MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recl Structured version   Visualization version   GIF version

Theorem recl 15159
Description: The real part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
recl (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)

Proof of Theorem recl
StepHypRef Expression
1 reval 15155 . 2 (𝐴 ∈ ℂ → (ℜ‘𝐴) = ((𝐴 + (∗‘𝐴)) / 2))
2 cjth 15152 . . . 4 (𝐴 ∈ ℂ → ((𝐴 + (∗‘𝐴)) ∈ ℝ ∧ (i · (𝐴 − (∗‘𝐴))) ∈ ℝ))
32simpld 494 . . 3 (𝐴 ∈ ℂ → (𝐴 + (∗‘𝐴)) ∈ ℝ)
43rehalfcld 12540 . 2 (𝐴 ∈ ℂ → ((𝐴 + (∗‘𝐴)) / 2) ∈ ℝ)
51, 4eqeltrd 2844 1 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  ici 11186   + caddc 11187   · cmul 11189  cmin 11520   / cdiv 11947  2c2 12348  ccj 15145  cre 15146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-2 12356  df-cj 15148  df-re 15149
This theorem is referenced by:  imcl  15160  ref  15161  crre  15163  remim  15166  reim0b  15168  rereb  15169  mulre  15170  cjreb  15172  recj  15173  reneg  15174  readd  15175  resub  15176  remullem  15177  remul2  15179  rediv  15180  imcj  15181  imneg  15182  imadd  15183  immul2  15186  cjadd  15190  ipcnval  15192  cjmulval  15194  cjmulge0  15195  cjneg  15196  imval2  15200  cnrecnv  15214  sqeqd  15215  recli  15216  recld  15243  cnpart  15289  absrele  15357  releabs  15370  efeul  16210  absef  16245  absefib  16246  efieq1re  16247  cnsubrg  21468  mbfconst  25687  itgconst  25874  tanregt0  26599  argregt0  26670  tanarg  26679  logf1o2  26710  abscxp  26752  isosctrlem1  26879  asinsin  26953  acoscos  26954  atancj  26971  atantan  26984  cxploglim2  27040  zetacvg  27076  cncph  30851  ccfldextdgrr  33682  sqrtcvallem2  43599  sqrtcvallem3  43600  sqrtcvallem4  43601  sqrtcvallem5  43602  sqrtcval  43603
  Copyright terms: Public domain W3C validator