| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > recl | Structured version Visualization version GIF version | ||
| Description: The real part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.) |
| Ref | Expression |
|---|---|
| recl | ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reval 15008 | . 2 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) = ((𝐴 + (∗‘𝐴)) / 2)) | |
| 2 | cjth 15005 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((𝐴 + (∗‘𝐴)) ∈ ℝ ∧ (i · (𝐴 − (∗‘𝐴))) ∈ ℝ)) | |
| 3 | 2 | simpld 494 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝐴 + (∗‘𝐴)) ∈ ℝ) |
| 4 | 3 | rehalfcld 12363 | . 2 ⊢ (𝐴 ∈ ℂ → ((𝐴 + (∗‘𝐴)) / 2) ∈ ℝ) |
| 5 | 1, 4 | eqeltrd 2831 | 1 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ‘cfv 6476 (class class class)co 7341 ℂcc 10999 ℝcr 11000 ici 11003 + caddc 11004 · cmul 11006 − cmin 11339 / cdiv 11769 2c2 12175 ∗ccj 14998 ℜcre 14999 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-cj 15001 df-re 15002 |
| This theorem is referenced by: imcl 15013 ref 15014 crre 15016 remim 15019 reim0b 15021 rereb 15022 mulre 15023 cjreb 15025 recj 15026 reneg 15027 readd 15028 resub 15029 remullem 15030 remul2 15032 rediv 15033 imcj 15034 imneg 15035 imadd 15036 immul2 15039 cjadd 15043 ipcnval 15045 cjmulval 15047 cjmulge0 15048 cjneg 15049 imval2 15053 cnrecnv 15067 sqeqd 15068 recli 15069 recld 15096 cnpart 15142 absrele 15210 releabs 15224 efeul 16066 absef 16101 absefib 16102 efieq1re 16103 cnsubrg 21359 mbfconst 25556 itgconst 25742 tanregt0 26470 argregt0 26541 tanarg 26550 logf1o2 26581 abscxp 26623 isosctrlem1 26750 asinsin 26824 acoscos 26825 atancj 26842 atantan 26855 cxploglim2 26911 zetacvg 26947 cncph 30791 ccfldextdgrr 33677 sqrtcvallem2 43670 sqrtcvallem3 43671 sqrtcvallem4 43672 sqrtcvallem5 43673 sqrtcval 43674 |
| Copyright terms: Public domain | W3C validator |