𝐹𝑁)}))
1816, 17eqtrdi 2781 . 2 (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ (𝐼 ↾ {(𝐹𝑁)})))
19 resunimafz0.i . . . . 5 (𝜑 → Fun 𝐼)
2019funfnd 6578 . . . 4 (𝜑𝐼 Fn dom 𝐼)
2110, 2ffvelcdmd 7089 . . . 4 (𝜑 → (𝐹𝑁) ∈ dom 𝐼)
22 fnressn 7162 . . . 4 ((𝐼 Fn dom 𝐼 ∧ (𝐹𝑁) ∈ dom 𝐼) → (𝐼 ↾ {(𝐹𝑁)}) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
2320, 21, 22syl2anc 582 . . 3 (𝜑 → (𝐼 ↾ {(𝐹𝑁)}) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
2423uneq2d 4156 . 2 (𝜑 → ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ (𝐼 ↾ {(𝐹𝑁)})) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}))
2518, 24eqtrd 2765 1 (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cun 3938  {csn 4624  cop 4630  dom cdm 5672  cres 5674  cima 5675  Fun wfun 6536   Fn wfn 6537  wf 6538  cfv 6542  (class class class)co 7415  0cc0 11136  0cn0 12500  cuz 12850  ...cfz 13514  ..^cfzo 13657  chash 14319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-nn 12241  df-n0 12501  df-z 12587  df-uz 12851  df-fz 13515  df-fzo 13658
This theorem is referenced by:  trlsegvdeg  30079
  Copyright terms: Public domain W3C validator