MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crre Structured version   Visualization version   GIF version

Theorem crre 14476
Description: The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
crre ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴)

Proof of Theorem crre
StepHypRef Expression
1 recn 10630 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 ax-icn 10599 . . . . 5 i ∈ ℂ
3 recn 10630 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
4 mulcl 10624 . . . . 5 ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐵) ∈ ℂ)
52, 3, 4sylancr 589 . . . 4 (𝐵 ∈ ℝ → (i · 𝐵) ∈ ℂ)
6 addcl 10622 . . . 4 ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (𝐴 + (i · 𝐵)) ∈ ℂ)
71, 5, 6syl2an 597 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + (i · 𝐵)) ∈ ℂ)
8 reval 14468 . . 3 ((𝐴 + (i · 𝐵)) ∈ ℂ → (ℜ‘(𝐴 + (i · 𝐵))) = (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2))
97, 8syl 17 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℜ‘(𝐴 + (i · 𝐵))) = (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2))
10 cjcl 14467 . . . . . 6 ((𝐴 + (i · 𝐵)) ∈ ℂ → (∗‘(𝐴 + (i · 𝐵))) ∈ ℂ)
117, 10syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∗‘(𝐴 + (i · 𝐵))) ∈ ℂ)
127, 11addcld 10663 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) ∈ ℂ)
1312halfcld 11885 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) ∈ ℂ)
141adantr 483 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℂ)
15 recl 14472 . . . . . . 7 ((𝐴 + (i · 𝐵)) ∈ ℂ → (ℜ‘(𝐴 + (i · 𝐵))) ∈ ℝ)
167, 15syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℜ‘(𝐴 + (i · 𝐵))) ∈ ℝ)
179, 16eqeltrrd 2917 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) ∈ ℝ)
18 simpl 485 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
1917, 18resubcld 11071 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴) ∈ ℝ)
202a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → i ∈ ℂ)
213adantl 484 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℂ)
222, 21, 4sylancr 589 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (i · 𝐵) ∈ ℂ)
237, 11subcld 11000 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) ∈ ℂ)
2423halfcld 11885 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2) ∈ ℂ)
2520, 22, 24subdid 11099 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (i · ((i · 𝐵) − (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2))) = ((i · (i · 𝐵)) − (i · (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2))))
2614, 22, 14pnpcand 11037 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + (i · 𝐵)) − (𝐴 + 𝐴)) = ((i · 𝐵) − 𝐴))
2722, 14, 22pnpcan2d 11038 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((i · 𝐵) + (i · 𝐵)) − (𝐴 + (i · 𝐵))) = ((i · 𝐵) − 𝐴))
2826, 27eqtr4d 2862 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + (i · 𝐵)) − (𝐴 + 𝐴)) = (((i · 𝐵) + (i · 𝐵)) − (𝐴 + (i · 𝐵))))
2928oveq1d 7174 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) − (𝐴 + 𝐴)) + (∗‘(𝐴 + (i · 𝐵)))) = ((((i · 𝐵) + (i · 𝐵)) − (𝐴 + (i · 𝐵))) + (∗‘(𝐴 + (i · 𝐵)))))
3014, 14addcld 10663 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐴) ∈ ℂ)
317, 11, 30addsubd 11021 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) − (𝐴 + 𝐴)) = (((𝐴 + (i · 𝐵)) − (𝐴 + 𝐴)) + (∗‘(𝐴 + (i · 𝐵)))))
3222, 22addcld 10663 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((i · 𝐵) + (i · 𝐵)) ∈ ℂ)
3332, 7, 11subsubd 11028 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((i · 𝐵) + (i · 𝐵)) − ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) = ((((i · 𝐵) + (i · 𝐵)) − (𝐴 + (i · 𝐵))) + (∗‘(𝐴 + (i · 𝐵)))))
3429, 31, 333eqtr4d 2869 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) − (𝐴 + 𝐴)) = (((i · 𝐵) + (i · 𝐵)) − ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))))
35142timesd 11883 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · 𝐴) = (𝐴 + 𝐴))
3635oveq2d 7175 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) − (2 · 𝐴)) = (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) − (𝐴 + 𝐴)))
37222timesd 11883 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · (i · 𝐵)) = ((i · 𝐵) + (i · 𝐵)))
3837oveq1d 7174 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((2 · (i · 𝐵)) − ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) = (((i · 𝐵) + (i · 𝐵)) − ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))))
3934, 36, 383eqtr4d 2869 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) − (2 · 𝐴)) = ((2 · (i · 𝐵)) − ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))))
4039oveq1d 7174 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) − (2 · 𝐴)) / 2) = (((2 · (i · 𝐵)) − ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) / 2))
41 2cn 11715 . . . . . . . . . . 11 2 ∈ ℂ
42 mulcl 10624 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (2 · 𝐴) ∈ ℂ)
4341, 14, 42sylancr 589 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · 𝐴) ∈ ℂ)
4441a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 2 ∈ ℂ)
