MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crre Structured version   Visualization version   GIF version

Theorem crre 14825
Description: The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
crre ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴)

Proof of Theorem crre
StepHypRef Expression
1 recn 10961 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 ax-icn 10930 . . . . 5 i ∈ ℂ
3 recn 10961 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
4 mulcl 10955 . . . . 5 ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐵) ∈ ℂ)
52, 3, 4sylancr 587 . . . 4 (𝐵 ∈ ℝ → (i · 𝐵) ∈ ℂ)
6 addcl 10953 . . . 4 ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (𝐴 + (i · 𝐵)) ∈ ℂ)
71, 5, 6syl2an 596 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + (i · 𝐵)) ∈ ℂ)
8 reval 14817 . . 3 ((𝐴 + (i · 𝐵)) ∈ ℂ → (ℜ‘(𝐴 + (i · 𝐵))) = (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2))
97, 8syl 17 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℜ‘(𝐴 + (i · 𝐵))) = (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2))
10 cjcl 14816 . . . . . 6 ((𝐴 + (i · 𝐵)) ∈ ℂ → (∗‘(𝐴 + (i · 𝐵))) ∈ ℂ)
117, 10syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∗‘(𝐴 + (i · 𝐵))) ∈ ℂ)
127, 11addcld 10994 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) ∈ ℂ)
1312halfcld 12218 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) ∈ ℂ)
141adantr 481 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℂ)
15 recl 14821 . . . . . . 7 ((𝐴 + (i · 𝐵)) ∈ ℂ → (ℜ‘(𝐴 + (i · 𝐵))) ∈ ℝ)
167, 15syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℜ‘(𝐴 + (i · 𝐵))) ∈ ℝ)
179, 16eqeltrrd 2840 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) ∈ ℝ)
18 simpl 483 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
1917, 18resubcld 11403 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴) ∈ ℝ)
202a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → i ∈ ℂ)
213adantl 482 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℂ)
222, 21, 4sylancr 587 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (i · 𝐵) ∈ ℂ)
237, 11subcld 11332 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) ∈ ℂ)
2423halfcld 12218 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2) ∈ ℂ)
2520, 22, 24subdid 11431 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (i · ((i · 𝐵) − (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2))) = ((i · (i · 𝐵)) − (i · (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2))))
2614, 22, 14pnpcand 11369 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + (i · 𝐵)) − (𝐴 + 𝐴)) = ((i · 𝐵) − 𝐴))
2722, 14, 22pnpcan2d 11370 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((i · 𝐵) + (i · 𝐵)) − (𝐴 + (i · 𝐵))) = ((i · 𝐵) − 𝐴))
2826, 27eqtr4d 2781 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + (i · 𝐵)) − (𝐴 + 𝐴)) = (((i · 𝐵) + (i · 𝐵)) − (𝐴 + (i · 𝐵))))
2928oveq1d 7290 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) − (𝐴 + 𝐴)) + (∗‘(𝐴 + (i · 𝐵)))) = ((((i · 𝐵) + (i · 𝐵)) − (𝐴 + (i · 𝐵))) + (∗‘(𝐴 + (i · 𝐵)))))
3014, 14addcld 10994 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐴) ∈ ℂ)
317, 11, 30addsubd 11353 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) − (𝐴 + 𝐴)) = (((𝐴 + (i · 𝐵)) − (𝐴 + 𝐴)) + (∗‘(𝐴 + (i · 𝐵)))))
3222, 22addcld 10994 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((i · 𝐵) + (i · 𝐵)) ∈ ℂ)
3332, 7, 11subsubd 11360 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((i · 𝐵) + (i · 𝐵)) − ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) = ((((i · 𝐵) + (i · 𝐵)) − (𝐴 + (i · 𝐵))) + (∗‘(𝐴 + (i · 𝐵)))))
3429, 31, 333eqtr4d 2788 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) − (𝐴 + 𝐴)) = (((i · 𝐵) + (i · 𝐵)) − ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))))
35142timesd 12216 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · 𝐴) = (𝐴 + 𝐴))
3635oveq2d 7291 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) − (2 · 𝐴)) = (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) − (𝐴 + 𝐴)))
37222timesd 12216 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · (i · 𝐵)) = ((i · 𝐵) + (i · 𝐵)))
3837oveq1d 7290 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((2 · (i · 𝐵)) − ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) = (((i · 𝐵) + (i · 𝐵)) − ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))))
3934, 36, 383eqtr4d 2788 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) − (2 · 𝐴)) = ((2 · (i · 𝐵)) − ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))))
4039oveq1d 7290 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) − (2 · 𝐴)) / 2) = (((2 · (i · 𝐵)) − ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) / 2))
41 2cn 12048 . . . . . . . . . . 11 2 ∈ ℂ
42 mulcl 10955 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (2 · 𝐴) ∈ ℂ)
