| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > recl | Structured version Visualization version GIF version | ||
| Description: The real part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.) |
| Ref | Expression |
|---|---|
| recl | ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reval 15072 | . 2 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) = ((𝐴 + (∗‘𝐴)) / 2)) | |
| 2 | cjth 15069 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((𝐴 + (∗‘𝐴)) ∈ ℝ ∧ (i · (𝐴 − (∗‘𝐴))) ∈ ℝ)) | |
| 3 | 2 | simpld 494 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝐴 + (∗‘𝐴)) ∈ ℝ) |
| 4 | 3 | rehalfcld 12429 | . 2 ⊢ (𝐴 ∈ ℂ → ((𝐴 + (∗‘𝐴)) / 2) ∈ ℝ) |
| 5 | 1, 4 | eqeltrd 2828 | 1 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℝcr 11067 ici 11070 + caddc 11071 · cmul 11073 − cmin 11405 / cdiv 11835 2c2 12241 ∗ccj 15062 ℜcre 15063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-cj 15065 df-re 15066 |
| This theorem is referenced by: imcl 15077 ref 15078 crre 15080 remim 15083 reim0b 15085 rereb 15086 mulre 15087 cjreb 15089 recj 15090 reneg 15091 readd 15092 resub 15093 remullem 15094 remul2 15096 rediv 15097 imcj 15098 imneg 15099 imadd 15100 immul2 15103 cjadd 15107 ipcnval 15109 cjmulval 15111 cjmulge0 15112 cjneg 15113 imval2 15117 cnrecnv 15131 sqeqd 15132 recli 15133 recld 15160 cnpart 15206 absrele 15274 releabs 15288 efeul 16130 absef 16165 absefib 16166 efieq1re 16167 cnsubrg 21344 mbfconst 25534 itgconst 25720 tanregt0 26448 argregt0 26519 tanarg 26528 logf1o2 26559 abscxp 26601 isosctrlem1 26728 asinsin 26802 acoscos 26803 atancj 26820 atantan 26833 cxploglim2 26889 zetacvg 26925 cncph 30748 ccfldextdgrr 33667 sqrtcvallem2 43626 sqrtcvallem3 43627 sqrtcvallem4 43628 sqrtcvallem5 43629 sqrtcval 43630 |
| Copyright terms: Public domain | W3C validator |