![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > recl | Structured version Visualization version GIF version |
Description: The real part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.) |
Ref | Expression |
---|---|
recl | โข (๐ด โ โ โ (โโ๐ด) โ โ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reval 15052 | . 2 โข (๐ด โ โ โ (โโ๐ด) = ((๐ด + (โโ๐ด)) / 2)) | |
2 | cjth 15049 | . . . 4 โข (๐ด โ โ โ ((๐ด + (โโ๐ด)) โ โ โง (i ยท (๐ด โ (โโ๐ด))) โ โ)) | |
3 | 2 | simpld 495 | . . 3 โข (๐ด โ โ โ (๐ด + (โโ๐ด)) โ โ) |
4 | 3 | rehalfcld 12458 | . 2 โข (๐ด โ โ โ ((๐ด + (โโ๐ด)) / 2) โ โ) |
5 | 1, 4 | eqeltrd 2833 | 1 โข (๐ด โ โ โ (โโ๐ด) โ โ) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โ wcel 2106 โcfv 6543 (class class class)co 7408 โcc 11107 โcr 11108 ici 11111 + caddc 11112 ยท cmul 11114 โ cmin 11443 / cdiv 11870 2c2 12266 โccj 15042 โcre 15043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-2 12274 df-cj 15045 df-re 15046 |
This theorem is referenced by: imcl 15057 ref 15058 crre 15060 remim 15063 reim0b 15065 rereb 15066 mulre 15067 cjreb 15069 recj 15070 reneg 15071 readd 15072 resub 15073 remullem 15074 remul2 15076 rediv 15077 imcj 15078 imneg 15079 imadd 15080 immul2 15083 cjadd 15087 ipcnval 15089 cjmulval 15091 cjmulge0 15092 cjneg 15093 imval2 15097 cnrecnv 15111 sqeqd 15112 recli 15113 recld 15140 cnpart 15186 absrele 15254 releabs 15267 efeul 16104 absef 16139 absefib 16140 efieq1re 16141 cnsubrg 21004 mbfconst 25149 itgconst 25335 tanregt0 26047 argregt0 26117 tanarg 26126 logf1o2 26157 abscxp 26199 isosctrlem1 26320 asinsin 26394 acoscos 26395 atancj 26412 atantan 26425 cxploglim2 26480 zetacvg 26516 cncph 30067 ccfldextdgrr 32741 sqrtcvallem2 42378 sqrtcvallem3 42379 sqrtcvallem4 42380 sqrtcvallem5 42381 sqrtcval 42382 |
Copyright terms: Public domain | W3C validator |