MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crre Structured version   Visualization version   GIF version

Theorem crre 15087
Description: The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
crre ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴)

Proof of Theorem crre
StepHypRef Expression
1 recn 11165 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 ax-icn 11134 . . . . 5 i ∈ ℂ
3 recn 11165 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
4 mulcl 11159 . . . . 5 ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐵) ∈ ℂ)
52, 3, 4sylancr 587 . . . 4 (𝐵 ∈ ℝ → (i · 𝐵) ∈ ℂ)
6 addcl 11157 . . . 4 ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (𝐴 + (i · 𝐵)) ∈ ℂ)
71, 5, 6syl2an 596 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + (i · 𝐵)) ∈ ℂ)
8 reval 15079 . . 3 ((𝐴 + (i · 𝐵)) ∈ ℂ → (ℜ‘(𝐴 + (i · 𝐵))) = (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2))
97, 8syl 17 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℜ‘(𝐴 + (i · 𝐵))) = (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2))
10 cjcl 15078 . . . . . 6 ((𝐴 + (i · 𝐵)) ∈ ℂ → (∗‘(𝐴 + (i · 𝐵))) ∈ ℂ)
117, 10syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∗‘(𝐴 + (i · 𝐵))) ∈ ℂ)
127, 11addcld 11200 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) ∈ ℂ)
1312halfcld 12434 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) ∈ ℂ)
141adantr 480 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℂ)
15 recl 15083 . . . . . . 7 ((𝐴 + (i · 𝐵)) ∈ ℂ → (ℜ‘(𝐴 + (i · 𝐵))) ∈ ℝ)
167, 15syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℜ‘(𝐴 + (i · 𝐵))) ∈ ℝ)
179, 16eqeltrrd 2830 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) ∈ ℝ)
18 simpl 482 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
1917, 18resubcld 11613 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴) ∈ ℝ)
202a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → i ∈ ℂ)
213adantl 481 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℂ)
222, 21, 4sylancr 587 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (i · 𝐵) ∈ ℂ)
237, 11subcld 11540 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) ∈ ℂ)
2423halfcld 12434 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2) ∈ ℂ)
2520, 22, 24subdid 11641 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (i · ((i · 𝐵) − (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2))) = ((i · (i · 𝐵)) − (i · (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2))))
2614, 22, 14pnpcand 11577 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + (i · 𝐵)) − (𝐴 + 𝐴)) = ((i · 𝐵) − 𝐴))
2722, 14, 22pnpcan2d 11578 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((i · 𝐵) + (i · 𝐵)) − (𝐴 + (i · 𝐵))) = ((i · 𝐵) − 𝐴))
2826, 27eqtr4d 2768 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + (i · 𝐵)) − (𝐴 + 𝐴)) = (((i · 𝐵) + (i · 𝐵)) − (𝐴 + (i · 𝐵))))
2928oveq1d 7405 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) − (𝐴 + 𝐴)) + (∗‘(𝐴 + (i · 𝐵)))) = ((((i · 𝐵) + (i · 𝐵)) − (𝐴 + (i · 𝐵))) + (∗‘(𝐴 + (i · 𝐵)))))
3014, 14addcld 11200 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐴) ∈ ℂ)
317, 11, 30addsubd 11561 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) − (𝐴 + 𝐴)) = (((𝐴 + (i · 𝐵)) − (𝐴 + 𝐴)) + (∗‘(𝐴 + (i · 𝐵)))))
3222, 22addcld 11200 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((i · 𝐵) + (i · 𝐵)) ∈ ℂ)
3332, 7, 11subsubd 11568 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((i · 𝐵) + (i · 𝐵)) − ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) = ((((i · 𝐵) + (i · 𝐵)) − (𝐴 + (i · 𝐵))) + (∗‘(𝐴 + (i · 𝐵)))))
3429, 31, 333eqtr4d 2775 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) − (𝐴 + 𝐴)) = (((i · 𝐵) + (i · 𝐵)) − ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))))
35142timesd 12432 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · 𝐴) = (𝐴 + 𝐴))
3635oveq2d 7406 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) − (2 · 𝐴)) = (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) − (𝐴 + 𝐴)))
37222timesd 12432 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · (i · 𝐵)) = ((i · 𝐵) + (i · 𝐵)))
3837oveq1d 7405 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((2 · (i · 𝐵)) − ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) = (((i · 𝐵) + (i · 𝐵)) − ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))))
3934, 36, 383eqtr4d 2775 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) − (2 · 𝐴)) = ((2 · (i · 𝐵)) − ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))))
4039oveq1d 7405 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) − (2 · 𝐴)) / 2) = (((2 · (i · 𝐵)) − ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) / 2))
41 2cn 12268 . . . . . . . . . . 11 2 ∈ ℂ
42 mulcl 11159 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (2 · 𝐴) ∈ ℂ)
4341, 14, 42sylancr 587 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · 𝐴) ∈ ℂ)
