MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recl Structured version   Visualization version   GIF version

Theorem recl 14461
Description: The real part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
recl (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)

Proof of Theorem recl
StepHypRef Expression
1 reval 14457 . 2 (𝐴 ∈ ℂ → (ℜ‘𝐴) = ((𝐴 + (∗‘𝐴)) / 2))
2 cjth 14454 . . . 4 (𝐴 ∈ ℂ → ((𝐴 + (∗‘𝐴)) ∈ ℝ ∧ (i · (𝐴 − (∗‘𝐴))) ∈ ℝ))
32simpld 498 . . 3 (𝐴 ∈ ℂ → (𝐴 + (∗‘𝐴)) ∈ ℝ)
43rehalfcld 11872 . 2 (𝐴 ∈ ℂ → ((𝐴 + (∗‘𝐴)) / 2) ∈ ℝ)
51, 4eqeltrd 2890 1 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  ici 10528   + caddc 10529   · cmul 10531  cmin 10859   / cdiv 11286  2c2 11680  ccj 14447  cre 14448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-2 11688  df-cj 14450  df-re 14451
This theorem is referenced by:  imcl  14462  ref  14463  crre  14465  remim  14468  reim0b  14470  rereb  14471  mulre  14472  cjreb  14474  recj  14475  reneg  14476  readd  14477  resub  14478  remullem  14479  remul2  14481  rediv  14482  imcj  14483  imneg  14484  imadd  14485  immul2  14488  cjadd  14492  ipcnval  14494  cjmulval  14496  cjmulge0  14497  cjneg  14498  imval2  14502  cnrecnv  14516  sqeqd  14517  recli  14518  recld  14545  cnpart  14591  absrele  14660  releabs  14673  efeul  15507  absef  15542  absefib  15543  efieq1re  15544  cnsubrg  20151  mbfconst  24237  itgconst  24422  tanregt0  25131  argregt0  25201  tanarg  25210  logf1o2  25241  abscxp  25283  isosctrlem1  25404  asinsin  25478  acoscos  25479  atancj  25496  atantan  25509  cxploglim2  25564  zetacvg  25600  cncph  28602  ccfldextdgrr  31145  sqrtcvallem2  40337  sqrtcvallem3  40338  sqrtcvallem4  40339  sqrtcvallem5  40340  sqrtcval  40341
  Copyright terms: Public domain W3C validator