45 2ne0 11744 . . . . . . . . . . 11 2 ≠ 0
4645a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 2 ≠ 0)
4712, 43, 44, 46divsubdird 11458 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) − (2 · 𝐴)) / 2) = ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − ((2 · 𝐴) / 2)))
48 mulcl 10624 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (2 · (i · 𝐵)) ∈ ℂ)
4941, 22, 48sylancr 589 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · (i · 𝐵)) ∈ ℂ)
5049, 23, 44, 46divsubdird 11458 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((2 · (i · 𝐵)) − ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) / 2) = (((2 · (i · 𝐵)) / 2) − (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2)))
5140, 47, 503eqtr3d 2867 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − ((2 · 𝐴) / 2)) = (((2 · (i · 𝐵)) / 2) − (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2)))
5214, 44, 46divcan3d 11424 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((2 · 𝐴) / 2) = 𝐴)
5352oveq2d 7175 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − ((2 · 𝐴) / 2)) = ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴))
5422, 44, 46divcan3d 11424 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((2 · (i · 𝐵)) / 2) = (i · 𝐵))
5554oveq1d 7174 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((2 · (i · 𝐵)) / 2) − (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2)) = ((i · 𝐵) − (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2)))
5651, 53, 553eqtr3d 2867 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴) = ((i · 𝐵) − (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2)))
5756oveq2d 7175 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (i · ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴)) = (i · ((i · 𝐵) − (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2))))
5820, 20, 21mulassd 10667 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((i · i) · 𝐵) = (i · (i · 𝐵)))
5920, 23, 44, 46divassd 11454 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) / 2) = (i · (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2)))
6058, 59oveq12d 7177 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((i · i) · 𝐵) − ((i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) / 2)) = ((i · (i · 𝐵)) − (i · (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2))))
6125, 57, 603eqtr4d 2869 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (i · ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴)) = (((i · i) · 𝐵) − ((i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) / 2)))
62 ixi 11272 . . . . . . . 8 (i · i) = -1
63 neg1rr 11755 . . . . . . . 8 -1 ∈ ℝ
6462, 63eqeltri 2912 . . . . . . 7 (i · i) ∈ ℝ
65 simpr 487 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
66 remulcl 10625 . . . . . . 7 (((i · i) ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((i · i) · 𝐵) ∈ ℝ)
6764, 65, 66sylancr 589 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((i · i) · 𝐵) ∈ ℝ)
68 cjth 14465 . . . . . . . . 9 ((𝐴 + (i · 𝐵)) ∈ ℂ → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) ∈ ℝ ∧ (i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) ∈ ℝ))
6968simprd 498 . . . . . . . 8 ((𝐴 + (i · 𝐵)) ∈ ℂ → (i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) ∈ ℝ)
707, 69syl 17 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) ∈ ℝ)
7170rehalfcld 11887 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) / 2) ∈ ℝ)
7267, 71resubcld 11071 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((i · i) · 𝐵) − ((i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) / 2)) ∈ ℝ)
7361, 72eqeltrd 2916 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (i · ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴)) ∈ ℝ)
74 rimul 11632 . . . 4 ((((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴) ∈ ℝ ∧ (i · ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴)) ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴) = 0)
7519, 73, 74syl2anc 586 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴) = 0)
7613, 14, 75subeq0d 11008 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) = 𝐴)
779, 76eqtrd 2859 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  wne 3019  cfv 6358  (class class class)co 7159  cc 10538  cr 10539  0cc0 10540  1c1 10541  ici 10542   + caddc 10543   · cmul 10545  cmin 10873  -cneg 10874   / cdiv 11300  2c2 11695  ccj 14458  cre 14459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-po 5477  df-so 5478  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-2 11703  df-cj 14461  df-re 14462
This theorem is referenced by:  crim  14477  replim  14478  mulre  14483  recj  14486  reneg  14487  readd  14488  remullem  14490  rei  14518  crrei  14554  crred  14593  rennim  14601  absreimsq  14655  4sqlem4  16291  2sqlem2  25997  cnre2csqima  31158
  Copyright terms: Public domain W3C validator