4341, 14, 42sylancr 587 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · 𝐴) ∈ ℂ)
4441a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 2 ∈ ℂ)
45 2ne0 12077 . . . . . . . . . . 11 2 ≠ 0
4645a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 2 ≠ 0)
4712, 43, 44, 46divsubdird 11790 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) − (2 · 𝐴)) / 2) = ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − ((2 · 𝐴) / 2)))
48 mulcl 10955 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (2 · (i · 𝐵)) ∈ ℂ)
4941, 22, 48sylancr 587 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · (i · 𝐵)) ∈ ℂ)
5049, 23, 44, 46divsubdird 11790 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((2 · (i · 𝐵)) − ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) / 2) = (((2 · (i · 𝐵)) / 2) − (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2)))
5140, 47, 503eqtr3d 2786 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − ((2 · 𝐴) / 2)) = (((2 · (i · 𝐵)) / 2) − (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2)))
5214, 44, 46divcan3d 11756 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((2 · 𝐴) / 2) = 𝐴)
5352oveq2d 7291 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − ((2 · 𝐴) / 2)) = ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴))
5422, 44, 46divcan3d 11756 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((2 · (i · 𝐵)) / 2) = (i · 𝐵))
5554oveq1d 7290 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((2 · (i · 𝐵)) / 2) − (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2)) = ((i · 𝐵) − (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2)))
5651, 53, 553eqtr3d 2786 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴) = ((i · 𝐵) − (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2)))
5756oveq2d 7291 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (i · ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴)) = (i · ((i · 𝐵) − (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2))))
5820, 20, 21mulassd 10998 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((i · i) · 𝐵) = (i · (i · 𝐵)))
5920, 23, 44, 46divassd 11786 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) / 2) = (i · (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2)))
6058, 59oveq12d 7293 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((i · i) · 𝐵) − ((i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) / 2)) = ((i · (i · 𝐵)) − (i · (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2))))
6125, 57, 603eqtr4d 2788 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (i · ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴)) = (((i · i) · 𝐵) − ((i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) / 2)))
62 ixi 11604 . . . . . . . 8 (i · i) = -1
63 neg1rr 12088 . . . . . . . 8 -1 ∈ ℝ
6462, 63eqeltri 2835 . . . . . . 7 (i · i) ∈ ℝ
65 simpr 485 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
66 remulcl 10956 . . . . . . 7 (((i · i) ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((i · i) · 𝐵) ∈ ℝ)
6764, 65, 66sylancr 587 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((i · i) · 𝐵) ∈ ℝ)
68 cjth 14814 . . . . . . . . 9 ((𝐴 + (i · 𝐵)) ∈ ℂ → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) ∈ ℝ ∧ (i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) ∈ ℝ))
6968simprd 496 . . . . . . . 8 ((𝐴 + (i · 𝐵)) ∈ ℂ → (i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) ∈ ℝ)
707, 69syl 17 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) ∈ ℝ)
7170rehalfcld 12220 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) / 2) ∈ ℝ)
7267, 71resubcld 11403 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((i · i) · 𝐵) − ((i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) / 2)) ∈ ℝ)
7361, 72eqeltrd 2839 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (i · ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴)) ∈ ℝ)
74 rimul 11964 . . . 4 ((((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴) ∈ ℝ ∧ (i · ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴)) ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴) = 0)
7519, 73, 74syl2anc 584 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴) = 0)
7613, 14, 75subeq0d 11340 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) = 𝐴)
779, 76eqtrd 2778 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872  ici 10873   + caddc 10874   · cmul 10876  cmin 11205  -cneg 11206   / cdiv 11632  2c2 12028  ccj 14807  cre 14808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-2 12036  df-cj 14810  df-re 14811
This theorem is referenced by:  crim  14826  replim  14827  mulre  14832  recj  14835  reneg  14836  readd  14837  remullem  14839  rei  14867  crrei  14903  crred  14942  rennim  14950  absreimsq  15004  4sqlem4  16653  2sqlem2  26566  cnre2csqima  31861
  Copyright terms: Public domain W3C validator