4441a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 2 ∈ ℂ)
45 2ne0 12297 . . . . . . . . . . 11 2 ≠ 0
4645a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 2 ≠ 0)
4712, 43, 44, 46divsubdird 12004 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) − (2 · 𝐴)) / 2) = ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − ((2 · 𝐴) / 2)))
48 mulcl 11159 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (2 · (i · 𝐵)) ∈ ℂ)
4941, 22, 48sylancr 587 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · (i · 𝐵)) ∈ ℂ)
5049, 23, 44, 46divsubdird 12004 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((2 · (i · 𝐵)) − ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) / 2) = (((2 · (i · 𝐵)) / 2) − (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2)))
5140, 47, 503eqtr3d 2773 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − ((2 · 𝐴) / 2)) = (((2 · (i · 𝐵)) / 2) − (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2)))
5214, 44, 46divcan3d 11970 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((2 · 𝐴) / 2) = 𝐴)
5352oveq2d 7406 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − ((2 · 𝐴) / 2)) = ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴))
5422, 44, 46divcan3d 11970 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((2 · (i · 𝐵)) / 2) = (i · 𝐵))
5554oveq1d 7405 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((2 · (i · 𝐵)) / 2) − (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2)) = ((i · 𝐵) − (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2)))
5651, 53, 553eqtr3d 2773 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴) = ((i · 𝐵) − (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2)))
5756oveq2d 7406 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (i · ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴)) = (i · ((i · 𝐵) − (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2))))
5820, 20, 21mulassd 11204 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((i · i) · 𝐵) = (i · (i · 𝐵)))
5920, 23, 44, 46divassd 12000 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) / 2) = (i · (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2)))
6058, 59oveq12d 7408 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((i · i) · 𝐵) − ((i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) / 2)) = ((i · (i · 𝐵)) − (i · (((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵)))) / 2))))
6125, 57, 603eqtr4d 2775 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (i · ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴)) = (((i · i) · 𝐵) − ((i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) / 2)))
62 ixi 11814 . . . . . . . 8 (i · i) = -1
63 neg1rr 12179 . . . . . . . 8 -1 ∈ ℝ
6462, 63eqeltri 2825 . . . . . . 7 (i · i) ∈ ℝ
65 simpr 484 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
66 remulcl 11160 . . . . . . 7 (((i · i) ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((i · i) · 𝐵) ∈ ℝ)
6764, 65, 66sylancr 587 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((i · i) · 𝐵) ∈ ℝ)
68 cjth 15076 . . . . . . . . 9 ((𝐴 + (i · 𝐵)) ∈ ℂ → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) ∈ ℝ ∧ (i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) ∈ ℝ))
6968simprd 495 . . . . . . . 8 ((𝐴 + (i · 𝐵)) ∈ ℂ → (i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) ∈ ℝ)
707, 69syl 17 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) ∈ ℝ)
7170rehalfcld 12436 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) / 2) ∈ ℝ)
7267, 71resubcld 11613 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((i · i) · 𝐵) − ((i · ((𝐴 + (i · 𝐵)) − (∗‘(𝐴 + (i · 𝐵))))) / 2)) ∈ ℝ)
7361, 72eqeltrd 2829 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (i · ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴)) ∈ ℝ)
74 rimul 12184 . . . 4 ((((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴) ∈ ℝ ∧ (i · ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴)) ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴) = 0)
7519, 73, 74syl2anc 584 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) − 𝐴) = 0)
7613, 14, 75subeq0d 11548 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + (i · 𝐵)) + (∗‘(𝐴 + (i · 𝐵)))) / 2) = 𝐴)
779, 76eqtrd 2765 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076  ici 11077   + caddc 11078   · cmul 11080  cmin 11412  -cneg 11413   / cdiv 11842  2c2 12248  ccj 15069  cre 15070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-cj 15072  df-re 15073
This theorem is referenced by:  crim  15088  replim  15089  mulre  15094  recj  15097  reneg  15098  readd  15099  remullem  15101  rei  15129  crrei  15165  crred  15204  rennim  15212  absreimsq  15265  4sqlem4  16930  2sqlem2  27336  cnre2csqima  33908
  Copyright terms: Public domain W3C validator