![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resunimafz0 | Structured version Visualization version GIF version |
Description: TODO-AV: Revise using 𝐹 ∈ Word dom 𝐼? Formerly part of proof of eupth2lem3 29222: The union of a restriction by an image over an open range of nonnegative integers and a singleton of an ordered pair is a restriction by an image over an interval of nonnegative integers. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 20-Feb-2021.) |
Ref | Expression |
---|---|
resunimafz0.i | ⊢ (𝜑 → Fun 𝐼) |
resunimafz0.f | ⊢ (𝜑 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) |
resunimafz0.n | ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
Ref | Expression |
---|---|
resunimafz0 | ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {⟨(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))⟩})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaundi 6107 | . . . . 5 ⊢ (𝐹 “ ((0..^𝑁) ∪ {𝑁})) = ((𝐹 “ (0..^𝑁)) ∪ (𝐹 “ {𝑁})) | |
2 | resunimafz0.n | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) | |
3 | elfzonn0 13624 | . . . . . . . . 9 ⊢ (𝑁 ∈ (0..^(♯‘𝐹)) → 𝑁 ∈ ℕ0) | |
4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
5 | elnn0uz 12815 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (ℤ≥‘0)) | |
6 | 4, 5 | sylib 217 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘0)) |
7 | fzisfzounsn 13691 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘0) → (0...𝑁) = ((0..^𝑁) ∪ {𝑁})) | |
8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → (0...𝑁) = ((0..^𝑁) ∪ {𝑁})) |
9 | 8 | imaeq2d 6018 | . . . . 5 ⊢ (𝜑 → (𝐹 “ (0...𝑁)) = (𝐹 “ ((0..^𝑁) ∪ {𝑁}))) |
10 | resunimafz0.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) | |
11 | 10 | ffnd 6674 | . . . . . . 7 ⊢ (𝜑 → 𝐹 Fn (0..^(♯‘𝐹))) |
12 | fnsnfv 6925 | . . . . . . 7 ⊢ ((𝐹 Fn (0..^(♯‘𝐹)) ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → {(𝐹‘𝑁)} = (𝐹 “ {𝑁})) | |
13 | 11, 2, 12 | syl2anc 585 | . . . . . 6 ⊢ (𝜑 → {(𝐹‘𝑁)} = (𝐹 “ {𝑁})) |
14 | 13 | uneq2d 4128 | . . . . 5 ⊢ (𝜑 → ((𝐹 “ (0..^𝑁)) ∪ {(𝐹‘𝑁)}) = ((𝐹 “ (0..^𝑁)) ∪ (𝐹 “ {𝑁}))) |
15 | 1, 9, 14 | 3eqtr4a 2803 | . . . 4 ⊢ (𝜑 → (𝐹 “ (0...𝑁)) = ((𝐹 “ (0..^𝑁)) ∪ {(𝐹‘𝑁)})) |
16 | 15 | reseq2d 5942 | . . 3 ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = (𝐼 ↾ ((𝐹 “ (0..^𝑁)) ∪ {(𝐹‘𝑁)}))) |
17 | resundi 5956 | . . 3 ⊢ (𝐼 ↾ ((𝐹 “ (0..^𝑁)) ∪ {(𝐹‘𝑁)})) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ (𝐼 ↾ {(𝐹‘𝑁)})) | |
18 | 16, 17 | eqtrdi 2793 | . 2 ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ (𝐼 ↾ {(𝐹‘𝑁)}))) |
19 | resunimafz0.i | . . . . 5 ⊢ (𝜑 → Fun 𝐼) | |
20 | 19 | funfnd 6537 | . . . 4 ⊢ (𝜑 → 𝐼 Fn dom 𝐼) |
21 | 10, 2 | ffvelcdmd 7041 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑁) ∈ dom 𝐼) |
22 | fnressn 7109 | . . . 4 ⊢ ((𝐼 Fn dom 𝐼 ∧ (𝐹‘𝑁) ∈ dom 𝐼) → (𝐼 ↾ {(𝐹‘𝑁)}) = {⟨(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))⟩}) | |
23 | 20, 21, 22 | syl2anc 585 | . . 3 ⊢ (𝜑 → (𝐼 ↾ {(𝐹‘𝑁)}) = {⟨(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))⟩}) |
24 | 23 | uneq2d 4128 | . 2 ⊢ (𝜑 → ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ (𝐼 ↾ {(𝐹‘𝑁)})) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {⟨(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))⟩})) |
25 | 18, 24 | eqtrd 2777 | 1 ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {⟨(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))⟩})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ∪ cun 3913 {csn 4591 ⟨cop 4597 dom cdm 5638 ↾ cres 5640 “ cima 5641 Fun wfun 6495 Fn wfn 6496 ⟶wf 6497 ‘cfv 6501 (class class class)co 7362 0cc0 11058 ℕ0cn0 12420 ℤ≥cuz 12770 ...cfz 13431 ..^cfzo 13574 ♯chash 14237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-cnex 11114 ax-resscn 11115 ax-1cn 11116 ax-icn 11117 ax-addcl 11118 ax-addrcl 11119 ax-mulcl 11120 ax-mulrcl 11121 ax-mulcom 11122 ax-addass 11123 ax-mulass 11124 ax-distr 11125 ax-i2m1 11126 ax-1ne0 11127 ax-1rid 11128 ax-rnegex 11129 ax-rrecex 11130 ax-cnre 11131 ax-pre-lttri 11132 ax-pre-lttrn 11133 ax-pre-ltadd 11134 ax-pre-mulgt0 11135 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-om 7808 df-1st 7926 df-2nd 7927 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-er 8655 df-en 8891 df-dom 8892 df-sdom 8893 df-pnf 11198 df-mnf 11199 df-xr 11200 df-ltxr 11201 df-le 11202 df-sub 11394 df-neg 11395 df-nn 12161 df-n0 12421 df-z 12507 df-uz 12771 df-fz 13432 df-fzo 13575 |
This theorem is referenced by: trlsegvdeg 29213 |
Copyright terms: Public domain | W3C validator |