![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resunimafz0 | Structured version Visualization version GIF version |
Description: TODO-AV: Revise using 𝐹 ∈ Word dom 𝐼? Formerly part of proof of eupth2lem3 29478: The union of a restriction by an image over an open range of nonnegative integers and a singleton of an ordered pair is a restriction by an image over an interval of nonnegative integers. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 20-Feb-2021.) |
Ref | Expression |
---|---|
resunimafz0.i | ⊢ (𝜑 → Fun 𝐼) |
resunimafz0.f | ⊢ (𝜑 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) |
resunimafz0.n | ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
Ref | Expression |
---|---|
resunimafz0 | ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {⟨(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))⟩})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaundi 6146 | . . . . 5 ⊢ (𝐹 “ ((0..^𝑁) ∪ {𝑁})) = ((𝐹 “ (0..^𝑁)) ∪ (𝐹 “ {𝑁})) | |
2 | resunimafz0.n | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) | |
3 | elfzonn0 13673 | . . . . . . . . 9 ⊢ (𝑁 ∈ (0..^(♯‘𝐹)) → 𝑁 ∈ ℕ0) | |
4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
5 | elnn0uz 12863 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (ℤ≥‘0)) | |
6 | 4, 5 | sylib 217 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘0)) |
7 | fzisfzounsn 13740 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘0) → (0...𝑁) = ((0..^𝑁) ∪ {𝑁})) | |
8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → (0...𝑁) = ((0..^𝑁) ∪ {𝑁})) |
9 | 8 | imaeq2d 6057 | . . . . 5 ⊢ (𝜑 → (𝐹 “ (0...𝑁)) = (𝐹 “ ((0..^𝑁) ∪ {𝑁}))) |
10 | resunimafz0.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) | |
11 | 10 | ffnd 6715 | . . . . . . 7 ⊢ (𝜑 → 𝐹 Fn (0..^(♯‘𝐹))) |
12 | fnsnfv 6967 | . . . . . . 7 ⊢ ((𝐹 Fn (0..^(♯‘𝐹)) ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → {(𝐹‘𝑁)} = (𝐹 “ {𝑁})) | |
13 | 11, 2, 12 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → {(𝐹‘𝑁)} = (𝐹 “ {𝑁})) |
14 | 13 | uneq2d 4162 | . . . . 5 ⊢ (𝜑 → ((𝐹 “ (0..^𝑁)) ∪ {(𝐹‘𝑁)}) = ((𝐹 “ (0..^𝑁)) ∪ (𝐹 “ {𝑁}))) |
15 | 1, 9, 14 | 3eqtr4a 2798 | . . . 4 ⊢ (𝜑 → (𝐹 “ (0...𝑁)) = ((𝐹 “ (0..^𝑁)) ∪ {(𝐹‘𝑁)})) |
16 | 15 | reseq2d 5979 | . . 3 ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = (𝐼 ↾ ((𝐹 “ (0..^𝑁)) ∪ {(𝐹‘𝑁)}))) |
17 | resundi 5993 | . . 3 ⊢ (𝐼 ↾ ((𝐹 “ (0..^𝑁)) ∪ {(𝐹‘𝑁)})) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ (𝐼 ↾ {(𝐹‘𝑁)})) | |
18 | 16, 17 | eqtrdi 2788 | . 2 ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ (𝐼 ↾ {(𝐹‘𝑁)}))) |
19 | resunimafz0.i | . . . . 5 ⊢ (𝜑 → Fun 𝐼) | |
20 | 19 | funfnd 6576 | . . . 4 ⊢ (𝜑 → 𝐼 Fn dom 𝐼) |
21 | 10, 2 | ffvelcdmd 7084 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑁) ∈ dom 𝐼) |
22 | fnressn 7152 | . . . 4 ⊢ ((𝐼 Fn dom 𝐼 ∧ (𝐹‘𝑁) ∈ dom 𝐼) → (𝐼 ↾ {(𝐹‘𝑁)}) = {⟨(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))⟩}) | |
23 | 20, 21, 22 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐼 ↾ {(𝐹‘𝑁)}) = {⟨(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))⟩}) |
24 | 23 | uneq2d 4162 | . 2 ⊢ (𝜑 → ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ (𝐼 ↾ {(𝐹‘𝑁)})) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {⟨(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))⟩})) |
25 | 18, 24 | eqtrd 2772 | 1 ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {⟨(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))⟩})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ∪ cun 3945 {csn 4627 ⟨cop 4633 dom cdm 5675 ↾ cres 5677 “ cima 5678 Fun wfun 6534 Fn wfn 6535 ⟶wf 6536 ‘cfv 6540 (class class class)co 7405 0cc0 11106 ℕ0cn0 12468 ℤ≥cuz 12818 ...cfz 13480 ..^cfzo 13623 ♯chash 14286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 |
This theorem is referenced by: trlsegvdeg 29469 |
Copyright terms: Public domain | W3C validator |